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Abstract: Sepsis represents an important global health burden due to its high mortality and morbidity.
The rapid detection of sepsis is crucial in order to prevent adverse outcomes and reduce mortality.
However, the diagnosis of sepsis is still challenging and many efforts have been made to identify
reliable biomarkers. Unfortunately, many investigated biomarkers have several limitations that
do not support their introduction in clinical practice, such as moderate diagnostic and prognostic
accuracy, long turn-around time, and high-costs. Complete blood count represents instead a precious
test that provides a wealth of information on individual health status. It can guide clinicians to
early-identify patients at high risk of developing sepsis and to predict adverse outcomes. It has
several advantages, being cheap, easy-to-perform, and available in all wards, from the emergency
department to the intensive care unit. Noteworthy, it represents a first-level test and an alteration of
its parameters must always be considered within the clinical context, and the eventual suspect of
sepsis must be confirmed by more specific investigations. In this review, we describe the usefulness
of basic and new complete blood count parameters as diagnostic and prognostic biomarkers of sepsis.

Keywords: biomarker; sepsis; CBC; CPD; thrombocytopenia; anemia; lymphocytes; neutrophils;
monocytes; RBC

1. Introduction

Sepsis is a highly complex disease caused by the dysregulation of the host response to
infection that leads to an uncontrolled inflammatory response followed by immunosup-
pression. It occurs as a complication of infections acquired both in the community and
in healthcare settings, especially in intensive care units (ICU) [1], where it represents the
most common cause of death, accounting for more than 50% of ICU mortality [2]. Overall,
sepsis is considered a global health burden, with an important economic impact [3]. Thus,
the rapid detection of sepsis is crucial in order to prevent adverse outcomes and reduce
mortality by promptly starting the treatment before the occurrence of irreversible damage.
It has been estimated that each hour of treatment delay is associated with a 7–10% increase
in sepsis-related mortality [4]. However, the early diagnosis of sepsis is still challenging
today because it is characterized by non-specific specific signs and symptoms. Thus, many
efforts have been made to identify a reliable biomarker for screening patients at high risk
of sepsis. Among all investigated sepsis biomarkers [5–8], parameters belonging to the
complete blood count (CBC) could represent precious tools. Indeed, CBC has several
advantages: (i) it represents the first-line laboratory test most commonly ordered in all
clinical settings, from the emergency department (ED) to the ICU; (ii) clinicians routinely
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request CBC as part of the management of patients; (iii) it is easy to perform; (iv) it is cheap;
(v) it has a fast turn-around time (TAT); (vi) it is available in all health facilities.

The aim of this review is to highlight the usefulness of CBC parameters for sepsis
diagnosis and prognosis by putting together published literature on the subject matter.
Specifically, we performed literature research on PubMed by combining the term “sep-
sis” and all terms related to the CBC parameters. We excluded articles written in other
languages than English and those not related to sepsis.

2. Sepsis Definition and Pathogenesis

Sepsis has a long history dating back to over 2700 years ago when it was first men-
tioned in the ancient Greek poems of Homer. Since then, the definition of sepsis has shifted
over time (Figure 1). Originally sepsis was thought to be an internal rotting or decaying
due to the smell of patients affected [9]. The development of medical hygiene and the germ
theory in the late 1800s modified the concept of sepsis from internal decay to originating
from a harmful microorganism. In 1913, William Osler noted “except on few occasions,
the patient appears to die from the body’s response to infection rather than from it” [10].
The next year, Hugo Schottmüller created the basis for the modern definition of sepsis:
“Sepsis is present if a focus has developed from which pathogenic bacteria, constantly or
periodically, invade the bloodstream in such a way that this causes subjective and objec-
tive symptoms” [11]. However, over the course of the twentieth century, there emerged
a need for an accurate and internationally recognized definition of sepsis. In 1992, the
consensus conference of the Society of Critical Care Medicine and the American College of
Chest Physicians, also known as Sepsis-1 conference, defined sepsis as infection-induced
systemic inflammatory response syndrome (SIRS) [12]. Such definition was updated in
2002 by Sepsis-2 conference [13]. After two decades, in 2016, the Sepsis-3 conference revo-
lutionized the definition of sepsis by removing the concept of SIRS and describing it as “a
life-threatening organ dysfunction resulting from infection” [14]. In other words, sepsis is
caused by a deregulated response to a pathogen.

Figure 1. Timeline of the evolution of the sepsis definition.

Sepsis is a highly heterogeneous disease both in terms of etiology and pathogene-
sis [15]. Gram-negative bacteria are the most frequent pathogen causing sepsis, followed
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by gram-positive. Also, parasites and fungi can cause sepsis but to a lesser extent than
bacteria. Notably, in about one-third of patients, the causative agent is not detectable.

