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Abstract: Bladder cancer (BC) is the most common type of carcinoma of the urological system.
Recently, there has been an increasing interest in non-invasive diagnostic tumor markers due to
the invasive attribute of cystoscopy, which is still considered the gold standard diagnostic method.
However, markers published in the literature so far do not meet expectations for replacing cystoscopy
due to their low specificity and excessively high false-positive results, which can be mainly caused
by frequently occurring hematuria also in benign cases. No reliable non-invasive method has yet
been identified that can distinguish patients with bladder cancer and non-malignant hematuria
patients. Our work examined the possibilities of non-targeted biomarkers of urine to distinguish
patients with malignant and non-malignant diseases of the bladder using 3D HPLC in combination
with computer processing of multiple datasets. Urine samples from 47 patients, 23 patients with
bladder cancer (BC) and 24 patients with non-malignant hematuria (NMHU), were enrolled in
clinical trials. For the separation and subsequent analysis of a large number of urine components, 3D
HPLC (high-performance liquid chromatography) with an absorption and fluorescence detector was
used. The obtained dataset was further subjected to various uni- and multi-dimensional statistical
analyses and mathematical modeling. We found 334 chromatographic peaks, of which 18 peaks
were identified as significantly different for BC and NMHU patients. Using receiver operating
characteristic (ROC) analysis, we assessed the informative ability of significant chromatographic
peaks (90% sensitivity and 74% specificity). By logistic regression, we identified the optimal and
simplified set of seven chromatographic peaks (5 absorptions plus 2 fluorescence) with strong
classification power (100% sensitivity and 100% specificity) for distinguishing patients with bladder
cancer and those with non-malignant hematuria. Partial least square discriminant analysis (PLS-DA)
model and orthogonal projection to latent structure discriminant analysis (OPLS-DA) with 100%
sensitivity and 96% specificity were used to distinguish BC and NMHU patients. Multivariate
statistical analysis of urinary metabolomic profiles of patients revealed that BC patients can be
discriminated from NMHU patients and the results can likely contribute to an early and non-invasive
diagnosis of BC.

Keywords: bladder cancer; biomarker; non-malignant hematuria; 3D HPLC

1. Introduction

Bladder cancer (BC) is one of the most common genitourinary malignancies. Addi-
tionally, it is the sixth most common cancer in men [1]. In most cases, BC is detected at
a late stage, which represents an unfavorable prognosis for the patient. One reason for
delayed diagnosis is the non-specificity of symptoms, such as difficulty with micturition,
pain in urination, and blood in urine, which may be accompanied by different diseases
unrelated to malignant tumors. Currently, cystoscopy and cytology are the gold standard
methods for BC detection. Cystoscopy is considered an invasive and painful examination
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of BC [2]. This examination method often represents a physical burden on the patient [3].
Although cytology is a non-invasive method, its sensitivity is not sufficient (less than 40%),
particularly for low-grade tumors [4]. Recently, research interest has shifted to non-invasive
methods of identifying the early stages of BC [5].

Biomarkers have the potential to aid in diagnosis, surveillance, staging, prognosis,
and possibly therapeutic guidance. A large number of potential biomarkers for the detec-
tion of genomic, transcriptomic, epigenetic, or protein changes in serum or urine samples
have been described in the literature, but only some of them are approved by the Food
and Drug Administration [2,5,6]. The most common are NMP22® BladderChek® Test,
TRAK/BTA stat® Test, UroVysion® FISH, ImmunoCyt™/uCyt+™, and CxBladder, which
often provide relatively low sensitivity [2]. For the time being, there is no single urinary
biomarker achieved from non-invasive BC surveillance tests to replace cystoscopy; there-
fore, obtaining a diagnostic model that can distinguish BC patients from the others would
be more beneficial [7].

