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Abstract: Background: In this study, our focus was on pulmonary sequelae of coronavirus disease
2019 (COVID-19). We aimed to develop and validate CT-based radiomic models for predicting the
presence of residual lung lesions in COVID-19 survivors at three months after discharge. Methods:
We retrospectively enrolled 162 COVID-19 confirmed patients in our hospital (84 patients with resid-
ual lung lesions and 78 patients without residual lung lesions, at three months after discharge). The
patients were all randomly allocated to a training set (n = 114) or a test set (n = 48). Radiomic features
were extracted from chest CT images in different regions (entire lung or lesion) and at different time
points (at hospital admission or at discharge) to build different models, sequentially, or in combi-
nation, as follows: (1) Lesion_A model (based on the lesion region at admission CT); (2) Lesion_D
model (based on the lesion region at discharge CT); (3) ∆lesion model (based on the lesion region
at admission CT and discharge CT); (4) Lung_A model (based on the lung region at admission CT);
(5) Lung_D model (based on the lung region at discharge CT); (6) ∆lung model (based on the lung
region at admission CT and discharge CT). The area under the receiver operating characteristic
curve (AUC), sensitivity, and specificity were used to evaluate the predictive performances of the
radiomic models. Results: Among the six models, the Lesion_D and the ∆lesion models achieved
better predictive efficacy, with AUCs of 0.907 and 0.927, sensitivity of 0.898 and 0.763, and specificity
of 0.855 and 0.964 in the training set, and AUCs of 0.875 and 0.837, sensitivity of 0.920 and 0.680, and
specificity of 0.826 and 0.913 in the test set, respectively. Conclusions: The CT-based radiomic models
showed good predictive effects on the presence of residual lung lesions in COVID-19 survivors at
three months after discharge, which may help doctors to plan follow-up work and to reduce the
psychological burden of COVID-19 survivors.

Keywords: COVID-19; radiomics; tomography; X-ray computed; residual lesion

1. Introduction

The pandemic of the coronavirus disease 2019 (COVID-19) has brought significant
health and economic losses around the world. More than 100 million people worldwide
have recovered from COVID-19 so far. In the post-COVID-19 stage, the epidemiology,
clinical features, pathogenesis, and complications of COVID-19 have been clearly de-
scribed [1,2], but the long-term sequelae caused by this infectious disease are still unknown
to some extent.

The lungs are the main target organ of COVID-19 and present typical radiographic
signs of pneumonia in the acute phase, which include bilateral patchy shadows or ground
glass opacity [3,4]. Survivors of COVID-19 are frequently reported to have pulmonary
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sequelae, such as dyspnea, residual lung lesions, and lung function impairment [5–7].
Studies have found that more than half of the patients discharged had residual lung lesions
on CT scans [8,9], which may cause patient distress. Therefore, early prediction of residual
lung lesions in COVID-19 patients is important for planning follow-up work and reducing
the psychological burden of survivors.

Chest computed tomography (CT) is widely used for the screening, diagnosis, and
follow-up of COVID-19 because of its characteristics of timeliness, rapidity, high positive
rate, and close correlation between the scope of lung lesions and clinical symptoms [10].
Radiomics is a new method, proposed in recent years, that combines big data technology
and medical image-assisted diagnosis, which can provide valuable information for the
diagnosis, monitoring, and prognostic evaluation of diseases [11]. However, most CT-based
radiomic studies of COVID-19 have focused on distinguishing COVID-19 from other types
of pneumonia, predicting the clinical types and severity, and predicting the risk of death
and intensive care unit (ICU) admission. To date, no radiomic studies have predicted the
recovery of COVID-19 survivors after discharge from hospital.

Therefore, the aim of our study is to develop and validate a CT-based radiomic model
predicting the presence of residual lung lesions in COVID-19 survivors at three months
after discharge.

