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Abstract: To assess if quantitative integrated deep learning and radiomics features can predict the
PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data
in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a
single center. These patients were divided into a high PD-L1 expression group (30 patients) and a
low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted
from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine
learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to
validate the performance of the model, while the AUC was used to assess the predictive ability of the
model. Based on the five-fold cross-validation, the integrated model achieved the best prediction
performance, with an AUC score of 0.897 ± 0.084, followed by the deep learning-based model with
an AUC of 0.852 ± 0.043 then the radiomics-based model with AUC of 0.794 ± 0.035. The feature set
integrating radiomics and deep learning features is more effective in predicting PD-L1 expression
level than only one feature type. The integrated model can achieve fast and accurate prediction of
PD-L1 expression status in preoperative MRI of HCC patients.

Keywords: radiomics; deep learning; hepatocellular carcinoma; PD-L1; immunotherapy

1. Introduction

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death
worldwide [1]. It is the second and sixth most common type of cancer in men and
women, respectively, worldwide. Annually, there are approximately 905,677 new cases
and 830,180 deaths caused globally [2]. Currently, immunotherapy by immune checkpoint
inhibitor (ICI) has emerged as a crucial therapeutic option for improving the prognosis
of various cancers [3–8]. This has demonstrated promising efficacy of treatment over
conventional chemotherapy for different malignant tumors [9–14], including HCC [15,16],
by triggering the antitumor immune response of T cells instead of directly targeting the
tumor itself [17]. However, the rates of objective response to immune checkpoint inhibitors
vary from person to person. Only 20–50% of patients respond to immune checkpoint
inhibitors [18]. Therefore, it is necessary to preoperatively select the ideal HCC for quick
and accurate immunotherapies in patients, which can improve the efficacy of treatment
and the overall survival rate. Previous studies have shown that the expression status
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of programmed death-ligand 1 (PD-L1) in tumors is related to the clinical outcome and
treatment response of PD-L1 pathway inhibition [19–25], and it can be used as a predictive
biomarker for ICI therapy [26–28]. Generally, cancer patients are sensitive to immunother-
apy when PD-L1 expression level exceeds 50% [29–31]. Therefore, preoperatively analyzing
the PD-L1 expression level can assist doctors to identify which patients are suitable for
ICI therapy [32]. At present, the examination methods of invasive biopsy immunohisto-
chemistry (IHC) and genomics evaluation are the conventional method of detecting PD-L1
expression status [33–35]. However, these methods are limited in clinical application due
to invasiveness, unrepeatability, and time consumption. Sometimes, it is also not easy to
obtain tissue specimens from inaccessible locations. Therefore, clinical practice is urgently
in need of a quick, reliable, and noninvasive method for assessing PD-L1 expression.

Radiomics, a high-dimensional quantitative feature analysis approach, can extract
high-throughput features from medical imaging and perform quantitative analysis of tumor
heterogeneity. Several studies have shown that radiomics features could characterize the
tumor and its tumor microenvironment (TME) [36–42], and were closely related to specific
microscopic features at genes, proteins, and molecular levels. Radiomic features have been
suggested in the application of predicting molecular subtyping, tumor gene expression,
pathological classification, treatment response, and survival [38–44]. Deep learning is
a class of machine learning techniques that can extract a large number of higher-level
deep features from deep hidden layers of convolution neural network (CNN), which
has been widely adopted in image recognition and image classification. Compared with
handcrafted features, these deep features contain more abstract medical image information
and provide more predictive patterns. However, the main drawbacks of deep learning
are the requirement of massive data for training classifiers and the poor interpretability
of features, which limits its application. Recently, there have been many studies using
radiomics or deep learning to predict the PD-L1 expression level in HCC patients [45–51].
All these studies gave good exploration for predicting the expression level of PD-L1, but
there are still relatively few studies exploiting deep learning and radiomics features for
operatively assessing the PD-L1 expression status. They only applied the statistical feature
from radiomics or deep learning to qualitatively analyze the expression level of PD-L1, but
lacking the quantitative analysis of specific characteristics relating to the expression.

