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Abstract: Multiple myeloma is a plasma cell dyscrasia characterized by focal and non-focal bone 

lesions. Radiomic techniques extract morphological information from computerized tomography 

images and exploit them for stratification and risk prediction purposes. However, few papers so far 

have applied radiomics to multiple myeloma. A retrospective study approved by the institutional 

review board: n = 51 transplanted patients and n = 33 (64%) with focal lesion analyzed via an open-

source toolbox that extracted 109 radiomics features. We also applied a dedicated tool for computing 

24 features describing the whole skeleton asset. The redundancy reduction was realized via correlation 

and principal component analysis. Fuzzy clustering (FC) and Hough transform filtering (HTF) 

allowed for patient stratification, with effectiveness assessed by four skill scores. The highest 

sensitivity and critical success index (CSI) were obtained representing each patient, with 17 focal 

features selected via correlation with the 24 features describing the overall skeletal asset. These scores 

were higher than the ones associated with a standard cytogenetic classification. The Mann–Whitney 

U-test showed that three among the 17 imaging descriptors passed the null hypothesis. This AI-based 

interpretation of radiomics features stratified relapsed and non-relapsed MM patients, showing some 

potentiality for the determination of the prognostic image-based biomarkers in disease follow-up. 

Keywords: multiple myeloma; computerized tomography; image processing; pattern recognition; 

artificial intelligence 

 

1. Introduction 

Plasma cell dyscrasias (PCDs) include monoclonal gammopathy of undetermined 

significance (MGUS), smoldering multiple myeloma (SMM), and full-blown multiple 

myeloma (MM) [1]. Around 5% of the population over 70 are MGUS patients, and for 

around 1% of them MGUS will probably turn into MM every year. Around 10% of the SMM 

population evolves into full-blown MM, whose early mortality is nowadays around 28% 

five years after diagnosis [2]. MM is still an incurable disease, whose definition relies on the 

International Myeloma Working Group (IMWG) consensus updates, which is characterized 
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by a notable clinical heterogeneity, so that the search for consolidated biomarkers predicting 

the disease outcome and progression is still a crucial open issue [3–5]. 

The presence of either single or multiple bone lesions is a typical signature of MM, 

which is related to the proliferation of tumor cells from a single clone, so that the unbalanced 

activation of osteoclasts erodes the medullary and even the cortical bone [6].Therefore, the 

CRAB criteria of IMWG underlines the importance of imaging for MM assessment, and 

recent staging systems rely on the use of imaging modalities like magnetic resonance 

imaging (MRI), computerized tomography (CT) and hybrid positron emission tomography 

with CT (PET/CT) [3,4,6–15]. However, just the availability of different imaging modalities 

and the high variability of image interpretation imply a notable heterogeneity as far as the 

use of imaging for MM clinical practice is concerned [6,12,16]. 

At a more specific level, the limitations of the use of imaging for MM assessment are 

essentially due to three open issues: the lack of accuracy in differentiating focal from diffuse 

patterns, the difficulty in extracting reliable prognostic biomarkers from pattern allocation, 

and the low agreement in staging MM patients based on imaging outcomes [17,18]. 

The application of pattern recognition algorithms for the extraction of radiomics 

descriptors from images of MM patients and the post-processing of such radiomics features 

by means of procedures based on artificial intelligence (AI) are nowadays introducing a 

novel approach for increasing the reliability of imaging in MM clinical assessment [17–20]. 

The objective of the present study is to assess the feasibility of an AI-based approach for the 

automatic stratification of MM patients from CT data, and for the automatic identification 

of radiological biomarkers with a possible prognostic value. Specifically, relying on 

radiomics and AI-based computational analysis [19,21,22], this feasibility study shows that 

a set of descriptors of the focal lesions in MM X-ray CT at diagnosis allows for the automatic 

stratification of a cohort of MM patients who have undergone transplantation in two 

clusters, whose characteristics can be interpreted via comparison with clinical data, 

biological biomarkers, and the clinical outcome of the disease. 