The metabolome reflects the status of the biological system. Urine is in direct contact
with bladder epithelial cells and metabolites released into the urine provide information
on bladder disorders, suggesting that analysis of urinary metabolomic profile is also
a promising approach for discrimination between malignant and benign diseases [8,9].
However, there has been limited metabolomic research in the detection of biomarkers
specific for BC [10]. Hematuria is the most common presenting symptom in bladder
cancer (present in 85% of cases) [11]. Nevertheless, only a few studies have targeted false-
positive values caused by bleeding with a benign origin [9]. No reliable method has yet
been identified that can distinguish patients with bladder cancer (BC) and non-malignant
hematuria patients (NMHU).

In the present study, an untargeted metabolomics approach using 3D reverse-phase
high-performance liquid chromatography (RP-HPLC) with absorption and fluorescence
detection was carried out as a promising alternative to omics methods for searching for
biomarkers in patient’s urine. By subsequent computer processing of acquired extensive
data (logistic regression, receiver operating characteristic (roc) analysis, partial least square
discriminant analysis, orthogonal projection to latent structure discriminant analysis), we
created classification models for the differentiation of patients with BC and NMHU.

2. Materials and Methods
2.1. Patients and Sample Collection

Urine samples were collected from 23 male patients with bladder cancer (BC) (median
age of 65) and 24 male patients with non-malignant hematuria (NMHU) (median age of
65) (Table 1). Urine was collected by spontaneous miction or by catheterization. Collected
samples were kept frozen at −28 ◦C. Each urine sample was thawed at room temperatures
and centrifuged at 3000× g for 5 min, followed by filtration through a 0.22 µm nylon
membrane filter-LLG Syringe Filter PTFE (AZ chrome s.r.o., Bratislava, Slovak Republic).
Urine samples were provided by the Urological department UNB Saints Cyril and Method-
ius Hospital in Bratislava. Informed consent was signed by each patient and the project
was approved by the ethics commission of UNB Saints Cyril and Methodius Hospital
in Bratislava. Each patient underwent a biopsy, consequently, histological examination
confirmed or excluded a malignant tumor of the bladder (diagnosis C67 according to the
International classification of diseases MKCH 10). Based on that, the patient was classed in
the appropriate group (BC or NMHU patients). Table 1 shows the basic characteristics of
samples with the TNM (tumor–node–metastasis) staging system, describing the stage and
grade of BC.
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Table 1. Clinicopathological characterization of patients.

Characteristics Non-Malignant Hematuria
(NMHU)

Bladder Cancer
(BC)

Age (mean ± SD) 65.2 ± 8.2 65.4 ± 5.4

No. of subject 24 23

Training set 20 19

Test set 4 4

Cancer Grade
G1 - 11
G2 - 3
G3 - 9

Cancer Stage
Ta - 10
T1 - 9
T2 - 4

SD—standard deviation, G1—well-differentiated tumor (low grade), G2—moderately differentiated tumor (inter-
mediate grade), G3—poorly differentiated tumor (high grade), Ta—non-invasive tumor (only in the innermost
layer), T1—solitary tumor without muscular invasion, T2—solitary tumor with muscular invasion.

2.2. Principle of HPLC

High-performance liquid chromatography (HPLC) is an analytical method used to
separate and quantify components from the sample due to differences in their structure.
The apparatus consists of multiple modules. Mobile phase is pressed under high pressure
into the column with stationary phase. A liquid sample is injected to the stream of mobile
phase flowing through a column, whose function is to separate the compounds. Based
on the affinity to the stationary phase, the components are eluted at different retention
times. Retention time is specific for every compound. Components that display a stronger
interaction with the stationary phase will be eluted later from the column, while compo-
nents with weaker interaction will elute sooner. Subsequently, these eluates consecutively
flow through one or more detectors, which generate chromatograms—intensity (voltage
response) as function of time. The single chromatographic peaks represent a compound or
group of compounds with similar characteristics. The area under the peaks represents the
quantity of the compound [12].

2.3. Chemicals

Potassium dihydrogen phosphate (KH2PO4), water, acetonitrile (ACN), and methanol
for HPLC were acquired from Honeywell, Regen, Germany. Sodium hydroxide (NaOH)
was obtained from Slavus s.r.o., Bratislava, Slovak republic. HPLC creatinine standard was
acquired from Sigma-Aldrich, Steinheim, Germany.