In this study, we propose an integrated model for assessing PD-L1 expression level in
HCC patients by integrating deep learning and radiomics features in preoperative MRI,
and then carry out a quantitative analysis of the features. We only use the deep learning
model as a feature extractor (not a classifier), and then integrate the deep learning features
into the radiomics analysis model, which enriches the predictive power of the model and
improves the overall performance of the model with limited training data. Our goal is to
assess whether quantitative integrated deep learning and radiomics features can predict
the PD-L1 expression level in preoperative MRI of HCC patients.

2. Materials and Methods
2.1. Patients

This is a retrospective single-center study, that consisted of 103 HCC patients who
received treatment in our center between December 2017 and May 2021. The hospital’s
ethical review committee approved the study. The inclusion criteria of cases enrolled were
as follows: (1) patients with pathologically proven HCC; (2) abdominal MRI performed
within one month before surgery; (3) availability of tumor samples and clinical data; (4) IHC
examination of PD-L1 performed. Exclusion criteria were (1) the interval between MRI
examination and surgery was more than 1 month; (2) poor MR imaging quality; (3) patients
with other tumor diseases than HCC at the same time.
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2.2. Detection of PD-L1 Expression Status

The PD-L1 expression level was measured by the IHC test with a detection kit of
Ventana PD-L1 (SP142). The test specimen was paraffin tumor tissue obtained by surgical
intervention. The specimen was fixed by a concentration of 10% neutral formalin for
6–8 h, regarding full circumferential or partial cell membrane staining as PD-L1 positive
tumor cells. The PD-L1 high expression was defined as the percentage of PD-L1-positive
tumor cells relative to the total tumor cells exceeding 50%; otherwise, it was defined as
PD-L1 low expression. Finally, the 103 enrolled patients were divided into two groups
by PD-L1 expression level: a high PD-L1 expression group (30 patients) and a low PD-L1
expression group (73 patients).

2.3. Image Acquisition and Tumor Segmentation

All MR images were acquired on a 3.0T MRI scanner device (Verio; Siemens, Erlangen, Germany).
The MRI protocol consisted of T2 weighted TSE sequence (TR/TE = 5632 ms/120 ms; ac-
quired resolution of 0.74 mm × 0.74 mm, slice thickness = 6 mm; matrix = 512 × 512). The
segmentation of the entire tumor volume of interests (VOI) was manually performed slice
by slice on T2-WI by a radiologist with 10 years of experience; after that, each segmentation
slice was reviewed and modified by a chief radiologist, who had over 20 years of experience
in MRI. The region of interest (ROI) covered the whole tumor. The Medical Imaging Interac-
tion Toolkit (MITK) v2018.04 software was applied to draw the tumor VOI. Figure 1 shows
an example of the tumor VOI in a sequence. The size of each MR image was adjusted to
256 × 256, and the intensity value on T2-WI was normalized by N4BiasFieldCorrection [52]
and the intensity range was standardized using histogram matching [53].
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Figure 1. An example of the tumor VOI segmentation on T2WI.