The pathogenesis of sepsis can be ideally divided into two phases. An initial phase
characterised by an intense inflammatory response to infection leading to the release of pro-
inflammatory cytokines. Most patients (≈60%) recover, while 30% transit to the late phase,
characterised by immunosuppression [16]. In this scenario, the immune response, which
consists of the innate and adaptive systems, has a key role. The innate immune system
represents the first line of defence against pathogens. It is not specific and acts rapidly to
fight infection. Eosinophil, basophil, and phagocytic cells, including macrophages and
neutrophils, are components of the innate immune system. The adaptive immune system,
consisting of lymphocytes T and B, involves antigen-specific response, which is specific for
the pathogen and regulated by crosstalk with innate immune cells. The adaptive immune
response is important for confining the inflammation and tissue damage after infection
and for returning immune homoeostasis.

During sepsis, pathogen-associated molecular patterns (PAMP) and danger-associated
molecular patterns (DAMPs) induce the activation of innate immune cells, which release
pro-inflammatory cytokines, leading to a robust inflammatory response characterized
by the so-called “cytokine storm”. The excessive inflammatory response could induce
cell and tissue damage, leading to multi-organ dysfunction. Additionally, during sepsis,
the adaptive immune response is deregulated, leading to immune suppression, which
promotes secondary infections.

3. Basic Complete Blood Count

The CBC is the most common and easy-to-perform laboratory test, which provides a
wealth of information on individual health status. The appropriate interpretation of this
test is pivotal for the early detection of several clinical conditions, which should be further
investigated by laboratory and clinical analysis.

The CBC parameters can be grouped into three categories: (i) white blood cells (WBC),
(ii) red blood cells (RBC), (iii) platelets. In this section, we describe the parameters included
in a basic CBC, which can be provided by any hematological analyzer.

3.1. White Blood Cells

White blood cells, also known as leukocytes, are a heterogeneous population including
lymphocytes, monocytes, and granulocytes, consisting of neutrophils, eosinophils, and
basophils. It can be expressed as a percentage or as an absolute value. The WBC absolute
value has clinical significance and is more informative than the relative one (percentage)
because it indicates the medullary response to inflammatory stimuli. The relative value
is helpful for evaluating which WBC population is mainly involved in the inflammatory
process, allowing an etiological diagnosis.

Commonly, the increase of total WBC count is indicative of inflammation and infec-
tion. However, it can be altered in several clinical conditions, such as hemopathy, and
in inflammatory non-infective disorders, such as rheumatoid arthritis, lupus, and malig-
nancy [17,18]. Additionally, WBC count could be normal or even decreased in some cases
of sepsis. Thus, total WBC has a poor specificity, which limits its usefulness as a biomarker
of sepsis [14].

3.1.1. Lymphocytes

Lymphocytes are key components of the adaptive immune response. They make up
approximately 20–40% of the total leukocyte count.

A hallmark of sepsis is the simultaneous presence of pro-inflammatory and immuno-
suppressive alterations [19]. The latter are characterized by the early massive depletion
of lymphocytes due to apoptosis. Studies on mice and humans revealed that sepsis-
induced apoptosis is driven either by extrinsic or intrinsic pathways [20,21]. Additionally,
post-mortem studies on patients with septic shock showed that apoptosis occurs in both
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circulating cells and in solid organs [22]. Overall, sepsis-induced apoptosis leads to lym-
phocytopenia.

Several authors showed that lymphocyte count decreases in the early phase of sepsis
and that it is associated with poor outcomes [23–26]. Drewry et al. showed that persistent
lymphocytopenia, defined as an absolute lymphocyte count ≤ 0.6 cells/µL × 103, on the
fourth day after sepsis diagnosis, is associated with an increased risk of 28-day mortal-
ity [27]. Similarly, Chung et al. showed that severe basal lymphopenia is associated with
an increased risk of death by day 28 in patients with septic shock admitted to ICU [28].

Also, Sheikh Motahar Vahedi et al. found that lymphocytopenia is a predictor of
28-day mortality in patients with sepsis admitted to the ED [29]. Finally, Hohlstein et al.
showed that lymphocytopenia at ICU admission is associated with increased mortality [30].

Overall, literature evidence suggests that lymphocytopenia could be an indicator of
increased risk of mortality in patients with sepsis.

3.1.2. Monocytes

Monocytes represent the first line of defense against invading pathogens. They
are activated by pattern recognition receptors (PRRs) and sepsis-associated hypoxia [31].
Monocytes control both the innate and adaptive immune responses to pathogens by
different mechanisms, including phagocytosis; the release of reactive oxygen species,
cytokines, and chemokines; the recruiting of neutrophils; antigen presentation; and the
activation of lymphocytes [32].

Overall, monocytes can be classified into three different sub-population based on the
different expression of a co-receptor to lipopolysaccharide (LPS), CD14, and CD16 receptor:
classical (CD14+++CD16−), intermediate (CD14++ CD16+), and non-classical (CD14+
CD16++) [33], which present different morphological, functional, and phenotypical char-
acteristics. Under physiological conditions, classical monocytes are the most represented
sub-population, accounting for around 85% of total circulating monocytes; the intermediate
ones account for around 5%; and the non-classical ones account for the remaining 10% [34].
During sepsis, monocytes undergo a shift from classical to intermediate and non-classical
forms [35].