2.4. Equipment and Conditions

The urine samples were analyzed using reverse-phase high-performance liquid chro-
matography (RP-HPLC) system Prominence 20 A (Shimadzu Co., Kyoto, Japan) with
absorption and fluorescence detection. The system temperature was adjusted to 25 ◦C.
Nucleosil 100-5 C18 (150 × 4.6 mm; 5 µm particle size) (Macherey-Nagel, Düren, Germany)
as the stationary phase and 10 mmol/L KH2PO4 with 5% methanol, pH 6.8 as a mobile
phase was used. The eluent flow was 1 mL/min. The injection volume was 5–30 µL de-
pending on signal intensity. We recorded 10 chromatograms from the absorption detector
and 5 chromatograms from the fluorescence detector of each sample, which formed the
basis for 3D chromatograms (Table 2). The excitation and emission wavelength of the
fluorescence detector were selected according to our previous findings [13,14].
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Table 2. Wavelength settings of absorption and fluorescence detectors.

Wavelength (nm)

Absorption 220 240 260 280 300 320 340 360 380 400
Excitation/ Emission 280/350 330/400 370/440 450/520 370/520

2.5. Data Processing and Statistical Analysis

Software LC solution (Shimadzu Co., Kyoto, Japan) was used for analysis and pro-
cessing of chromatograms. Statistical analyses of data and graphing were performed using
StatsDirect 3 (intergroup comparison, correlation, and receiver operating characteristic
(ROC) analysis) and R software (logistic regression, partial least square discriminant analy-
sis, orthogonal projection to latent structure discriminant analysis). OriginPro2016 software
was used to create 3D chromatograms.

The areas under each chromatographic peak were normalized to urine creatinine area
so that fluctuation in urine concentration was minimized. The creatinine identification
was performed with absorption detection at 220 nm. For inter-group comparison, the
t-test or the non-parametric alternative Mann–Whitney U test was used. To assess the
predictive ability of the proposed diagnostic test, a ROC analysis was performed. The
logistic regression was used to reveal the best classification model. Parameters for logistic
regression models were selected according to the Akaike information criterion (AIC)
and Log-likelihood function. Partial least square discriminant analysis (PLS-DA) and an
orthogonal projection to latent structure discriminant analysis (OPLS-DA) models based
on identified urine peaks were used to distinguish patients with BC from NMHU patients.
The resulting model was verified using cross-validation, a permutation test, and external
validation. Variable importance in projection (VIP) scores estimate the importance of each
variable (peak) in the projection used in a PLS model.

3. Results

Ten chromatograms for the absorption detector and five chromatograms for the flu-
orescence detector were recorded from the urine of patients with BC and patients with
NMHU (Figure 1). The total number of identified peaks was 334 at all detector settings
in each urine sample. The peak of the sample was identified within the interval RT ± 6 s.
Areas under all peaks were calculated and then normalized to the creatinine peak area.
Normalized peak values were entered into further analyses.
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Inter-group comparison of urine samples from patients with NMHU (n = 20) and
patients with BC (n = 19) was performed and 18 statistically significant peaks (p < 0.05) were
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identified (6 peaks detected by the fluorescence detector, 12 peaks detected by absorption
detector, Tables 3 and 4).

Table 3. Characteristics of fluorescent peaks identified as significantly different for BC and NMHU groups.

Excitation/Emission (Wavelength (nm)) p-Value RT (min)
(SD)

Area/Area of Creatinine × 10−3

Median (IQR)

Non-Malignant Hematuria
(NMHU)

Bladder Cancer
(BC)

370/440 0.0151
1.83 8.13 12.96

(0.012) (5.03–14.35) (11.47–18.83)

370/440 0.0021
2.37 8.43 11.98

(0.036) (6.17–11.06) (10.25–18.13)

450/520 0.0026
1.87 0.93 1.98

(0.013) (0.75–1.92) (1.36–3.50)

450/520 0.0015
2.28 0.78 1.46

(0.008) (0.55–1.21) (1.07–2.23)

370/520 0.0057
1.87 7.84 14.63

(0.014) (6.04–13.32) (10.18–17.24)

370/520 0.0002
2.32 9.21 15.80

(0.051) (7.80–10.93) (11.29–20.23)

RT—retention time, SD—standard deviation, IQR—interquartile range.

