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Abstract: Thoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be an effective
treatment to restore sinus rhythm in patients with advanced AF. Identifying patients who will
not benefit from this procedure would be valuable to improve personalized AF therapy. Machine
learning (ML) techniques may assist in the improvement of clinical prediction models for patient
selection. The aim of this study is to investigate how available baseline characteristics predict
AF recurrence after SA using ML techniques. One-hundred-sixty clinical baseline variables were
collected from 446 AF patients undergoing SA in our tertiary referral center. Multiple ML models
were trained on five outcome measurements, including either all or a number of key variables selected
by using the least absolute shrinkage and selection operator (LASSO). There was no difference in
model performance between different ML techniques or outcome measurements. Variable selection
significantly improved model performance (AUC: 0.73, 95% CI: 0.68–0.77). Subgroup analysis showed
a higher model performance in younger patients (<55 years, AUC: 0.82 vs. >55 years, AUC 0.66).
Recurrences of AF after SA can be predicted best when using a selection of baseline characteristics,
particularly in young patients.

Keywords: atrial fibrillation; surgical ablation; machine learning

1. Introduction

In patients with advanced atrial fibrillation (AF), thoracoscopic surgical ablation (SA)
is effective to restore sinus rhythm (SR) [1]. Minimally invasive SA for AF using video-
assisted thoracoscopic surgery has increasingly been performed and has a success rate of
69–80% in terms of freedom of AF at one year after surgery [2].

Several clinical variables predicting AF recurrence after catheter ablation (CA) have
been identified. These variables are currently being applied for patient selection for both
CA and SA [3]. Despite our knowledge of risk factors that are associated with lower efficacy
and more recurrences, there are no risk scores or prediction models available that consider
all the available pre-procedural clinical data that may affect the outcome of SA. More
importantly, it is unknown to what extent the AF recurrence risk after an SA procedure is
embedded in baseline clinical characteristics, and to what extent the AF recurrence risk is
purely stochastic or related to technical aspects of the procedure (i.e., reconnection across
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ablation lines). Therefore, a systematic analysis tool to assess the risk of any ablation failure
could potentially lead to enhanced identification of patients who may benefit from SA
versus those in whom SA therapy would be futile.

Conventionally developed clinical prediction models are using traditional linear
regression methods. As an alternative, other machine learning (ML) techniques enable
the discovery of (novel) potentially complex patterns in data sets through automated
algorithms, using techniques like the kernel trick or multilayer neural network, which may
result in more efficient processing of non-linear relationships and complex interactions
between variables [4]. ML has already been successfully used on many studies enabling the
detection and diagnosis of AF [5]. By using a ML approach, more effective selection and
weighing of parameters of choice can be achieved, leading to promising clinical prediction
models, which may be more accurate than classical prediction models [6,7]. Still, the
ultimate predictive value of such models will depend on the proportion of risk factors
present in the variables that are causally related to an outcome versus non-predictive risk
factors that are randomly distributed among subjects. Therefore, we sought to optimize the
prediction of AF recurrence following SA with the use of available clinical, laboratory and
imaging data to investigate to what extent the risk of AF recurrence is already embedded
in the preoperative data.

In this study, we built several ML models that incorporate preoperative data in AF
patients scheduled for SA to comprehensively predict the AF recurrence risk. The aim of
this study was (I) to evaluate the proportion of baseline characteristics that are causal risk
factors for AF recurrence after SA using different ML techniques; (II) to investigate the
differential performance of ML models on multiple conventional and modified definitions
of AF recurrence; and (III) to analyze whether the accuracy of the ML models is pertinent
for clinically relevant subgroups.

2. Materials and Methods
2.1. Patient Characteristics

Patients with paroxysmal or persistent AF who underwent SA in our center between
February 2008 to June 2017 were eligible for this analysis. All patients provided written
informed consent before the procedure. Clinical variables collected prior to SA were used
for further analysis and consisted of patients’ characteristics, AF type and duration, medical
history, the (determinants of the) CHA2DS2-VASc score, medication, Holter and electro-
cardiogram (ECG) reports, vital parameters, imaging (i.e., echocardiography, magnetic
resonance imaging, computer tomography), and laboratory measurements. A full list of
all collected variables is shown in Supplementary Table S1. All continuous variables were
standardized by removing the mean and scaling to unit variance. For categorical variables
we used one-hot encoding (also known as “dummy coding”).