Although monocytes have a pivotal role in sepsis, the value of monocyte count for sep-
sis diagnosis and prognosis is controversial. Some authors reported monocytosis, defined
as an increase of monocyte count, while others described monocytopenia associated with
increased mortality [32,36]. Thus, the value of monocyte count is limited. Noteworthy, CBC
parameters detecting monocytes’ alteration, such as monocyte distribution width (MDW)
and neutrophil-to-monocyte ratio, have shown promising results, as described above.

3.1.3. Neutrophils

Neutrophils represent the most prevalent leukocytes and the most abundant innate
cell population in systemic circulation, making up about 40% to 70% of the total leukocyte
count [37]. They are a key component of the innate immune system and act as sentinels to
eliminate invading pathogens.

When infection occurs, neutrophils rapidly migrate to the site of infection and elimi-
nate the invading pathogen by several mechanisms, including phagocytosis and oxidative
bursts, neutrophils extracellular traps to execute microbial killing [38].

Under physiological conditions, neutrophils undergo apoptosis to maintain their home-
ostasis. However, during sepsis, neutrophils undergo several functional alterations, including
reduced migration, altered antimicrobial activity, and delayed apoptosis, contributing to immune
dysfunction and persistent inflammation [39,40]. Altogether, neutrophil alterations contribute to
the worsening of sepsis and the development of secondary complications.

During infection, the neutrophil count increases considerably, and it is generally asso-
ciated with the overall severity of the infection. However, in severe sepsis, the neutrophil
apoptosis is delayed, limiting the usefulness of neutrophil count in some cases.
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Noteworthy, the increase of neutrophils, also known as neutrophilia, can occur in
response to a stressor, including physical and emotional stress, as well as smoking [41].
Also, chronic disorders, such as inflammatory bowel disease, rheumatic disease, and
hepatitis, as well as congenital disorders, such as Down syndrome, are characterized by
baseline neutrophilia [42]. Finally, paraphysiological conditions, such as pregnancy and
obesity, could be associated with acute to chronic neutrophilia [43].

Thus, neutrophil count alone has a poor diagnostic and prognostic power for sep-
sis. Notable, the neutrophil-to-lymphocyte ratio (NLR) has emerged as a reliable sepsis
biomarker, as described above.

3.1.4. Eosinophils

Eosinophils represent 1–4% of circulating leukocytes and have a pivotal role in host
defence against helminths, the propagation of allergic conditions, and immune and in-
flammatory networks. They possess receptors for many inflammatory mediators and
produce and release an array of biologically active molecules, including cytotoxic proteins,
lipid mediators, chemokines, and cytokines. Upon physiological or pathological stimuli,
such as infection, eosinophils can migrate into target organs and tissues, where, once
activated, they release their products and promote local inflammation, as well as tissue
remodeling [44]. Eosinophils are recognized as an important player in modulating local
and systemic immune and inflammatory responses.

The reduction of circulating eosinophil count, termed eosinopenia, in response to
infection was firstly described in 1893 by Zappert et al. [45]. It is now well known that
eosinopenia occurs during acute infection [46].

Abidi et al. firstly evaluated the potential role of eosinopenia as a biomarker of sepsis,
showing that it has good sensitivity and specificity in diagnosing sepsis [47]. Then, several
authors addressed the value of eosinopenia for diagnosing and predicting the prognosis
of sepsis, achieving inconsistence and controversial results [48–51]. Notably, the value of
eosinopenia as a criterion of sepsis has been the subject of debate for decades.

A recent meta-analysis by Lin et al., including a total of 3.842 patients, showed that
eosinopenia has a high incidence in sepsis, but it is not superior to conventional biomarkers
for diagnosing sepsis, such as C reactive protein (CRP) and procalcitonin (PCT) [52]. It
should be considered that the studies currently available on the accuracy of eosinopenia as
a sepsis biomarker present a high heterogeneity, with sensitivity ranging from 23.2 to 92.5%
and specificity from 28.57 to 91%. However, the authors of the meta-analysis conclude that
eosinopenia can still be used in clinical practice for detecting sepsis because it is a simple,
convenient, fast, and inexpensive biomarker.

3.1.5. Basophils

Basophils represent the rarest granulocytes, making up about 0.5–1% of the total
leukocyte count. They are characterized by the presence of basophilic granules within the
cytoplasm, containing several allergic mediators such as histamine, and a high-affinity IgE
receptor on the cell surface. The physiological function of basophils has for many years
remained enigmatic. Indeed, the study of basophils has long been hampered by both their
rarity and the lack of tools for their detection and functional analyses. However, recently
developed tools, such as basophil-depleting antibodies and engineered mice deficient for
only basophils, shed light on the important role of basophils in allergic responses, protec-
tive immunity against parasitic infections and the regulation of the immune system [53].
Specifically, some authors showed that basophils have a role in initiating Th2 cell differenti-
ation by acting as antigen-presenting cells [54,55]. Piliponsky et al. showed that basophils
could enhance the innate immune response to bacterial infection and help prevent sepsis
in an experimental model [56]. However, only one study explored the role of basophils in
patients with sepsis. The authors showed that septic critically ill patients with decreased
basophil count at admission to ICU had an increased mortality risk [57].
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3.2. Red Blood Cells

Red blood cells, also termed erythrocytes, are the most abundant circulating cells
and are produced within bone marrow through a complex and multi-step process, known
as erythropoiesis, which begins with the differentiation of multipotent hematopoietic
stem cells into erythroid-committed precursors. The final step leads to the production
and release in the bloodstream of reticulocytes, which complete the maturation process
into erythrocytes.