2.4. Feature Extraction
2.4.1. Radiomics Features (RsF)

A total of 1595 3-D radiological features were extracted from each VOI with Pyra-
diomics [54]. These radiomic features could be divided into three categories: texture charac-
teristics, intensity characteristics, and geometry characteristics. The texture characteristics
of VOI could be described by 16 gray-level size zone matrix (GLSZM) features, 24 gray-
level co-occurrence matrix (GLCM) features, 5 neighboring gray-tone difference matrix
(NGTDM) features, 16 gray-level run-length matrix (GLRLM) features, and 14 gray-level
dependence matrix (GLDM) features. The GLSZM can quantify gray level zones in an
image, which preserves the size and number of connected domains of all grayscales in the
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image; the GLCM calculates how often different combinations of gray levels co-occur in
an image, which reflects the variation in intensity at the pixel; the NGTDM quantifies the
difference between a gray value and the average gray value of its neighbors within a certain
distance; the GLRLM quantifies gray level runs, which creates statistics and records the
distribution and relationship of image pixels; the GLDM quantifies gray level dependencies
in an image, which calculates the number of connected voxels within a certain distance that
is dependent on the center voxel. In medical image analysis, texture features are widely
used to quantitatively describe the characteristics of lesions. The intensity characteristics
within the tumor were reflected by 18 first-order statistical features. The geometry charac-
teristics of the tumor were described by 14 three-dimensional shape features. In addition,
eight kinds of image filters were also applied to the original image, respectively, to yield
its corresponding derived image. The filters included gradient, wavelet, square, square
root, logarithm, exponential, Laplacian of Gaussian (LoG), and local binary pattern 3D
(LBP-3D). The above radiomic features except shape features were also extracted from
these derived images.

2.4.2. Deep Learning Features (DLF)

A total number of 1024 deep learning features for each patient were extracted from
a three-dimensional convolution neural network (3D-CNN), which consists of two 3D
convolution layers and two fully connected layers. The deep features were obtained
from the outputs of the first fully connected layer after applying the rectified linear unit
(ReLU) [55] activation function, which changed values to be 0 if the values <0. The
architectures and parameters used are described in Table 1. The 3D-CNN architecture was
designed with Tensorflow [56]. The training batch size was set as 20, and the model was
trained by Adam [57] optimizer with a learning rate of 10−3 and 50 epochs.

Table 1. 3D-CNN Architecture for extraction of deep learning features.

Layers Parameter Setting

Conv 3D-1 size = 5 × 5 × 5; stride = 1; zero-padded
Relu-1 Alpha = 0.2

Max Pool 3D-1 size = 4 × 4 × 4; stride = 4; zero-padded
Conv 3D-2 size = 5 × 5 × 5; stride = 1; zero-padded

Relu-2 Alpha = 0.2
Max Pool 3D-2 size = 4 × 4 × 4; stride = 4; zero-padded

Fully connected-1
Flat-1
Relu-3 Alpha = 0.2

Dropout-1 p = 0.5
Fully connected-2

SoftMax

2.4.3. Integrated Features (RsF+DLF)

The output features of the first fully connected layer of the 3D-CNN framework were
connected with the latter half of the radiomics process so that the extracted 1595 radiomics
features and 1024 deep learning features were merged into an integrative feature space.
The total number of features after fusion was 2619, as shown in Figure 2. After feature
reduction, then fed into the machine learning classifier for training.
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2.5. Feature Selection and Classifier Modeling

We applied normalization to the feature matrix. Each feature vector was subtracted
from the average value of the vector and then divided by its length. Due to the high di-
mensionality of the feature space, we utilized the Pearson correlation coefficient (PCC) [58]
analysis to identify redundant features. One of the feature pairs would be removed when
the PCC absolute value was higher than 0.86, which is considered to be redundant. The
correlation matrix of the candidate features was calculated and depicted as a correlation
cluster gram as shown in Figure 3. The deeper color indicates the stronger correlation.
After that, the dimensionality of the feature space was reduced and each feature was
independent of the others. Before building the classifier model, a recursive feature selection
approach, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) was used
to select features. The SVM-RFE method has been proven to be very effective in finding a
worthwhile and significant feature for improving classification performance [59,60], which
selects features based on the SVM classifier by recursively considering the smaller size of
feature sets. The SVM-RFE algorithm obtained a ranking list of all features by eliminat-
ing only one feature that had the least impact on the prediction of the SVM model each
time [61,62]. The first item in the ranking list was the most relevant feature, while the
last item had the least relevant feature. Finally, the ranking list of the top-ranked features
was selected to build the SVM model. Here we used a linear kernel function for building
the SVM classifier model [63] with these selected features, which could make it easier to
interpret the characteristic coefficients of the final model [64].
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2.6. Statistics