2.2. Procedure and Outcome

Included patients underwent SA following our standard protocol, using a hybrid
surgical–electrophysiological approach as described previously [8,9]. Approximately half of
the patients underwent additional ganglion plexus (GP) ablation as part of the standard of
care in all procedures performed before 2010, or as part of participation in the randomized
Atrial Fibrillation Ablation and Autonomic Modulation via Thoracoscopic Surgery (AFACT)
trial [2]. As the AFACT trial demonstrated, there was no difference in AF recurrence
between the randomized treatment groups, so data of patients with and without GP
ablation were pooled. Patients were followed for 24 months after SA with frequent ECG
and 24 h-Holter monitoring [2].

Five different definitions of AF recurrence were applied:

• Outcome 1: any episode of atrial tachyarrhythmia (AF, atrial flutter, atrial tachycardia)
lasting > 30 s [10].

• Outcome 2: any episode of AF (but not atrial flutter or atrial tachycardia) lasting > 30 s.
• Outcome 3: one single episode of any atrial tachyarrhythmia lasting > 1 h.
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• Outcome 4: one single episode of any atrial tachyarrhythmia lasting > 6 h.
• Outcome 5: one single episode of AF (but not atrial flutter or atrial tachycardia),

lasting > 1 h.

All outcomes were assessed during the two-year follow-up period, with exclusion of
the first three months following the procedure, which were considered a blanking period
for outcome analysis.

2.3. Missing Data

Missing data was imputed with MissForest [11], which is an iterative imputation
method based on random forest. Only the training set was used to train the imputation
model. The target variables (different definition of AF recurrences) were not included in
this process. Variables that were less than 70% complete and patients with more than 70%
missing data were, sequentially, discarded from the analysis.

2.4. Machine Learning Algorithms

Five well-established ML algorithms were selected: support vector machine (SVM),
logistic regression (LR), random forest (RF), neural network (NN), and gradient boosting
(GB). All models were implemented using scikit-learn [12]. Furthermore, we applied the
least absolute shrinkage and selection operator (LASSO), which performs a regularization
to automatically select variables and reduces the number of variables by fitting a linear
regression with L1 regularization. This is done to decrease the model’s complexity and
reduce the input noise [13]. Variable selection steps are expected to reduce redundant or
irrelevant data and can lead to an increase in the model’s accuracy [14].

2.5. Analysis Pipeline and Variable Selection

A nested cross-validation (CV), with an internal and external CV, was used for evalua-
tion. The external CV was a stratified 5-fold, which means that 80% of the data was used
for training and 20% for testing (repeated five times until all data is used for both training
and test). The test set was not used during training and validation steps.

The internal CV, also a stratified 5-fold, was first used by LASSO to select the variables
to assure that the model generalized well to different data samples. Variables selected more
than once in the CV by LASSO were subsequently included to train the models [13]. This
strategy was adopted to avoid the chance of selecting a variable that was only meaningful to
predict a single fold. Subsequently, the same internal 5-fold CV was used to determine the
best hyperparameters by grid search for each classifier on each fold and to train the models.
The hyperparameter ranges used are displayed in Supplementary Tables S2 and S3. The
pipeline, shown in Figure 1, was ran for all the outcome measurements as target variables.

2.6. Model Evaluation

The area under the curve (AUC) of the receiver-operating characteristic was used to
evaluate the performance of each model (external CV) and to select the model after the
hyperparameter optimization (internal CV). Since a 5-fold CV was used for evaluation, we
computed the mean AUC, standard deviation (SD) and confidence interval (CI) of each
classifier.
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Figure 1. Schematic representation of nested cross-validation methodology. Initially, the missing data
is removed and an iterative imputation is performed in a stratified 5-fold CV (external) using only
the training set. The imputation model is further used to imput the test set. After that, an internal CV
is performed for the LASSO feature selection and hyperparameter optimization. As the last step, the
model is trained with the training set and validated with the test set. An average AUC is reported.