Under physiological conditions, RBCs have a characteristic biconcave disc shape, a
lifespan of 120 days, and are metabolized by macrophages in the spleen and liver [58]. The
best-known function of RBC is the transport and exchange of O2 and CO2 between the
lungs and other tissues. However, they also have a pivotal role in cellular blood immunity,
representing the main circulating bactericidal cells [59,60].

Sepsis is characterized by decreased RBC count, which could be due to several mech-
anisms related to the altered production or survival of RBC [61]. The suppression of
RBC production could be the result of functional iron deficiency, decreased erythropoietin
synthesis, infection, and inflammation [62]. Moreover, pre-existing clinical conditions,
such as cancer, liver disease, or renal impairment as well as new-onset multiple organ
dysfunction, particularly of hepatic and renal systems, may contribute to RBC loss during
sepsis. Other contributing factors include disseminated intravascular coagulation (DIC),
pathogen-associated hemolysis, hypoadrenalism, and nutritional deficiency. In addiction,
the volume resuscitation-induced hemodilution is associated with decreased RBC count.
Finally, blood loss can also occur by repeated phlebotomy, via the gastrointestinal tract,
or from surgical procedures. Withdrawal of blood has been estimated to result in a mean
daily loss of 24 to 41 mL of blood [62].

The shortening of RBC survival could be due to pathogen- and immune-reaction-
induced RBC alteration. Indeed, sepsis dramatically alters RBC morphology and rheology
(viscosity, aggregation, and deformability). As a consequence, altered RBCs are more
rapidly cleared from the circulation through increased uptake by the reticuloendothelial
system of the spleen and/or the liver [63]. Overall, reduced RBC count has no diagnostic
or prognostic power for sepsis.

Basic CBC provides several parameters related to RBC characteristics, including
hemoglobin (Hb), hematocrit, mean cell (or corpuscular) volume (MCV), mean corpuscular
hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), and red distribution
width (RDW).

3.2.1. Hemoglobin

Hb has a critical role in oxygen delivery to the tissues. Notably, the decrease of
hemoglobin, defined as anemia, is common in patients with sepsis and overall in critical
illness [64]. It has been estimated that two-thirds of patients admitted to ICU have Hb
levels < 120 g/L and that about 40% have Hb < 100 g/L; 97% of patients develops anemia
by day 8 and 100% by day 13 of ICU hospitalization.

The measurement of Hb concentration is pivotal for RBC transfusion decision-making.
However, it is always important to evaluate if the benefits of additional oxygen-carrying
capacity outweigh the risks. Indeed, in the presence of important organ hypoperfusion,
an increased Hb concentration leading to increased oxygen delivery could exacerbate
organ dysfunction and worsen the patients’ outcomes. The Surviving Sepsis Campaign
2016 recommends “RBC transfusion should occur only when hemoglobin concentration
decreases to <7.0 g/L in adults in the absence of extenuating circumstances, such as
myocardial ischemia, severe hypoxemia, or acute hemorrhage” [65].

3.2.2. Hematocrit

Hematocrit indicates the fractional volume of a whole blood sample occupied by
RBCs, expressed as a percentage.
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Sepsis is characterized by a reduction of hematocrit. The value of hematocrit is used as
a target for transfusion [66]. In patients with septic shock, targeting a hematocrit value of
30% in those with low central venous oxygen saturation during the first 6 h of resuscitation
has been proposed [67,68].

3.2.3. MCV

The MCV measures the average size and volume of the circulating RBC. In clinical
practice, MCV is a useful index for classifying anemia as microcytic, normocytic or macro-
cytic. Sepsis is commonly characterized by normocytic anemia. MCV alone does not have a
role as a sepsis biomarker. However, the combination of MCV with the standard deviation
of erythrocyte volume for calculating RDW has been deeply investigated in patients with
sepsis, as described above.

3.2.4. MCH and MCHC

MCH and MCHC are measures of the hemoglobin content of RBC. MCH indicates
the amount of hemoglobin per RBC, while MCHC expresses the amount of hemoglobin
per unit volume. To date, the value of MCH and MCHC in patients with sepsis has never
been explored.

3.2.5. RDW

RDW represents a measure of the RBC anisocytosis, defined as the presence of highly
heterogeneous RBCs in terms of size and volume [69].

Decreased RDW has no clinical implication, while increased values are indicative of
large size variation of RBCs, and, consequently, are clinically meaningful. For a long time,
RDW has been regarded as a biomarker for the differential diagnosis of thalassemia and
iron-deficiency anemia [70]. In the last decades, a role for RDW in non-hematological disor-
ders, such as autoimmune diseases, cardiovascular diseases, and critical illness, including
sepsis, has emerged.