Table 4. Characteristics of absorption peaks identified as significantly different for BC and NMHU groups.

Wavelength (nm) p-Value RT (min)
(SD)

Area/Area of Creatinine × 10−3

Median (IQR)

Non-Malignant Hematuria
(NMHU)

Bladder Cancer
(BC)

240 0.0057
1.77 26.09 31.75

(0.024) (22.82–29.17) (26.50–39.79)

240 0.0177
4.62 10.95 17.01

(0.033) (8.10–14.24) (9.85–46.14)

260 0.0283
4.63 12.70 17.91

(0.037) (8.47–15.85) (13.46–25.52)

280 0.328
10.53 3.46 4.82

(0.045) (2.36–4.89) (3.09–9.83)

320 0.0012
1.76 2.15 3.48

(0.025) (1.78–2.64) (2.75–4.31)

340 0.0090
1.78 7.90 13.18

(0.022) (6.62–11.50) (10.73–14.78)

340 0.0501
2.19 4.88 9.36

(0.024) (4.16–10.29) (5.72–10.90)

360 0.0128
1.77 4.66 7.38

(0.020) (3.07–6.37) (4.86–10.10)

380 0.0164
1.77 1.41 2.75

(0.019) (1.01–2.91) (1.87–4.58)

380 0.0087
2.19 1.25 1.74

(0.007) (1.08–1.54) (1.30–2.36)

400 0.0052
1.78 0.89 1.60

(0.019) (0.89–0.89) (0.92–2.88)

400 0.0057
2.19 0.72 1.08

(0.007) (0.64–0.93) (0.79–1.28)

RT—retention time, SD—standard deviation, IQR—interquartile range.
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3.1. ROC (Receiver Operating Characteristic) Analysis

The 18 peaks identified as significantly different for BC and NMHU patients (training
set—19 from patients with BC and 20 from patients with NMHU) were individually entered
into the ROC analysis to discriminate between BC and NMHU patients. The area under the
ROC curve (AUC) represented the evaluation index. The highest value of AUC and best
classification power was achieved by the fluorescent peak (370/520 nm; ex/em) identified
with RT = 2.32 min (F (2.32 min)) with 90% sensitivity and 74% specificity (Table 5, Figure 2).

Table 5. Summary of ROC curve analysis of 18 significant peaks.

Peak
(RT (min))

Wavelength
(ex/em (nm)) Cut-Off Value Specificity (%)

(CI)
Sensitivity (%)

(CI) NPV (%) PPV (%) AUC

F (1.83) 370/440 0.007
94.7 50

64 91 0.726(84.2–100) (30–75)

F (2.37) 370/440 0.010
84.2 70

73 82 0.782(68.4–100) (50–90)

F (1.87) 450/520 0.001
94.7 60

69 92 0.776(84.2–100) (40–80)

F (2.28) 450/520 0.001
73.7 80

78 76 0.789(52.6–94.7) (60–95)

F (1.87) 370/520 0.010
84.2 70

73 82 0.755(68.4–100) (50–90)

F (2.32) 370/520 0.012
73.7 90

88 78 0.824(52.6–89.5) (75–100)

A (1.77) 240 0.029
63.2 80

75 70 0.755(42.1–84.2) (60–95)

A (4.62) 240 0.016
63.2 85

80 71 0.721(42.1–84.2) (69.9–100)

A (4.63) 260 0.015
68.4 75

72 71 0.705(47.4–89.5) (55–90)

A (10.53) 280 0.003
100 35

59 100 0.700(100–100) (15–55)

A (1.76) 320 0.003
78.9 85

83 81 0.795(57.9–94.7) (70–100)

A (1.78) 340 0.011
78.9 75

75 79 0.742(57.9–94.7) (55–95)

A (2.19) 340 0.005
89.5 55

65 85 0.684(73.7–100) (35–80)