2.7. Subgroup Analysis

We performed a predefined subgroup analysis using the model structure (outcome
measurement, (key)-variables, ML algorithm) of the two best performing models. For this
analysis, the probability prediction from the test sets (from all 5-folds) were combined,
creating a single distribution with a single prediction probability for each sample. Samples
were selected from this distribution given their subgroups and an AUC was computed for
each subgroup individually. Subgroups were chosen based on their established predictive
value for AF recurrence or inclusion in the CHA2DS2-VASc score [15,16]. Variables with
an unbalanced distribution were not taken into account. The following variables were
included for subgroup analysis: CHA2DS2-VASc score, congestive heart failure, history
of stroke, history of CA, vascular disease, diabetes, hypertension, left atrial volume index
(LAVI), sex, and age. Subgroups were created by using the predefined categories in case of
categorical variables, and quartiles in case of continuous variables.

2.8. Model Interpretation

To increase the interpretability of our results, we explored the predictive impact of
the selected features in our two best performing models. To gain more insight, we applied
the unified framework Shapley additive explanations (SHAP) for the interpretation of
predictions, which can be used for both linear and non-linear models [17]. The SHAP was
calculated for each feature comparing the prediction of the model without that feature.
In addition, in cases where LR proved to be the best performing model, we used the
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coefficients of each feature to provide an interpretation of how each individual feature
affected the prediction.

2.9. Statistical Analysis

Continuous data are presented as mean (SD) or median (range) for normally and
non-normally distributed data, respectively. The unpaired T-test and Mann–Whitney U
test were used for comparisons of AUCs between two groups. One-way ANOVA and
Kruskal–Wallis tests were used for comparisons of AUCs between more than two groups.
Statistical analyses were performed using SPSS Version 26 (IBM Corporation, Armonk,
NY, USA). ML were developed with Python programming language 3.6 (Python Software
Foundation, Beaverton, OR, United States).

3. Results

Of the 495 patients, 49 (10%) patients were excluded because of incomplete baseline
data. The mean age of the 446 included patients was 60 (SD ± 9) years, 335 (75%) were male
and 266 (60%) had persistent AF (Table 1). An overview of baseline characteristics stratified
by success or failure according to different outcome definitions is shown in Supplementary
Table S4. In total, 18 out of 160 baseline variables (11%) were excluded because of missing
values in more than 30% of the patients.

Table 1. Summarized patients’ characteristics for all included patients.

Variable No. of Patients (%)

n 446
Sex, n (%)

Male 335 (75.1)
Female 111 (24.9)

BMI, mean (SD) 25.8 (7.5)
Age, mean (SD) 60.0 (8.7)

CHA2DS2-VASc, n (%)
0 122 (27.4)
1 141 (31.6)
≥2 183 (41.0)

AF type, n (%)
Paroxysmal 180 (40.4)
Persistent 266 (59.6)

3.1. Prediction of AF Recurrence within Two Years after SA
3.1.1. Outcome 1

A total of 188 (42%) of the 446 patients experienced recurrence of AF within two
years after SA according to the definition of AF recurrence following current guidelines
(Outcome 1). Prediction of AF recurrence, and all baseline characteristics, resulted in an
AUC varying from 0.53 (95% CI: 0.38–0.68 [SVM]) to 0.66 (95% CI: 0.59–0.72 [RF]) (Figure 2,
Table 2). Variable selection using LASSO resulted in a selection of 12 key variables on the
5-fold CV. Variables regarding left atrial (LA) size, age and comorbidity (i.e., use of ACE
inhibitors) demonstrated to be the most frequently (100%) selected variables to predict
AF recurrence defined as Table 3. Training the models on Outcome 1 with the 12 selected
key-variables resulted in an improved AUC up to 0.70 (95% CI: 0.62–0.78 [LR]).
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Figure 2. Average 5-fold ROC of testing on Outcome 1 or Outcome 2 with all or a selection of variables for two years
without AF recurrence. ROC receiver operating characteristic curves, AUC area under the curve.

3.1.2. Outcomes 2–5

In line with the results of Outcome 1, model performance significantly improved for
all other outcome definitions using selected key variables instead of using all 142 available
variables (p < 0.001). There were no significant differences in model performance between
all outcome definitions (p = 0.35), nor in model performance between different ML tech-
niques (p = 0.28). However, the best performing model for Outcome 2 (LASSO, LR) had a
higher AUC (0.73, 95% CI: 0.68–0.77) compared to the best performing model of Outcome 1
(LASSO, LR; AUC: 0.70, 95% CI: 0.62–0.78). Figure 2 shows the average 5-fold ROC of
model training for Outcome 1 and Outcome 2 with all and a selection of variables.
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Table 2. Average area under the curve (AUC) and 95% confidence interval (CI). The rows are the outcomes and the variables
included for training the models, and the columns are the machine learning algorithms.