During sepsis, oxidative stress and inflammation, which are features of the sepsis
cascade, lead to the reduction of survival and the suppression of the maturation of RBCs,
resulting in the release of premature RBCs and consequently, in an increase of RDW [71].
Specifically, on one side, pro-inflammatory cytokines hamper erythropoietin-induced
erythrocyte proliferation and maturation; on the other side, oxidative stress reduces RBC
survival, producing large premature RBCs. Several authors showed that the rise of RDW
(>15%) in septic patients is an independent predictor of long- and short-term adverse
clinical outcomes, including mortality, especially in the ICU [72–79]. Additionally, Zhao
et al. developed a nomogram based on the combination of CBC parameters, including
RDW, to predict the risk of mortality in patients with sepsis admitted to the ED [80]. The
nomogram, which included increased age, neutrophil-to-lymphocyte ratio (NLR), platelet-
to-lymphocyte ratio (PLR), and RDW, as well as a decreased lymphocyte-to-monocyte
ratio, showed good prognostic accuracy. Additionally, Chen et al. developed a clinical
prediction rule, namely the CHARM score, based on clinical and laboratory parameters,
including RDW [81]. The CHARM score showed good performance for predicting in-
hospital mortality in patients with clinically suspected sepsis in the ED.

However, some authors failed to find an association between RDW and outcome in
septic patients [82,83].

Overall, most of the evidence supports the role of RDW as an independent prognostic
biomarker for sepsis [84].

To date, only a few studies evaluated the accuracy of RDW for diagnosing sepsis [85–87].
Zhang et al. [85] and Laukemann et al. [87] found that RDW was not a reliable biomarker
for predicting sepsis. On the other hand, Park et al. showed that septic patients had
significantly higher RDW values than healthy controls. Additionally, RDW displayed a
high diagnostic accuracy for sepsis prediction.
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Taken together, the literature evidence on the possible role of RDW as a diagnostic
biomarker of sepsis is still poor, and further efforts are warranted.

3.3. Platelets

Platelets are the smallest elements in the bloodstream. They are anucleate cells pro-
duced mainly in the bone marrow by the fragmentation of the megakaryocyte extrusions
into the vasculature. Beyond their well-known role in hemostasis, they contribute to the
innate immune response to infection and inflammation. Platelets function as sentinels for
the rapid detection of microbial invasion and orchestrate a complex intravascular immune
defense response that protects against bacterial dissemination [88].

During sepsis, multiple factors, including the direct interaction of the pathogen with
DAMP receptors expressed on the platelet surface, coagulation system activation, in-
flammatory response, and endothelial tissue damage, induce the activation of platelets.
Upon activation, platelets exert several functions. Activated platelets rapidly aggregate
and express multiple receptors on their surface that further enhance their aggregation
with nearby platelets and leukocytes or that directly bind to and sequester extracellular
pathogens [89]. Activated platelets also release microbicide molecules and chemokines
that facilitate pathogen elimination, signal immune cells, and contribute to inflammation.
Finally, platelets promote a pro-inflammatory phenotype of neutrophil [90,91], as well as
monocyte, differentiation into macrophages.

The clinical monitoring of platelet count has emerged as a precious tool in the man-
agement of septic patients [92]. Indeed, several authors showed that platelet count is
a useful diagnostic and prognostic biomarker in sepsis [88]. The reduction of platelet
count, termed thrombocytopenia, is a common finding in septic patients, with an incidence
ranging from 20 to 70% across studies [93]. The inclusion of platelet counts as a core
parameter for calculating the sepsis-related organ dysfunction score (SOFA); the score
emphasizes the importance of such CBC parameters [14]. A low platelet count is strongly
correlated with adverse outcomes in sepsis patients, and it is often used for stratifying
patients: mild thrombocytopenia (platelet count < 100–150 × 109/L), moderate throm-
bocytopenia (platelet count between 50 and 100 × 109/L), and severe thrombocytopenia
(platelet count < 50 × 109/L), which is associated with worse outcomes [94].

Noteworthy, the kinetic of platelets provides important prognostic information and is
more predictive for mortality than a single measurement. The failure of platelet counts to
return into the normal range during acute illness is associated with increased mortality,
while the recovery of platelet count is associated with survival to ICU discharge. Thus, not
only the severity of the thrombocytopenia but especially its persistence is associated with
worse outcomes [90].

Sepsis-associated thrombocytopenia is the result of several mechanisms, including the
considerable consumption of circulating platelets, which are recruited from the circulation
and sequestered within highly vascular organs, such as the lungs and liver; the decreased
thrombopoiesis; the hemodilution; the platelet-leukocyte aggregation; the direct pathogen-
induced thrombocytopenia; the immune-mediated destruction of platelets; drug-induced
thrombocytopenia; DIC; and hemophagocytic lymphohistiocytosis [88,95,96].

Although sepsis is one of the most common causes of thrombocytopenia in critically
ill patients, several other causes can mimic sepsis-related thrombocytopenia, such as
myelodysplastic syndrome and aplastic anemia, as well as drugs, such as thiazide or
chemotherapics, which inhibit platelet production [97].