A (1.77) 360 0.007
63.2 80

75 70 0.732(42.1–84.2) (60–95)

A (1.77) 380 0.001
89.5 55

65 85 0.724(73.7–100) (30–75)

A (2.19) 380 0.002
68.4 80

76 73 0.734(47.4–89.5) (60–95)

A (1.78) 400 0.001
89.5 60

68 86 0.758(73.7–100) (35–80)

A (2.19) 400 0.001
68.4 90

87 75 0.755(47.4–89.5) (75–100)

NPV—negative predictive value, PPV—positive predictive value, AUC—area under ROC curve, RT—retention time, A—absorption
detector, F—fluorescence detector, ex/em—excitation/emission, CI—95% confidence interval.
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3.2. Logistic Regression Analysis

To identify an optimal and simplified biomarker set for distinguishing BC and NMHU
patients, we performed the logistic regression analysis of the training set (n = 39). The
18 peaks were used as variables. The aim was to create a model with the best classification
power by using the smallest possible number of peaks. Based on the AIC and Log-
likelihood values, the best model for patient’s classification required 7 peaks (2 fluorescent
and 5 absorption peaks): F(2.28 min); F(2.32 min); A(1.77 min); A(4.62 min); A(1.77 min);
A(1.77 min); A(2.19 min) (Table 6). This classification model provided 100% sensitivity and
100% specificity.
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3.3. Discriminant Analysis

The partial least square discriminant analysis (PLS-DA) was used to distinguish
patients with BC and NMHU based on urinary metabolites (Figure 3). The model was
created from a training set of samples (n = 39). All identified urine peaks by RP-HPLC
(n = 334) were used for the model and it was built from two components. This model
retains 33% of the variability from the original data. R2Y as a test prediction ability had a
value of 86.2%. The goodness of prediction (prediction power) of the cross-validation test
was 65.8% (test set of samples was used, n = 8). The permutation test was 0.05 (p-value) for
pR2Y and pQ2.
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We also performed an OPLS-DA analysis (Figure 4) to discriminate between BC and
NMHU patients (training set of samples, n = 39). A model OPLS-DA was obtained with one
predictive and two orthogonal components. The model retained 38.3% of the variability of
the original data. The prediction rate of the test (separation ability of the test) was 91.6%,
with cross-validation of 60.8% (test set of samples, n = 8). The permutation test was 0.05 for
both pR2Y and pQ2. Potential biomarkers were selected based on the OPLS-DA model by
variable importance in the projection score (VIP > 1, Figure 5).
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Sequentially, external validation was performed on the test set consisting of eight
patients (four BC patients and four NMHU patients). The model achieved 100% sensitivity
and 80% specificity. In addition to external validation, we also classified all samples
(training set + test set; n = 47) when the test sensitivity acquired 100% and specificity
increased to 96%. The test identified one from 47 patients as false positive.

4. Discussion

The biggest challenge in bladder cancer (BC) diagnostics is to identify the disease be-
fore progression. Recently, there has been an increasing interest in non-invasive diagnostic
tumor markers due to the invasive attribute of cystoscopy, which is still considered the
gold standard diagnostic method [2]. However, markers published in the literature so far
do not meet expectations for replacing cystoscopy due to their relatively low specificity and
excessively high false-positive results, which can be mainly caused by frequently occurring
hematuria [15]. Therefore, the decisive question for the urologists is to reliably and rapidly
distinguish patients with bladder cancer from non-malignant hematuria (NMHU) patients.
The urinary metabolomics-based diagnostic approach could have clinical relevance, be-
cause urine is in direct contact with bladder epithelial cells that may give rise to BC, and
thus metabolites released from BC cells may be present in urine samples. Consistent with
these findings, urine metabolomic analysis is a promising non-invasive approach for BC
detection and marker discovery [8,9].