Models, AUCs
(95% CI)

Logistic
Regression Neural Network Support Vector

Machine Random Forest Gradient
Boosting

Outcome 1 0.58 (0.54–0.61) 0.57 (0.44–0.71) 0.53 (0.38–0.68) 0.66 (0.59–0.72) 0.62 (0.55–0.68)
Outcome 1 with

LASSO 0.70 (0.62–0.78) 0.64 (0.61–0.67) 0.69 (0.66–0.73) 0.68 (0.63–0.73) 0.67 (0.65–0.69)

Outcome 2 0.57 (0.50–0.64) 0.57 (0.50–0.64) 0.62 (0.55–0.70) 0.63 (0.57–0.69) 0.52 (0.48–0.57)
Outcome 2 with

LASSO 0.73 (0.68–0.77) 0.57 (0.50–0.64) 0.72 (0.66–0.78) 0.66 (0.55–0.76) 0.63 (0.54–0.72)

Outcome 3 0.54 (0.48–0.60) 0.54 (0.42–0.65) 0.56 (0.47–0.65) 0.67 (0.61–0.72) 0.68 (0.59–0.76)
Outcome 3 with

LASSO 0.69 (0.65–0.74) 0.68 (0.62–0.74) 0.67 (0.63–0.71) 0.69 (0.64–0.75) 0.67 (0.56–0.78)

Outcome 4 0.56 (0.48–0.63) 0.61 (0.57–0.64) 0.56 (0.43–0.69) 0.63 (0.55–0.72) 0.64 (0.52–0.75)
Outcome 4 with

LASSO 0.68 (0.59–0.77) 0.62 (0.52–0.73) 0.66 (0.58–0.74) 0.67 (0.58–0.76) 0.65 (0.56–0.73)

Outcome 5 0.56 (0.51–0.62) 0.54 (0.37–0.70) 0.55 (0.42–0.67) 0.55 (0.51–0.59) 0.51 (0.43–0.59)
Outcome 5 with

LASSO 0.69 (0.60–0.78) 0.55 (0.35–0.75) 0.66 (0.57–0.75) 0.67 (0.61–0.73) 0.63 (0.58–0.68)

Table 3. Key-variables for Outcome 1 and Outcome 2, ranked by the percentage the variable was selected during the 5-fold cross
validation (1-fold = 20%). Variables selected by LASSO, in at least two folds (40%), were included for training the models. AF, atrial
fibrillation; ARB, angiotensin receptor blockers; CT, computed tomography; ECG, electrocardiogram; FEV1, forced expiratory volume
in one second; FVC, forced vital capacity; HR, heart rate; HS-troponine, high sensitive troponine; LA, left atrium; LAVI, left atrial volume
index; RSPV, right superior pulmonary vein; SBP, systolic blood pressure; TTE, transthoracic echocardiography; X-ECG, exercise
testing.

Outcome 1 Outcome 2

Variable—Assessment at Baseline Selection Variable Selection

LAVI—TTE 100% Max. SBP—X-ECG 100%
PR-interval—ECG 100% ACE-inhibitor (use)—medication 100%

LA craniocaudal axis index—CT 100% ARB (use)—medication 80%
Max. SBP—X-ECG 100% LAVI—TTE 60%

ACE-inhibitor (use)—medication 100% Total duration—X-ECG 60%
Age—demographics 100% FVC—lung capacity test 60%

LA anteroposterior axis index—CT 80% Class II antiarrhythmics
(use)—medication 60%

Max. resistance—X-ECG 80% Loop diuretics (dose)—medication 60%
Previous catheter ablation—medical history 80% HR—ECG 60%

RSPV (width)—CT 60% LA craniocaudal axis index—CT 40%

FEV1—lung capacity test 60% Previous catheter ablation—medical
history 40%

Height—physical examination 60% Total duration of AF — Holter
monitoring 40%

Type of AF—medical history 60%
Tricuspid valve regurgitation—TTE 40%

FVC—lung capacity test 40%
Hs-troponine—blood sampling 40%

Class II antiarrhythmics (use)—medication 40%
Class III antiarrhythmics (dose)—medication 40%