2. Materials and Methods
2.1. Patients

Our retrospective study was approved by the Institutional Ethics Review Board of
Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
(no. 0044), and informed consents were waived. A total of 187 adult patients with virus
real-time reverse transcription polymerase chain reaction test (RT-PCR)-confirmed COVID-
19 pneumonia who were hospitalized in our hospital from 6 January 2020 to 14 April 2020
and followed up from 1 May 2020 to 31 July 2020 were included in this study. Twenty-five
patients were subsequently excluded due to chest CTs showing no lung lesions in COVID-
19 patients at admission or discharge. Discharge standards referred to the Diagnosis and
Treatment Protocol for COVID-19 in China (Trial Fifth Edition) [12]. Finally, 162 patients
with residual lung lesions at discharge and follow-up CTs at three months after discharge
were enrolled in the study.

2.2. CT Image Acquisition and Segmentation

The enrolled patients all underwent chest CT examinations at admission, at discharge,
and at three months after discharge. The images were all acquired with patients lying in
a supine position, at the end of inspiration, and without contrast agent administration.
All scans were performed on four CT scanners randomly: one 16-detector row scanner,
Toshiba Medical Systems (Otawara, Japan) and three 64-detector-row scanners, Siemens
Healthineers (Erlangen, Germany), GE Healthcare (Waukesha, WI, USA), and Philips
Healthcare (Best, the Netherlands). The CT acquisition parameters included a tube voltage
of 120 or 100 KVp and adaptive tube current. The images were reconstructed at a slice
thickness of 1.5 mm for the GE, Siemens, and Philips Healthcare scanners, and 2.0 mm for
the TOSHIBA scanner.

On the CT images of the patients at the time of admission and discharge, we used the
uAI Intelligent Assistant Analysis System (United Imaging Medical Technology Company
Limited, Shanghai, China) [13] to pre segment both lungs (entire lung volume) and lesions
caused by COVID-19. Subsequently, two radiologists (J.H. and F.H.W., both with 5 years of
experience) manually corrected the results of the pre-segmentation for all 162 patients in
consensus and derived the volumes of interest (VOIs).

2.3. Subjective Assessment of Follow-Up CTs

According to the results of the uAI Intelligent Assistant Analysis System, two ra-
diologists (J.H. and F.H.W.) evaluated the residual lung lesions with consensus on the
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follow-up CT in lung window (at a modifiable window width of 1200 HU and window
level of −600 HU) after fully comparing the admission, discharge, and follow-up CTs of
each patient. Discussion and consensus resolved all differences. Subsequently, another
experienced radiologist (F.Y., with 27 years of experience) made the final confirmation.
According to the final decision of the radiologists, the patients were divided into a group
with residual lung lesions (RLL) or a group without residual lung lesions (NRLL).

2.4. Radiomic Feature Extraction

The workflow of radiomic research is shown in Figure 1. Before the feature extraction,
isotropic voxel resampling into 1 × 1 × 1 mm with linear interpolation was used for
image preprocessing to normalize the geometry of the CT images. The corrected VOIs
were imported to extract radiomic features using LK software (Lung Kit, AK, Version
V2.3.0.R, GE Healthcare). A total of 1218 radiomic features were extracted and classified
into seven groups: first order, shape, gray level co-occurrence matrix (GLCM), gray level
size-zone matrix (GLSZM), gray level run-length matrix (GLRLM), neighborhood gray
tone difference matrix (NGTDM), and neighboring gray level dependence matrix (GLDM).
To enhance intricate patterns in the data that could be invisible to the human eye, advanced
filters were applied which included: Laplacian of Gaussian (LoG, sigma 2.0 and 3.0 mm)
and wavelet decompositions with all possible combinations of high (H) or low (L) pass
filter in each of the three dimensions (HHH, HHL, HLH, LHH, LLL, LLH, LHL, and HLL).
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2.5. Radiomic Feature Selection and Model Construction

A total of 1218 radiomic features were automatically extracted for each segmented VOI
(Lesion_A, Lesion_D, ∆lesion, Lung_A, Lung_D, and ∆lung). Before feature selection, the
abnormal or missing values were replaced by the median, and feature standardization was
applied. The maximum relevance and minimum redundancy (mRMR) method was used
to exclude the redundant features and kept the most relevant features with targets. Least
absolute shrinkage and selection operator (LASSO) was used to reduce the redundancy or
selection bias of the features. AIC was used to measure the goodness of model fitting and
model complexity. The radiomic scores were calculated by multiplying selected features
and their corresponding coefficients.