Not only the platelet count but also platelet-derived indices have been evaluated as
biomarkers of sepsis. Platelet indices include the platelet distribution width (PDW), which
is a measure of platelet anisocytosis, which, accordingly, increases during accelerated
platelet turnover; the mean platelet volume (MPV), which is an indicator of platelet size;
and plateletcrit, a measure of total platelet mass. Some authors showed that platelet indices
are reliable prognostic biomarkers of sepsis, whereas others found the opposite [39,96,98].
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To date, there are few studies to draw a conclusion on the potential role of platelet indices
as biomarkers of sepsis.

4. CBC Parameters Ratios
4.1. Neutrophil-to-Lymphocyte Ratio

The neutrophil-to-lymphocyte ratio (NLR) is calculated as the neutrophil count di-
vided by the lymphocyte count. During sepsis, neutrophils and lymphocytes rapidly
respond to microbial infection in a different manner. Neutrophil count increases dramati-
cally, while the lymphocyte count decreases. Although neutrophil count alone is associated
with the overall severity of the infection/inflammation, neutrophil apoptosis is delayed in
complicated sepsis cases, suggesting that it has limited prognostic value in some cases [99].
Changes in NLR are indicative of the balance between neutrophil and lymphocyte counts.
Several authors showed that NLR is an early biomarker of sepsis, regardless of the source
of sepsis, and correlates with sepsis severity scores, such as The Acute Physiology and
Chronic Health Evaluation II (APACHE II) score and SOFA score [100–105]. Noteworthy,
NLR increases rapidly following infection.

A recent meta-analysis of 14 studies, including 11,564 septic patients, revealed that
NLR is a reliable prognostic indicator in patients with sepsis [106]. Specifically, non-
survivor patients showed significantly higher levels of NLR than survivors. Thus, NLR is
an independent predictor of worse outcomes [101]. It seems to be a more reliable sepsis
biomarker than either neutrophil count or lymphocyte count alone [107]. When interpreting
NLR, it should be kept in mind that its levels can also increase in other conditions, such as
hypovolemic shock or exogenous steroid therapy [108].

Overall, increased NLR levels are independently associated with adverse prognosis in
septic patients. Unfortunately, several decisional NLR cut-off values have been proposed,
ranging from 4.36 to 23.8 [106], independently based on the hematology analyzer used.
Thus, before introducing it in clinical practice, a univocal cut-off should be validated.

4.2. Monocyte-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Mean Platelet
Volume-to-Platelet Count

Literature data regarding the role of monocyte-to-lymphocyte ratio (MLR), platelet-to-
lymphocyte ratio (PLR), and platelet count-to-mean platelet volume (PC/MPV) in patients
with sepsis are scarce. Djordjevic et al. assessed such ratios in patients with sepsis, showing
that PC/MPV was higher in non-survivors than survivors, while MLR and PLR did not
differ significantly [109]. Similarly, Oh et al. showed that a high PC/MPV ratio (>3.71) was
an independent predictor of 28-day mortality [110]. Shen et al. found a strong association
between increased PLR and hospital mortality in a large observational study including
5537 sepsis patients [111]. On the other hand, Liberski et al. [98], as well as Ates et al. [112],
found that PLR, MLR, and PLT/MPV were not reliable biomarkers for sepsis screening
or prognostication. Thus, it is not possible to draw conclusions on the usefulness of these
ratios in patients with sepsis and further studies are warranted.

5. Cell Population Data

Over the past few decades, hematology analyzers have undergone important tech-
nological advancements. The new generation of instruments can generate the so-called
cell population data (CPD), which provides quantitative information on the morphologi-
cal and functional characteristics of blood cells. CPD can be generated by two different
technologies, VSC technology and fluorescence flow cytometry.

VSC technology uses direct current impedance for measuring the volume (V) of the
cells, a laser beam to measure multiple angled light scatters (S) for evaluating cytoplasmic
granularity and the nuclear structure of the cells, and radiofrequency conductivity (C) to
analyze the cytoplasmic composition and nuclear volume of the cells [113].

Fluorescence flow cytometry is based on the use of blood-cell membrane surfactant
reagents and the fluorescent labeling of cell epitopes followed by flow cytometry analysis.
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Such technology provides information on cell size, internal complexity (granularity), and
the content of nucleic acids (DNA and RNA). Briefly, the differential leucocyte count is
based on the criteria of granularity (side scatter light), cell size (forward scatter light), and
nucleic acid/protein content of cells (fluorescent light intensity). The optical signals of
leucocyte differential are presented in the three axes of the white blood cells differential
fluorescence (WDF) channel scattergram [113].

CPD parameters provide quantitative values of volume, granularity, and complexity
for each cell. The changes in CPD values can provide precious information on the mor-
phological and functional transformation of cells in response to an infection. Thus, several
CPD parameters have been evaluated as a biomarker of sepsis. In this section, we describe
the most promising CPD parameters for sepsis.