3.2. Variable Selection

Table 3 shows variable selection by LASSO for the prediction of AF recurrence for the
two outcome definitions with the highest model performance (Outcome 1 vs. Outcome 2).
In contrast with the selected key variables for Outcome 1, variables regarding comorbidities,
but not regarding age or LA size, were the most frequent (100%) selected variables to predict
AF recurrence defined as Outcome 2.
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3.3. Model Interpretation Analysis

Feature importance (SHAP) of each key variable for the two best prediction models
(LR, SVM) regarding Outcome 1 and Outcome 2 was calculated and averaged over the
test folds (Figure 3). For both outcomes, the key variables with the highest SHAP values
(amplitude) were consistent for the two models. For Outcome 1, AF type, maximal systolic
blood pressure (SBP) during exercise testing, increased craniocaudal index of the LA on
CT, and PR interval on the baseline ECG were the key variables with the highest SHAP
values. Hence, patients with persistent AF had a higher risk of AF recurrence (defined as
Outcome 1) than patients with paroxysmal AF. In addition, for the continuous variables,
the progressive change in color in Figure 3 indicates a possible linear relationship between
the value of the variable and Outcome 1. Patients with a low maximal SBP during exercise
testing, increased craniocaudal index of the LA and prolonged PR interval had a higher
risk of AF recurrence (Outcome 1). For Outcome 2, maximal SBP during exercise testing,
loop diuretics dose and heart rate on the baseline ECG were key variables with the highest
SHAP values for both models. There was no difference in the direction of the SHAP values
between the models of Outcome 1 and Outcome 2. As LR proved to be the best performing
ML technique for both Outcome 1 and Outcome 2, we calculated the average LR coefficients
(Supplementary Table S5).

3.4. Analysis of AF Recurrence Prediction in Subgroups

Figure 4 shows the results of the balanced subgroups ranked by AUC for Outcome 1
and Outcome 2. There was an interaction between model performance and age, with the
best performance of the model in patients < 55 years old (AUC: 0.82) for Outcome 2.
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Figure 3. Average feature importance using SHAP values over the test folds. The amplitude of the SHAP value indicates
the importance of the feature for the prediction (negative values means good outcome, positive values means bad outcome).
The colours represent the value of the features, with red for high values (or true for binary) and blue for low values (or false
for binary). The importance was calculated for Outcome 1 (A,B) and Outcome 2 (C,D) for the best performing models: LR
(A,C) and SVM (B,D).
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Figure 4. Subgroup analysis with pre-defined groups based on Outcome 1 and Outcome 2 best prediction models.

4. Discussion

This study of 446 patients undergoing SA for paroxysmal or persistent AF in our
center aimed to improve patient selection for SA by investigating the value of baseline
characteristics for the prediction of AF recurrence. Our main findings are: (I) investigated
ML models perform moderately well in the prediction of AF recurrence when all available
baseline variables are included, but, with a selection of key variables, the prediction of AF
recurrence improves; (II) there are no differences in model performance using modified
definitions of AF recurrence or different ML techniques; and (III) subgroup analysis shows
an improved model performance in younger patients.

4.1. Prediction of AF Recurrence after Thoracoscopic Surgery

In line with risk scores and predictors for AF recurrence after CA for AF, clinical
variables available before SA may predict which patients will benefit from SA. In this
study, the use of all available baseline characteristics resulted in a moderate AUC to predict
AF recurrence. However, an increased model performance was observed when using a
selection of variables. A possible explanation is that input of a selection of key variables
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leads to less noise and redundancy. The key variables selected by LASSO to predict AF
recurrence included LA size, which is a well-known predictor for AF recurrence after AF
catheter ablation. Other included key variables were relatively uncommon as stand-alone
predictors for AF recurrence. However, these may have been selected because they reflect
patients’ levels of frailty and comorbidities which may affect the risk of AF recurrence,
or as a reflection (e.g., length) of well-known predictors (e.g., sex) that were not chosen.
Surprisingly, patients with a low maximal SBP during exercise testing demonstrated to
be at increased risk for AF recurrence. Possibly, this is because this group consists of the
foremost advanced AF patients with a higher risk of AF recurrence, who are therefore more
aggressively treated with antihypertensive or class II antiarrhythmic medication, or of pa-
tients with concomitant diastolic dysfunction. The selected key variables also explain why
the model performs better in younger patients. As this patient group consists of patients
with fewer comorbidities, it may represent a more homogeneous group with respect to the
arrhythmogenic substrate for AF than older patients with multiple comorbidities.