The univariate analysis method was used to evaluate the statistical significance
of patients’ clinical characteristics in the prediction of PD-L1 expression. A two-sided
p-value < 0.05 was considered significant and p-value < 0.01 was extremely significant. The
ROC curve was used to assess the predictive ability of the model, and its corresponding
quantification was calculated by the AUC. The accuracy, recall, specificity, precision, and
f1_score were also calculated at the cutoff value that maximized the AUC value [65]. To
validate the performance of the model, we adopted 5-fold cross-validation on the dataset.
In the scenario of 5-fold cross-validation, the dataset was randomly divided into five
unique subsets S = [s1, s2, s3, s4, s5] to train five independent models. The first model
was trained using the subsets [s2, s3, s4, s5] and tested using s1, while the second model
was trained using [s1, s3, s4, s5] and tested using s2. This procedure was repeated until
all five subsets had been tested. We ensured that no patient was overlapping between the
subsets. The mean and standard deviation of the above-mentioned metrics were calculated
to evaluate the overall model performance. In our case, the amount of patients is 103
(high: 30; low: 73), so in each fold cross-validation, the test set includes about 20 patients
and the training set contains roughly 80 patients. There is no extra validation set, duo to the
limited number of patients. The Keras framework was used to conduct feature selection,
feature extraction, classifier modeling, and statistical analysis. The experiment code was
implemented on an Nvidia GeForce GTX 1070 GPU with 8 GB of GDDR5 memory.
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3. Results
3.1. Patient Clinical Characteristics

Among 103 patients, 30 patients (age median: 55.20 ± 11.05) with tumor cells ex-
pressing PD-L1 ≥ 50% were assigned into the high expression group, and 73 patients (age
median: 54.48 ± 12.70) with expression scored < 50% were assigned to the low expression
group. In our univariate analysis, there was no significant difference in clinical characteris-
tics including Age, Sex, HBV_DNA, HBs, AFP, Maximal tumor diameter, CEA, and TBIL
between the two PD-L1 expression groups (p > 0.05 for all) (Table 2).

Table 2. Comparisons of clinicopathologic characteristics of HCC patients between PD-L1 high-
expression group and low-expression group.

VariablesS High-Expression
(PD-L1 ≥ 50%)

Low-Expression
(PD-L1 < 50%) p Value

Age 55.20 ± 11.05 54.48 ± 12.70 0.077
Sex 0.369

Male 26 (86.7%) 58 (79.5%)
Female 4 (13.3%) 15 (20.5%)

HBV_DNA 0.224
Positive 13 (43.0%) 17 (23.3%)

Negative 17 (57.0%) 56 (76.7%)
HBs 0.182

Positive 25 (83.3%) 51 (69.9%)
Negative 5 (16.7%) 22 (30.1%)

AFP(ng/mL) 0.260
≤20 11 (36.7%) 24 (32.9%)
>20 19 (63.3%) 49 (67.1%)

Maximal tumor
diameter 0.903

≤5 19 (63.3%) 41 (56.2%)
>5 11 (36.7%) 32 (43.8%)

CEA 2.61 ± 1.48 2.56 ± 1.53 0.427
TBIL 13.99 ± 5.28 13.28 ± 5.71 0.962

p-value is calculated by the univariate analysis between PD-L1 expression level and each of the clinicopatho-
logic variables. Statistically significant level: significant (p value < 0.05); highly significant (p value < 0.01);
HBV_DNA = Hepatitis B virus DNA; HBs = Hepatitis B surface AFP = alpha fetoprotein; CEA = carcinoembry-
onic antigen; TBIL = total bilirubin.