5.1. Monocyte Distribution Width

The monocyte distribution width (MDW), also named early sepsis indicator (ESId),
represents a measure of the monocytes’ anisocytosis. It has been approved by the Food and
Drug Administration (FDA) as a biomarker for the early detection of sepsis in ED. Recently,
several authors showed that MDW has good diagnostic accuracy for early-identifying
patients at high risk of developing sepsis, especially in the ED and the ICU [114–123].
MDW is characterized by a high negative predictive value for sepsis diagnosis. Thus, a
value under the decisional cut-off allows the reliable exclusion of the presence of sepsis. In
clinical practice, MDW could represent a red flag to identify patients that should undergo
further clinical and laboratory evaluations to confirm the suspicion of sepsis. However,
further efforts are required before introducing it in clinical practice. Indeed, there is a
high heterogeneity among studies on the optimal MDW decisional cut-off value, ranging
from 20 to 27. This could be due to the difference in the study design, the different clinical
settings in which the studies were performed (ED, ICU, or the infectious disease unit), the
different method of calculations, or the type of anticoagulant used for the blood collection
(K3-EDTA vs. K2-EDTA). Specifically, K2-EDTA anticoagulated whole blood samples were
associated with lower MDW levels than K3-EDTA. Thus, different cut-off values for K2- or
K3-EDTA anticoagulants must be used.

5.2. Mean Neutrophil Volume and Mean Monocyte Volume

The mean neutrophil volume (MNV) and mean monocyte volume (MMV) represent
the average size of the circulating neutrophil and monocyte populations, respectively.
Several authors evaluated the role of MNV and MMV as biomarkers of sepsis, achiev-
ing encouraging results [124–127]. Arora et al. [117] found that MNV and MMV were
increased in patients with sepsis compared to controls. Additionally, a significant de-
crease in MNV and MMV values was observed after the initiation of antibiotic therapy.
Similarly, Mammen et al. showed that MNV and MMV were increased in patients with
sepsis compared to non-septic patients admitted to ICU [126]. Noteworthy, both CPD
parameters showed good diagnostic accuracy for sepsis, superior to traditional biomarkers,
such as CRP and PCT. The best cut-off for detecting sepsis is 150 and 170 for MNV and
MMV, respectively.

Overall, in critically ill patients with suspected sepsis, MNV and MMV may help
strengthen the diagnostic probability of sepsis. Further studies to validate the usefulness
of such biomarkers are necessary to introduce them in clinical practice.

5.3. Neutrophil Fluorescence Intensity and Monocyte Internal Structure

Neutrophil fluorescence intensity (NE-SFL) and monocyte internal structure (MO-X)
are two CPD parameters measured by fluorescence flow cytometry technology. Some
authors found that both NE-SFL and MO-X have good diagnostic accuracy for diagnosing
sepsis and correlate with disease severity [128–130].
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5.4. Immature Granulocytes

Microbial pathogens stimulate the production of cytokines, which induce the release
of immature granulocytes (IG) from the bone marrow, including promyelocytes, metamye-
locytes, and myelocytes. In the peripheral blood, these immature granulocytes are an
indicator of leukopoiesis and can be seen as bands, which are usually referred to as “left
shift”. The granulocytic shift to the left reflects the active bone marrow response to infection.
The band count is commonly obtained by a manual differential count, and, consequently, it
is characterized by several drawbacks, such as long TAT; high interobserver variability; and
low accuracy, precision and reproducibility. However, these limitations can be overcome
by the quantification of IG on the last generation of automated hematology analyzers [131].

Severe sepsis is characterized by a marked increase, up to 10-fold, in neutrophil pro-
duction by bone marrow and, consequently, by a rise in circulating immature neutrophils.
Thus, IG has been assessed as a biomarker for sepsis diagnosis, achieving contradictory
results. Some authors found that an elevated value of IG is indicative of sepsis [108],
while low values can reliably rule out sepsis [132]. Others reported IG to be nearly worth-
less [133]. Additionally, a high heterogeneity among studies exists, especially for optimal
cut-off value, which ranges from 0.2% to 3% [108]. Thus, further studies are required to
validate the usefulness of IG for sepsis diagnosis and to identify a univocal cut-off value.

5.5. Immature Platelet Fraction

The immature platelet fraction (IPF) is a CPD parameter obtained by flow cytometry
technology. It reflects the number of circulating reticulated platelets, which represent the
immature platelets and, consequently, provides a direct measure of the platelet production.
It increases when platelet production rises and decreases when production falls. A recent
systematic review showed that IPF is a reliable biomarker for sepsis diagnosis and progno-
sis, in terms of severity and mortality [134]. Indeed, it tends to increase before the onset
of sepsis and correlates with the scores conventionally used for assessing the severity of
sepsis, such as the SOFA score.

5.6. Delta Neutrophil Index

The delta neutrophil index (DNI) is an indicator of the circulating immature granu-
locytes. Some authors showed that DNI has a prognostic value in patients with sepsis.
Specifically, increased levels of DNI are associated with mortality [135]. Additionally, Kim
et al. found that a value of DNI constantly increased after 72 h treatment is associated
with a worse prognosis [136]. Celik et al. showed that after 6–10 days of effective therapy,
patients have normal levels of DNI [137]. Thus, DNI could also be useful for monitoring
the efficacy of therapy.