The 162 patients were grouped into a training set (n = 114) and a test set (n = 48) using
a stratified random resampling method. Machine learning algorithms were applied to
construct radiomic models predicting the presence of residual lung lesions. According to
the differences among VOIs, we established six radiomic models. The Lesion_A model
extracted radiomic features of lesions from the admission CT, while the Lesion_D model
extracted radiomic features from the discharge CT. The Lung_A model extracted radiomic
features of the total lung from the admission CT, while the Lung_D model extracted
radiomic features from the discharge CT. ∆Features were defined as the percentage change
in radiomic features from discharge CT to admission CT, which provided information on
the evolution of feature values [14,15]. The ∆lesion and ∆lung models were derived from
the following formulas, respectively:

∆lesion = (Lesion_D-Lesion_A)/Lesion_A,

∆lung = (Lung_D-Lung_A)/Lung_A.

2.6. Statistical Analysis

The statistical analysis was performed using the Institute of Precision Medicine Statis-
tics (IPMs, version 2.1, GE Healthcare) and SPSS 26.0 software (IBM Corp, Armonk, NY,
USA). Categorical variables were expressed as counts and percentage, while continuous
variables were expressed as medians (25th percentile and 75th percentile). The differences
among all the variables between the RLL and NRLL groups were assessed using the Mann–
Whitney U test for continuous variables, and the chi-square test or Fisher’s exact test for
categorical variables. The area under the receiver operating characteristic (ROC) curve
(AUC), sensitivity, and specificity were used to evaluate the predictive performances of the
models. The optimal cut-offs to predict the presence of residual lung lesions were identified
by Youden’s index. The AUCs of different models on different datasets were compared
using the Delong test. p-values of <0.05 were considered to be statistically significant.

3. Results
3.1. Patient Characteristics

The 162 patients (84 patients with residual lung lesions and 78 patients without
residual lung lesions) included 65 (40.12%) males and 97 (59.88%) females. The median
age of the 162 patients was 56.00 (43.00, 63.25) years, and the median length of hospital
stay was 20.00 (13.00, 28.25) days. The interval from discharge date to follow-up CT was
103 (83, 124) days. The flow diagram for patient selection is shown in Figure 2.
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The baseline characteristics of patients in the RLL group and the NRLL group are
shown in Table 1. In both the training set and test set, patients in the RLL group were
older than those in the NRLL group. In the test set, there were significant differences in the
gender distribution of the patients and the length of hospital stay. There was no statistical
difference in the time interval from discharge to follow-up CT between the RLL group and
the NRLL group.

Table 1. Characteristics of patients in the training and test sets.

Characteristics
Training Set (n = 114) Test Set (n = 48)

RLL (n = 59) NRLL (n = 55) p-Value RLL (n = 25) NRLL (n = 23) p-Value

Age (years) 57 (48, 66) 51 (39, 59) 0.005 63 (56, 69) 44 (35, 57) <0.001
Sex, n (%) - - 0.071 - - 0.036

Male 28 (47.5%) 17 (30.9%) - 14 (56.0%) 6 (26.1%) -
Female 31 (52.5%) 38 (69.1%) - 11 (44.0%) 17 (73.9%) -

Length of hospital stay (days) 20 (16, 27) 18 (11, 28) 0.213 28 (18.5, 36.5) 17 (10, 25) 0.037
Days from discharge to follow-up CT 103 (86, 122) 107 (72, 127) 0.869 94 (79.5, 114.5) 110 (88, 129) 0.137

p-values were calculated by Mann–Whitney U test for continuous variables and chi-square test or Fisher’s exact test for categorical variables.
RLL patients with residual lung lesions. NRLL patients without residual lung lesions.