3.2. Comparison of Different Classifiers

The experiment compared the classification performance of different classifiers, and
the best-performing classifier was used to further verify the performance of strategies
based on different features using five-fold cross-validation. The compared classifiers are
SVM, AE, LR-Lass, Decision Tree, Random Forest, and LDA. All classifiers were trained
(high: 20; low: 53) and tested (high: 10; low: 20) on the same dataset. The predictive results
are shown in Table 3 below. According to the predictive indicators, the overall performance
of the SVM classifier is better than other classifiers with the highest AUC score of 0.758.
Therefore, SVM was selected as the best classifier for further verification experiments.

Table 3. Performance comparison of different classifiers.

Model Accuracy AUC Negative Predictive Positive Predictive Sensitivity Specificity

SVM 0.786 0.758 0.859 0.625 0.667 0.836
AE 0.708 0.677 0.794 0.500 0.500 0.794

LR-Lasso 0.553 0.675 0.885 0.382 0.866 0.424
Decision

Tree 0.737 0.678 0.810 0.551 0.533 0.821

Random
Forest 0.737 0.706 0.819 0.548 0.566 0.808

LDA 0.747 0.724 0.873 0.551 0.733 0.753
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3.3. Feature Selection and Signature Building

The integrated predictive model with the best AUC is based on 14 selected features,
and the details are shown in Table 4. Through SVM with linear kernel function, the
14 features were weighted by their respective coefficients, the integrated score for each
patient can be computed as follows:

RsF+DLF_Score = (−0.995) × original_glcm_InverseVariance + (0.742) × wavelet_HHL_
firstorder_Mean + (−0.748) × wavelet_HHL_glcm_InverseVariance + (−0.714) × gradi-
ent_ngtdm_Contrast + (0.819) × squareroot_glcm_ClusterTendency+ (1.116)×deep_feature_81
+ (1.005) × deep_feature_193 + (−0.841) × deep_feature_486 + (−1.064) × deep_feature_524
+ (−0.953) × deep_feature_629 + (1.142) × deep_feature_670 + (1.240) × deep_feature_805
+ (1.142) × deep_feature_841 + (0.813) × deep_feature_889.

Table 4. Results of statistical analysis of integrated features selected.

Features High-Expression Low-Expression Coefficient p Value

original_glcm_InverseVariance −0.05 ± 0.07 0.02 ± 0.10 −0.995 0.001
wavelet_HHL_firstorder_Mean 0.03 ± 0.12 −0.01 ± 0.08 0.742 0.286
wavelet_HHL_glcm_InverseVariance −0.05 ± 0.06 0.02 ± 0.10 −0.748 0.001

gradient_ngtdm_Contrast 0.01 ± 0.07 0.00 ± 0.11 −0.714 0.064
squareroot_glcm_ClusterTendency 0.02 ± 0.12 −0.01 ± 0.09 0.819 0.234

deep_feature_81 0.04 ± 0.13 −0.02 ± 0.08 1.116 0.028
deep_feature_193 0.04 ± 0.13 −0.02 ± 0.08 1.005 0.012
deep_feature_486 −0.02 ± 0.10 0.01 ± 0.10 −0.841 0.310
deep_feature_524 0.04 ± 0.09 −0.02 ± 0.10 1.064 0.003
deep_feature_629 −0.02 ± 0.07 0.01 ± 0.11 −0.953 0.278
deep_feature_670 0.04 ± 0.16 −0.02 ± 0.05 1.461 0.019
deep_feature_805 0.03 ± 0.12 −0.01 ± 0.09 1.240 0.031
deep_feature_841 0.05 ± 0.13 −0.02 ± 0.07 1.142 0.006
deep_feature_889 0.03 ± 0.15 −0.01 ± 0.06 0.813 0.503

RsF+DLF _Score 0.27 ± 0.44 −0.11 ± 0.33 None 2.502 × 10−9

p-value is calculated by the Wilcoxon rank-sum test between PD-L1 expression level and each of the clinicopathologic variables. Statistically
significant level: significant (p value < 0.05); highly significant (p value < 0.01).