In this study, we focused on finding an appropriate set of biomarkers from the urinary
metabolites of patients with BC and NMHU. For the separation and subsequent analysis of
a large number of urine components, we chose a non-invasive, relatively fast, affordable,
and analytically undemanding technique HPLC with absorption and fluorescence detec-
tion. The obtained dataset was further subjected to various uni- and multi-dimensional
statistical analyses and mathematical modeling. The total number of identified untargeted
chromatographic peaks was 334 in each urine sample, from which 18 peaks were signifi-
cantly different for BC and NMHU patients (Tables 3 and 4). These peaks represent urine
metabolites with absorption and fluorescent abilities.

The 18 identified peaks were first subjected to a univariate ROC analysis. The best
ROC analysis parameters (specificity of 74%, sensitivity of 90%) provided the fluorescent
peak F(2.32 min) (Table 5).

Several other studies of univariate analysis of BC patients that included hematuria
have used the BTA and NMP22 biomarkers [16–18]. The BTA stat test revealed a sensitivity
of 72% to differentiate between BC and NMHU urine samples [18], which is lower than our
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classification with the biomarker F(2.32 min) and a specificity of 24–80% [16,18], which is
comparable to our results of F(2.32 min). Another potential biomarker NMP22 BladderChek
assay with specificity in the range 77–96% and sensitivity of 51–85% also exhibits false
positivity for hematuria [17,19–21]. Compared to our results, we achieved higher sensitivity
values, but worse specificity values over NMP22.

Considering none of the 18 identified peaks showed sufficient power to distinguish
BC patients from NMHU, we further applied various multidimensional statistical analysis
approaches on our multidimensional dataset of untargeted urine metabolites to identify
and optimize the urine biomarker set.

Firstly, we performed a logistic regression analysis with the 18 peaks used as variables.
Our model of the smallest possible number of peaks with the best classification power
required seven peaks that correspond to the absorbing and fluorescent urine metabolites:
A(1.77 min); A(4.62 min); A(1.77 min); A(1.77 min); A(2.19 min); F(2.28 min); and F(2.32 min)
(Table 6). This model provided above average classification power to distinguish patients
with BC from NMHU (100% sensitivity and 100% specificity).

Subsequently, the 334 chromatographic peaks of urine samples (training set) were
subjected to partial least square discriminant analysis (PLS-DA; Figure 3) and orthogonal
projection to latent structures discriminant analysis (OPLS-DA; Figure 4) for classifica-
tion between BC and NMHU patients. By external validation (test set), we were able
to distinguish BC patients from NMHU patients with sensitivity and specificity of 100%
and 80%. By testing the classification of all patients (training set + test set n = 47) into
diagnostic groups, the differential model achieved 100% sensitivity and 96% specificity. Jin
et al. [22] used high-performance liquid chromatography-quadrupole time-of-flight mass
spectrometry (HPLC-QTOFMS) to perform urine metabolomic profiles of BC patients and
control group, which included healthy subjects and hematuria patients. Their OPLS-DA
analysis afforded sensitivity of 91.3% and specificity of 92.5% and PLS-DA-based ROC
curve analysis achieved 85% sensitivity and specificity. Compared to our discriminant
analyses, we achieved better results of both sensitivity and specificity.

5. Conclusions

Our work examined the possibilities of non-targeted biomarkers of urine to distin-
guish patients with malignant and nonmalignant diseases of the bladder using 3D HPLC
in combination with computer processing of multiple datasets (334 chromatographic peaks
in each sample). By logistic regression, we identified an optimal and simplified set of seven
chromatographic peaks (five absorptions plus two fluorescence) with strong classification
power (100% sensitivity and 100% specificity) for distinguishing patients with bladder
cancer and those with non-malignant hematuria. The differentiation model (OPLS-DA)
diagnosed BC with a sensitivity and specificity of 100% and 96%. Monitoring chromato-
graphic peaks with absorption and fluorescent detection thus showed potential for the
non-invasive diagnostic test, that can initially and rapidly distinguish patients with ma-
lignant and non-malignant hematuria. In addition, the use of this method is fast and
inexpensive, requires minimal sample preparation, and, according to our results, has the
potential to achieve high accuracy. Prospectively, the proposed method could be an acces-
sible ambulatory tool for diagnostics, therapeutic progress, and recurrence prevention of
bladder cancer.
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