3.2. Establishment of Radiomic Signature

Before feature selection, the abnormal or missing values were replaced by the median,
and feature standardization was applied. Next, the mRMR and LASSO were used to select
the most optimal features. After the redundant and irrelevant features were removed by
mRMR, 70 features from each VOI were retained. Then, the LASSO was conducted to
decrease the feature redundancy with the Akaike criterion. The LASSO includes choosing
the regular parameter λ and determining the number of the features. After the number
of features was determined, the most predictive subset of features was chosen and the
corresponding coefficients were calculated.
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The selected features and their corresponding coefficients of the six radiomic models are
shown in Table 2. After radiomic feature selection, 6 features on Lesion_A model, 8 features
on Lesion_D model, 13 features on ∆lesion model, 3 features on Lung_A model, 7 features on
Lung_D model, and 5 features on ∆lung model were finally chosen in the training set. These
features are significantly different between RLL and NRLL groups (all p < 0.05). Furthermore,
there are three radiomic features repeated in the six models: log.sigma.3.0.mm.3D_glcm_Inverse-
Variance, wavelet.HHL_glcm_ClusterShade, and log.sigma.3.0.mm.3D_firstorder_Skewness.
The selected features and their corresponding coefficients establish the radiomic signature, and
the radiomic scores for each patient in the different models are displayed in a bar chart (Figure 3).

Table 2. Radiomic feature selection results of the six models.

Model Features Coefficients

Lesion_A (n = 6)

log.sigma.3.0.mm.3D_glcm_InverseVariance 27.3963
wavelet.HLH_firstorder_Mean −2.6492
log.sigma.3.0.mm.3D_firstorder_Skewness −2.8087
wavelet.LHH_glcm_Correlation 39.5595
original_glszm_SmallAreaLowGrayLevelEmphasis −653.335
original_shape_Sphericity −7.1196

Lesion_D (n = 8)

log.sigma.3.0.mm.3D_glcm_InverseVariance 40.8774
wavelet.HLL_glcm_ClusterShade −0.002
wavelet.HLL_firstorder_Median 0.2507
wavelet.HLL_gldm_LargeDependenceLowGrayLevelEmphasis 250.846
wavelet.LLL_gldm_LargeDependenceHighGrayLevelEmphasis 7.11 × 10−5

original_shape_Maximum2DDiameterRow 0.0153
log.sigma.4.0.mm.3D_glrlm_LongRunHighGrayLevelEmphasis 0.001
wavelet.HLH_gldm_SmallDependenceHighGrayLevelEmphasis 0.01845

∆lesion (n = 13)

log.sigma.3.0.mm.3D_glcm_InverseVariance 21.7079
wavelet.HHL_glcm_ClusterShade 0.0154
log.sigma.3.0.mm.3D_firstorder_Skewness 0.0154
log.sigma.4.0.mm.3D_glszm_LargeAreaHighGrayLevelEmphasis −1.7870
log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis 10.7100
log.sigma.3.0.mm.3D_firstorder_Mean −0.0573
wavelet.LHH_firstorder_Skewness 0.1581
log.sigma.4.0.mm.3D_gldm_SmallDependenceLowGrayLevelEmphasis −0.009
log.sigma.1.0.mm.3D_firstorder_Mean 0.2537
log.sigma.1.0.mm.3D_glszm_GrayLevelVariance 6.5212
wavelet.HHH_firstorder_RootMeanSquared 1551.5109
log.sigma.1.0.mm.3D_gldm_LargeDependenceLowGrayLevelEmphasis 1.0871
wavelet.LLL_firstorder_Maximum −0.0932

Lung_A (n = 3)
wavelet.LHL_firstorder_Mean −0.7123
wavelet.HHH_glszm_SmallAreaEmphasis 29.0881
wavelet.LLL_glszm_ZoneEntropy 6.7584

Lung_D (n = 7)

wavelet.HHH_firstorder_Mean 39.2045
wavelet.HLH_firstorder_Skewness −7.3873
log.sigma.2.0.mm.3D_glcm_Correlation −134.446
wavelet.HHL_glszm_SmallAreaLowGrayLevelEmphasis 7178.18
wavelet.LHH_firstorder_Median −18.3834
wavelet.LLH_glrlm_RunEntropy 9.1189
wavelet.LLL_glcm_Imc2 21.9867