3.4. Prediction for PD-L1 Expression Level

Table 5 shows the predictive performance of the radiomics-based model, deep learning-
based model, and integrated model on five-fold cross-validation. The integrated model
achieved the best ability of prediction, with a value of AUC 0.897 ± 0.084, accuracy
0.887 ± 0.041, f1-score 0.764 ± 0.106, specificity 0.981 ± 0.029, precision 0.948 ± 0.076, and
recall 0.660 ± 0.167, respectively, followed by the deep learning-based model with an AUC
of 0.852 ± 0.043, and finally radiomics-based model with AUC 0.794 ± 0.035. The ROC
curves for the three models are shown in Figure 4. The blue line represents the radiomics
feature-based model; the green line corresponds to the deep learning feature-based model;
the orange line represents the model with radiomics and deep learning features with the
best result.

Table 5. The performance of radiomics-based model, deep learning-based model and integrated model on 5-Fold cross validation.

Model AUC Accuracy f1-Score Specificity Precision Recall

RsF 0.794 ± 0.035 0.766 ± 0.094 0.494 ± 0.212 0.916 ± 0.077 0.687 ± 0.301 0.400 ± 0.190
DLF 0.852 ± 0.043 0.854 ± 0.050 0.703 ± 0.131 0.947 ± 0.087 0.892 ± 0.166 0.633 ± 0.217

RsF+DLF 0.897 ± 0.084 0.887 ± 0.041 0.764 ± 0.106 0.981 ± 0.029 0.948 ± 0.076 0.660 ± 0.167
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4. Discussion

Immunotherapy is gradually becoming the main therapy option for HCC treatment in
the clinic. Preoperatively assessing the immune status of patients can assist the physicians
to identify which patients are suitable for immunotherapy, thereby improving treatment
efficiency and overall survival rate. The expression level of PD-L1 plays an important
role in guiding the selection of ICI therapy for liver cancer patients. The utilization of
radiomics features for preoperatively assessing PD-L1 expression before ICI therapy has
attracted significant attention in the literature [46–51]. For example, Hectors et al. [46]
combined quantitative and qualitative radiomics features to preoperatively assess the
expression of PD-L1 biomarker in resected HCC. They identified significant associations of
texture characteristics and the ratios of quantitative enhancement with PD-L1 expression.
Zhang et al. [48] converted the MRI radiomic features of liver tumors into a quantitative
Radscore for preoperatively predicting the expression of PD-L1, achieving an AUC of 0.750.
They found that the radiomics features related to PD-L1 expression largely originated
from GLCM features. Liao et al. [51] utilized the CT radiomics features from GLRLM
and GLCM in HCC patients to build the predictive model for PD-L1 expression. These
studies demonstrated that the analysis method of radiomics could be used to predict
PD-L1 expression status, which might aid in the stratification of liver cancer patients for
ICI. However, they only exploited radiomics features for operatively assessing the PD-L1
expression status, and did not incorporate the features from deep learning.

Although the features of deep learning are poorly interpretable, it tends to improve
the prediction performance by integrating radiomics and deep learning features. However,
there are still relatively few studies exploiting deep learning and radiomics features for
operatively assessing the PD-L1 expression status. In this study, we presented an integrated
model for quick and accurate assessment of PD-L1 expression level in HCC patients before
immunotherapy, our method is based on the analysis of MRI radiomics features and deep
learning features together. In addition, we carried out a quantitative analysis of these
features, and the significant relationship of radiomics features and deep learning features
with PD-L1 expression of IHC. As assessed by the five-fold cross-validation, the integrated
model achieved the highest AUC of 0.897 ± 0.084, while the deep learning-based and
radiomics-based model obtained the AUC of 0.852 ± 0.043 and 0.794 ± 0.035, respectively.
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The experimental results demonstrated that the feature set that integrates radiomics and
deep learning features is more effective in predicting PD-L1 expression level than using
only one feature type from preoperative MRI of HCC patients. Additionally, we found
that our integrated model based on 14 features achieved the highest AUC, of which 5 and
9 were radiomics deep learning features, respectively. Both the deep learning features
and radiomics features contributed to the prediction of PD-L1 expression status, but the
deep learning features contributed more. We then formulated the predictive score equation
according to these 14 features.