4.2. AF Recurrence Definition and Measurement

Following current guidelines, AF recurrence was defined as any episode of atrial
tachyarrhythmia lasting > 30 s beyond the three months blanking period [9]. However,
this definition is debatable, as one brief single episode does not carry the same symptom
burden as episodes that last days to weeks [18]. Our results did not show any difference in
model performance when adjusting the definitions of AF recurrence. The models had a
trend towards a higher AUC for Outcome 2 than for Outcome 1. A possible explanation
is that recurrent AF may represent an advanced atrial substrate, or progressive disease,
whereas recurrent atrial tachycardias may also result from technical failure of the procedure
(i.e., reconnection across ablation lines) [19,20]. However, due to the generally low burden
of AF recurrence [21], repeat ablation was not performed in a large proportion of these
patients and reconnection across ablation lines was not proven.

4.3. Additional Value of ML Techniques in the Prediction of AF Recurrence

It is expected that the application of ML techniques will improve future risk scores
and prediction models. Our study shows a very moderate predictive value when using ML
models including all available clinical variables as data input. However, using additional
techniques, such as LASSO and SHAP, revealed some interesting findings that may improve
prediction of AF recurrences after thoracoscopic AF surgery. Our findings underscore
that ML tools, particularly those for selection and weighing of variables of interest, may
contribute to improvement of prediction models and risk scores. This may be particularly
relevant for large data sets with multiple variables wherein regular statistical methods
show insufficient correlations.

4.4. Clinical Implications

Improved patient selection for SA could result in a higher success rate of the procedure.
In patients with a predicted high risk of AF recurrence, it could be decided not to perform
the procedure to prevent the associated complications. In addition, patient selection
could identify patients at high risk for AF recurrence that could benefit from additional
(continuous) monitoring, other specific follow-up management, and early re-intervention
in case of (a)symptomatic AF recurrence. The selection of patients for SA is already based
on a thorough preoperative screening based on the patient’s medical history and baseline
characteristics. Therefore, the included patients are already part of a highly selected
population. This reduces the odds of improving patient selection with the available
baseline variables, regardless of the use of ML techniques. As the AF field is evolving,
future use of complex in-depth patient characteristics, procedural and mapping data,
and improvements of the surgery technology, combined with different feature selection
techniques, may further increase model performance.
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4.5. Limitations

This study has some limitations. First, we only used data from a single center in our
test and validation sets. Thereby, it is unknown how our models will perform in other
comparable datasets. Furthermore, patients included in this analysis were patients who
underwent SA. Patients that did not consent or were deemed unsuitable for the operation
were therefore excluded from this analysis. This may impact on the generalizability of our
findings. In addition, we did not perform a prospective validation of our models.

AF recurrence was monitored by repetitive ECGs and Holter monitoring as recom-
mended by the guidelines [10]. Patients were encouraged to obtain additional rhythm
recording when symptomatic, but no continuous monitoring was performed. Therefore,
asymptomatic recurrences of AF may have remained undetected. This could have been
avoided by using loop recorders, which were not available for our population. However,
the main goal of SA is to reduce AF-related symptoms in patients with advanced AF and
thereby improve quality of life. Additionally, no specific indexes for adrenergic tone were
available or included in this study. Finally, LASSO is, by definition, a linear regression with
L1 regularization selecting features based on the linear correlation. As a result, the linear
techniques might have been benefited when this feature selection was performed. The use
of non-linear techniques (e.g., the feature importance of the RF) for feature selection, or
even simpler techniques, might increase the accuracy of the ML techniques that can handle
nonlinearities.

5. Conclusions

The proportion of risk of AF recurrence after SA embedded in baseline variables
is modest. Advanced ML models predict recurrences of AF after SA best when using a
selection of baseline characteristics, particularly in young patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11101787/s1, Table S1: All variables and percentage of missing values;
Table S2: Hyperparameters grid used for SVM; Table S3: Hyperparameters grid used for RF,
GB, and NN; Table S4: Summarized patients characteristics for all included patients divided by
outcome definition; Table S5: Average LR coefficients over folds (positive values indicate bad
outcomes, and negative values indicate good outcomes).
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