∆lung (n = 5)

wavelet.HHL_firstorder_Mean −0.1124
wavelet.LHL_firstorder_Skewness 0.6402
log.sigma.2.0.mm.3D_glszm_ZoneEntropy −37.0901
log.sigma.5.0.mm.3D_gldm_DependenceNonUniformityNormalized −10.0756
wavelet.HLH_glszm_LargeAreaHighGrayLevelEmphasis −0.4602
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3.3. Evaluation of Model Performance

The predictive efficacy of each model is shown in Table 3, and the results of the ROC
curve analysis are shown in Figure 4. In the training set, the Lesion_D and ∆lesion models
achieved higher predictive efficacy with AUCs of 0.907 and 0.927, sensitivity of 0.898 and
0.763, and specificity of 0.855 and 0.964, respectively. In addition, the performances of the
radiomic models were validated in the independent cohort. In the test set, the predictive
efficacies of the Lesion_D and ∆lesion models were 0.875 and 0.837, the sensitivity values
were 0.920 and 0.680, and the specificity values were 0.826 and 0.913, respectively. There
was no statistical difference in the predictive efficacy between the training set and the test
set for all six models (all p > 0.05).

Table 3. Comparison of predictive performances of the six models in both the training and test sets.

Model
Training Set Test Set

p Value
AUC (95% CI) Sensitivity Specificity AUC (95% CI) Sensitivity Specificity

Lesion_A 0.849 (0.780–0.917) 0.949 0.582 0.837 (0.713–0.961) 0.720 0.913 0.8670
Lesion_D 0.907 (0.851–0.962) 0.898 0.855 0.875 (0.766–0.984) 0.920 0.826 0.6115
∆lesion 0.927 (0.883–0.971) 0.763 0.964 0.837 (0.718–0.955) 0.680 0.913 0.1678
Lung_A 0.812 (0.734–0.891) 0.661 0.891 0.809 (0.686–0.932) 0.640 0.913 0.9612
Lung_D 0.893 (0.836–0.950) 0.763 0.927 0.849 (0.738–0.960) 0.840 0.826 0.4890
∆lung 0.791 (0.709–0.873) 0.729 0.745 0.765 (0.628–0.903) 0.680 0.870 0.7490

p-values were calculated by using the Delong test to compare the AUCs of the models in the training and test sets.
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In both the training and test sets, the predictive performances of the models based
on discharge CTs are higher than those of the models based on admission CTs, and the
predictive performances of the models based on lesions are higher than those of the models
based on total lung.

4. Discussion

Predicting the presence of residual lung lesions in COVID-19 survivors during the
recovery period is challenging. In this study of 162 patients, we established six CT-based
radiomic models to predict the recovery of residual lung lesions in COVID-19 survivors, at
three months after discharge. We found that some of the models (the ∆lesion and Lesion_D
models) showed good performance in predicting RLL and NRLL, which proved that a
CT-based radiomic model is feasible.

In our retrospectively collected cohort of 162 patients, there was no statistical difference
in the follow-up interval after discharge from hospital between patients in the RLL and
NRLL groups, which ruled out the influence of follow-up time on the recovery of residual
lung lesions in COVID-19 patients. In addition, we found that residual lung lesions were
more likely to occur in older COVID-19 patients, which was consistent with the findings of
Han et al. [16]. Elderly patients have poor physical function and slow recovery; therefore,
it was logical to obtain such a result.