Several MRI radiomics features and deep learning features had shown correlation
with PD-L1 expression. In deep learning features, six deep learning features have statis-
tical significance to expression level of PD-L1, which are deep_feature_524 (p = 0.003),
deep_feature_841 (p = 0.006), deep_feature_193 (p = 0.012), deep_feature_670 (p = 0.019),
deep_feature_81 (p = 0.028) and deep_feature_805 (p = 0.031). The results of statistical
significance indicate that these characteristics are correlated with the expression level of
PD-L1. The number in the deep_features represents the order of neurons in the fully
connected layers. For example, deep_feature_524 indicates that this feature is taken from
the 524th neuron of the fully connected layer. As shown in the column of coefficients in
Table 4, the coefficients of six features in SVM linear function are all positive, which means
that these feature values are positively correlated with the expression of PDL1 level. The
violin plot of feature distributions between the high PD-L1 expression level group and low
expression level group is shown in Figure 5. Almost all the median values of deep learning
features in the high expression group are higher than the median of the low expression
group. Especially the deep_feature_524 and deep_feature_841 with extremely statistical
significance (p-value < 0.01); its scores in the high expression group are mainly distributed
in the positive value area, while the group in the low expression group are distributed
in the negative value area, and there is a significant difference in distribution between
the two groups. Among the features of radiomics, original_glcm_InverseVariance and
wavelet_HHL_glcm_InverseVariance are strongly related to PD-L1 expression prediction
with p values of 0.001 and 0.001, respectively. In addition, their coefficients in SVM linear
function are all negative, with value of −0.995 and −0.748 (in Table 4). It indicates the
two features are negatively correlated with the expression of PDL1 level. A significant
difference is observed between original _glcm_InverseVariance values of the PD-L1 high
expression and low expression group (Figure 6, left panel), whose median in the high
group is lower than the low group. For the wavelet_HHL_glcm__InverseVariance feature,
the high group also has a lower median value than the low group in Figure 6 (right panel).
The GLCM feature can characterize the texture of an image; it can reflect the distribution
of co-occurring pixel values at a given offset, by calculating the frequency of pixel pairs
with specific values and specific spatial relationships in the image. It has been used as an
approach to texture analysis in medical image analysis [66,67]. This result demonstrated
that the distribution of co-occurring pixel values in the tumor area may be related to the
PD-L1 expression status and high expression level with a high GLCM score. Wavelet filters
can make weak signals be recovered from noise, especially in the processing of magnetic
resonance images. Wavelet filters are mainly used to optimize radiomics features, which
can quantify the heterogeneity of tumors at different scales. Previous studies have demon-
strated that wavelet features could be an important predictor for constructing radiomic
features [68–70]. The RsF+DLF_Score shows an extremely statistical significance to PD-L1
expression status with p = 2.502 × 10−9. The score is higher in the high expression group
(0.27 ± 0.44) than in the low expression group (−0.11 ± 0.33) as shown in Figure 7. This
result demonstrated that there is an obvious difference in RsF+DLF_Score between the
high PD-L1 expression group and the low expression group. The RsF+DLF_Score can
be used to reflect the level of PDL1 expression, with the higher score value, the higher
PD-L1 expression level. These findings of this study will provide helpful indications for
the immunotherapy of HCC patients.
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However, there are some limitations to our study. First, it is a retrospective study
from a single center without additional validation by other hospitals, and the number of
HCC cases with the PD-L1 test was limited, especially the proportion of patients with high
PD-L1 expression. Therefore, the validity of our research results might have been impaired.
In future research, more cases and multi-center datasets are needed. Second, although
we have given the features that contribute to predicting PD-L1 expression status in the
combined model, only the features of radiomics are interpretable, while the interpretability
of the deep learning features is still poor. The possible correlation between the tumor
biological mechanisms and the deep learning features will be investigated from molecular,
proteins, and gene levels in future work. Additionally, due to the data collection issue,
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only T2-WI sequence of MRI was available to be analyzed in this study, which may neglect
information from other kinds of sequences.
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5. Conclusions