6. Discussion

Sepsis is a complex disease, which still represents an open challenge worldwide. The
early diagnosis of sepsis combined with appropriate management in the first hour of
hospital admission is fundamental for patients with infections, ideally before any signs
and symptoms of organ failure have appeared. However, the timely diagnosis of sepsis
represents an ongoing challenge for any clinician. Actually, it is based on a combination of
clinical and laboratory findings. Among the latter, the gold standard remains the blood
culture, but it has several drawbacks, including a long TAT, a high rate of false-negatives,
and the vulnerability to pre-analytical variables [138]. Additionally, CRP and PCT are
the most common required biomarkers for sepsis diagnosis, prognosis, and therapeutic
decision-making [139–143]. Nonetheless, they are characterized by suboptimal diagnostic
accuracy, low specificity, modest sensitivity, and high cost, especially for PCT. The attention
to the early diagnosis of sepsis has fueled interest in identifying low-cost biomarkers
available routinely. In this scenario, CBC parameters are ideal biomarkers.

They represent early, rapid, inexpensive, and widely available biomarkers, allowing
efficient and timely patient management by promptly detecting patients at high risk
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of sepsis, also when the clinician does not suspect it, and by allowing a strengthened
monitoring and more aggressive treatment.

The CBC of a patient with sepsis is commonly characterized by lymphocytopenia, neu-
trophilia, eosinopenia, thrombocytopenia, increased RDW, and increased NLR (Figure 2).
The importance of thrombocytopenia in patients with sepsis is emphasized by the inclu-
sion of platelet count in the SOFA score. Moreover, anemia, detected by a reduction of
hemoglobin and hematocrit, is a common finding in patients with sepsis. Accordingly,
both hematocrit and hemoglobin values are used to guide and monitor blood transfusion
therapy. Finally, CPD parameters, which are generated by the new generation analyzers,
have been recently evaluated as potential biomarkers of sepsis. Among these, literature
data support the usefulness and reliability of MDW and IPF as biomarkers for early sepsis
screening and prognosis in acute settings. Although CPD parameters have the great advan-
tage of being available together with basic CBC, they present some important limitations,
which hamper their introduction in clinical practice. Indeed, they are not available on all in-
strumentations, and they depend on the optical design of the analyzer used. Consequently,
there is a lack of harmonization among different instruments.

Figure 2. The CBC of an adult patient with sepsis. WBC, white blood cells; RBC, red blood cells;
MCV, mean cell volume; MCH, mean corpuscular hemoglobin, MCHC, mean cell hemoglobin
concentration, RDW, red distribution width; PLT, platelet. * indicates values out of reference range.
Notably, reference ranges change according to the instrument used.
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Overall, an alteration of some CBC parameters should be interpreted by clinicians
as a warning, which should raise the suspicion of sepsis, that must be always confirmed
by more specific laboratory and clinical investigations. Notably, care must be taken when
considering CBC parameters because most of them can be altered in many clinical condi-
tions, and thus, the findings of CBC must always be considered within the clinical context
(Figure 3). The clinical usefulness of CBC parameters is summarized in Table 1.

Figure 3. Pros and cons of CBC parameters as biomarkers of sepsis.

Table 1. Clinical usefulness of CBC parameters for sepsis.

Parameter Alteration Clinical Usefulness

Basic

WBC ↑ Diagnosis
Neutrophils ↑ Prognosis

Lymphocytes ↓ Prognosis
Monocytes ↑↓ Controversial
Eosinophil ↓ Diagnosis
Basophil ↓ Prognosis

RBC ↓ None
Hemoglobin ↓ Guide RBC transfusion
Hematocrit ↓ Target for RBC transfusion

MCV - -
MCH - -

MCHC - -
RDW ↑ Prognosis

Platelets ↓ Diagnosis and prognosis

CPD

MDW ↑ Diagnosis
MNV ↑ Diagnosis
MMV ↑ Diagnosis

NE-SFL ↑ Diagnosis and prognosis
MO-X ↑ Diagnosis and prognosis

IPF ↑ Diagnosis and prognosis
DNI ↑ Prognosis and monitoring therapy

WBC, white blood cells; RBC, red blood cells; MCV, mean cell volume; MCH, mean corpuscular hemoglobin,
MCHC, mean cell hemoglobin concentration, RDW, red distribution width; MDW, monocyte distribution width;
MNV, mean neutrophil volume; MMV, mean monocyte volume; NE-SFL, neutrophil fluorescence intensity; MO-X,
monocyte internal structure; IPF, immature platelet function; DNI, delta neutrophil index.

7. Conclusions

Global efforts have been made to reduce the burden of sepsis. Predicting sepsis could
reduce healthcare costs and save patients’ lives by avoiding multi-organ dysfunction pro-
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cesses, reducing ICU admissions, and improving patients’ prognoses. To date, the ideal
biomarker of sepsis has not been identified, and it is likely that it does not exist because
sepsis is a very complex and heterogeneous disease [144]. Thus, a careful and integrated
evaluation based on laboratory and clinical findings can help clinicians in its early recog-
nition. CBC parameters detain great potential. Specifically, alteration of CBC parameters
could represent an alert for clinicians, which should confirm the suspicion of sepsis with
more specific laboratory and clinical investigations. Additionally, CBC parameters could
assist clinicians in defining the severity of sepsis and monitoring the therapy.
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