A chest CT is significant in the assessment of lung lesions caused by COVID-19 [17,18].
A CT is widely used for admission screening, discharge assessment, and follow-up of
COVID-19 patients [7,19–21]. Therefore, our radiomic models based on admission and
discharge chest CTs of COVID-19 survivors can be well validated. In order to further
explore the contribution of CT-based radiomic features in different regions (entire lung
or lesion) and at different time points in predicting RLL and NRLL, we constructed six
different models and compared them. We found that the predictive efficacies of models
based on discharge CTs were better than those of models based on the admission CTs, in
both the training and test sets, which may indicate that a discharge CT can provide more
valuable information about residual lung lesions than an admission CT. We speculate that
this is because the time point of the discharge CT was closer to the follow-up CT than the
admission CT. The results also indicate that, in the training and test sets, the predictive
efficacies of the models based on lesions are higher than those of the models based on
total lung. Moreover, we found that the ∆lesion model that combines the admission CT
and discharge CT had a better predictive performance than those of the Lesion_A and
Lesion_D models, in the training set, and the ∆lung model that combines admission CT
and discharge CT was worse than those of the Lung_A and Lung_D models alone. This
means that lesion-based radiomic features can provide more valuable information than
total lung-based radiomic features. The recovery of the residual lung lesions in COVID-19
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survivors after discharge from hospital is associated more with the lesions themselves than
the state of the total lung. A previous study reported similar conclusions; Wu et al. [22]
investigated the CT images of COVID-19 patients during the recovery period and found
that the severe group with a higher proportion of ground-glass opacity and consolidation
in the total lung required a longer recovery time than the moderate group.

Radiomics refers to the high-throughput extraction and analysis of large amounts
of quantitative features from medical images to provide valuable information for the
diagnosis, assessment, and prognosis of diseases [23–25]. Fang et al. [26] developed and
validated a radiomic nomogram to distinguish COVID-19 pneumonia from other types of
viral pneumonia. Li et al. [27] extracted radiomic and deep learning features of the lung
from CT images to construct a model discriminating critical cases from severe cases of
COVID-19. Wu et al. [28] developed a chest CT-based radiomic model in a multicenter
cohort to predict a poor outcome of COVID-19 patients (death, mechanical ventilation, or
intensive care unit admission). However, to date, no radiomic studies have predicted the
recovery of COVID-19 survivors after discharge from hospital. Our study used CT-based
radiomic models to predict the presence of residual lung lesions in COVID-19 survivors at
three months after discharge. In addition, we constructed a variety of radiomic models
based on CT images in different regions and at different time points. We believe our work
can provide insight into the lung recovery of COVID-19 survivors.

In this study, each of the six models extracted 1218 candidate radiomic features from CT
images. By the mRMR, LASSO, and AIC methods, several potential predictors were finally
selected for each model, and these predictors differed significantly between the RLL and
NRLL groups. We noticed that there were three radiomic features repeated in the six models,
which were log.sigma.3.0.mm.3D_glcm_InverseVariance, wavelet.HLL_glcm_ClusterShade,
and log.sigma.3.0.mm.3D_firstorder_Skewness. Log.sigma.3.0.mm.3D_glcm_InverseVariance
means a measure of the local dispersion of an image. Wavelet.HLL_glcm_ClusterShade means
a measure of the skewness and uniformity of the GLCM. A higher cluster shade implies
greater asymmetry about the mean. Log.sigma.3.0.mm.3D_firstorder_Skewness measures
the asymmetry of the distribution of values about the mean value. Depending on where the
tail is elongated and the mass of the distribution is concentrated, this value can be positive or
negative. Wavelet and LoG are both higher-order statistical methods imposing filter grids on
the images, and could possibly reflect more information about vascularity and spiculation of
a lesion. Wavelets are filter transforms that multiply an image by a matrix of complex linear
or radial “waves”. Laplacian transforms of Gaussian bandpass filters can extract areas with
increasingly coarse texture patterns from the image.

There are several limitations in our study. First, this study is a retrospective single
center study with a small number of cases, and the robustness of our results remains to be
validated in the future using data from multiple centers. Second, our study only followed
up on the lung recovery of COVID-19 survivors at three months after discharge, while the
lung damage caused by COVID-19 requires long-term observation. Third, no other clinical
parameters were included in the prediction models. We believe that the next step should
be to develop a reliable and robust multi-modality prediction model.

5. Conclusions

In conclusion, our results demonstrate the feasibility of a CT-based radiomic model to
predict the presence of residual lung lesions in COVID-19 survivors at three months after
discharge. This could help doctors to plan follow-up work and reduce the psychological
burden of COVID-19 survivors.
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