We proposed a prediction model of integrating the features of radiomics and deep
learning for quick and accurate assessment of PD-L1 expression levels for HCC patients
before ICI therapy. Our integrated model achieves good performance on predicting PD-L1
expression level in preoperative MRI. These results suggest that MRI radiomics com-
bined with deep learning analysis shows potential for clinical practice in the assessment
of PD-L1 expression in HCC, which may achieve the stratification of HCC patients for
immunotherapy.

Author Contributions: Conceptualization, Y.T. and X.Y.; methodology, Y.T.; software, Y.T. and T.E.K.;
validation, Y.T.; formal analysis, Y.T.; investigation, Y.T., J.Z. and B.Z.; resources, B.Z.; data curation,
B.Z. and G.Z.; writing—original draft preparation, Y.T.; writing—review and editing, X.Y., B.Z., T.C.,
T.E.K., J.Z. and T.E.K.; visualization, Y.T.; supervision, X.Y. and Y.T.; project administration, Y.T. and
X.Y; funding acquisition, X.Y., B.Z. and T.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This study was supported by the Integrated Medicine and Engineering Research Project of
Fudan University (grant numbers yg2021-020) and Key Device R&D Projects of National Clinical
Research Center for Interventional Medicine.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
Zhongshan Hospital.

Informed Consent Statement: Informed consent was waived in the study since this study was a
retrospective review.

Data Availability Statement: The data presented in the study are available on request from the
corresponding author.

Acknowledgments: We would like to acknowledge the staff at the study sites who lent a helping
hand during the data collection process.



Diagnostics 2021, 11, 1875 13 of 15

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Ozakyol, A. Global Epidemiology of Hepatocellular Carcinoma (HCC Epidemiology). J. Gastrointest. Cancer 2017, 48, 238–240. [CrossRef] [PubMed]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
3. Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim,

A.M.; Chang, A.L.S.; et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med.
2018, 379, 341–351. [CrossRef]

4. Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient
HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [CrossRef] [PubMed]

5. Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al.
Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast
cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol.
2020, 21, 44–59. [CrossRef]

6. Kee, D.; McArthur, G. Immunotherapy of melanoma. Eur. J. Surg. Oncol. 2017, 43, 594–603. [CrossRef] [PubMed]
7. Ansell, S.M.; Caligaris-Cappio, F.; Maloney, D.G. Immunotherapy in lymphoma. Hematol. Oncol. 2017, 35, 88–91. [CrossRef]
8. Khanna, P.; Blais, N.; Gaudreau, P.-O.; Corrales-Rodriguez, L. Immunotherapy Comes of Age in Lung Cancer. Clin. Lung Cancer

2016, 18, 13–22. [CrossRef] [PubMed]
9. Kruger, S.; Ilmer, M.; Kobold, S.; Cadilha, B.L.; Endres, S.; Ormanns, S.; Schuebbe, G.; Renz, B.W.; D’Haese, J.G.; Schloesser, H.; et al.

Advances in cancer immunotherapy 2019—Latest trends. J. Exp. Clin. Cancer Res. 2019, 38, 1–11. [CrossRef]
10. Mak, D.W.; Li, S.; Minchom, A. Challenging the recalcitrant disease—Developing molecularly driven treatments for small cell

lung cancer. Eur. J. Cancer 2019, 119, 132–150. [CrossRef]
11. Balachandran, V.P.; Beatty, G.L.; Dougan, S.K. Broadening the impact of immunotherapy to pancreatic cancer: Challenges and

opportunities. Gastroenterology 2019, 156, 2056–2072. [CrossRef]
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