2. Materials and Methods 

2.1. Study Populations, Inclusion Criteria, and Risk Stratification 

This study was performed according to the Declaration of Helsinki and the 

International Conference on Harmonization of Good Clinical Practice Guidelines. An 

institutional review board was obtained (054REG2019). All patients signed informed 

consent for retrospective research before CT examination; data collection did not influence 

patient care. We considered 51 consecutive patients (mean age, 56 years ± 8; range, 31–73 

years; 18 females; 33 males) admitted to the Hospital (BLIND for REVIEW) in the last five 

years because of biopsy confirmed MM. Inclusion criteria were baseline whole-body CT 

from the Hospital PACS or outpatient clinic. Among these 51 patients, we selected the 33 

presenting at least one focal lesion in one of the CT slices, i.e., at least one >5 mm lytic lesion 

in the axial or extra-axial skeleton [17,18] (see Figure 1). Two radiologists blinded to the 

diagnosis and to each other’s conclusion assessed whether the CT pattern was diffuse or 

focal, and, for each patient presenting at least one focal lesion, we identified the largest one. 
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Figure 1. Flow diagram showing the initial number of participants in the study and those excluded 

because of not presenting focal lesions. 

Risk stratification was performed at diagnosis by the Revised International Staging 

System (ISS) combining serum beta2-microglobulin and serum albumin, lactate dehy-

drogenase for three-stage classification, and cytogenetics determining a binary normal-

high risk stadiation [23,24]. Table 1 provides a summary of the clinical features (diameter 

of focal lesion: mean: 19.9 mm, STD: 13.4 mm, min: 4.5 mm, max: 62.4 mm). 

Table 1. Clinical features of the 33 MM patients included in the analysis. R-ISS stage: I: ISS stage I 

and standard-risk CA by iFISH and normal LDH. II: Not R-ISS stage I or III; III: ISS stage III and 

either high-risk CA by iFISH or high LDH. CA—chromosomal abnormalities; iFISH—interphase 

fluorescent in situ hybridization; ISS—International Staging System; LDH—lactate dehydrogenase; 

MM—multiple myeloma; R-ISS—revised International Staging System. 

Characteristic Number % 

Patients 33 100 

Age (years) Mean 56  

Age SD 1 6.7  

Males 21 66.4 

Females 12 34.6 

Cytogenetics   

Normal 22 66,7 

High risk 11 33,3 

Relapsed 17/33 51,5 

Days before Relapse (mean) 1138  

Days of follow-up (mean) 1317  

International Staging  

System 
  

Stage I 15 45.4 

Stage II 9 27.3 

Stage III 9 27.3 
1 Standard Deviation. 

2.2. Image Analysis 

To compute each patient’s overall skeletal asset, we utilized a published software tool 

(Bone-GUI, http://mida.dima.unige.it/software/bone-gui/ accessed on 22 September 2021) 
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[25] combining thresholding and active contours. For each subject, Bone-GUI provided 24 

features. Separately for the whole, axial, and skeleton districts, it computed the following: the 

mean medullary Hounsfield value with standard deviation, the volume of the global 

medullary asset, the mean cortical Hounsfield value with standard deviation, the volume of 

the cortical asset, the rate of volume occupied by the medullary tissue, and the overall volume. 

We also applied an open source tool for radiomics (Slicer, 

https://www.radiomics.io/slicerradiomics.html accessed on 22 September 2021) [26–28] to the 

33 lytic lesions on the compact bone tissue to extract 109 Slicer features for each focal lesion. 

2.3. Reduction of Redundancy 

Our AI-based analysis for patients’ stratification utilized Slicer features as the input. To 

reduce information redundancy, we considered two approaches. In the first approach, 

principal component analysis (PCA) [29] projected the feature space onto a principal 

components’ subspace explaining at least 80% of the data variance. In the second approach, 

we performed two Pearson’s correlation processes (p > 95%) involving the Slicer features 

and (a) the binary feature encoding patient’s relapse one year after transplantation, and (b) 

all 24 Bone-GUI features. We applied PCA to the features selected using the two correlation 

processes. Figure 2 illustrates this redundancy reduction pipeline. 

Figure 2. The pipeline of the radiomics features analysis. For each patient, the focal lesion was 

pointed out and the corresponding CT image was fed into a radiomics tool (Slicer), which computed 

109 radiomics features; these descriptors were correlated with both the clinical outcome of the 

disease at one year, and the global radiological features extracted by means of a segmentation tool 

(Bone-GUI); the resulting mostly correlated features and the set of all local features were processed 

by means of two unsupervised AI algorithms (FCM and HTF) for stratification purposes. 

2.4. Clustering 

Clustering organized a set of unlabeled samples into clusters based on data similarity 

[30]. Data partition was obtained by minimizing a cost function involving the distances 

between the data and cluster prototypes. In Fuzzy C-Means (FCM) a degree of 

membership is assigned to each sample with respect to each cluster. In addition to FCM, 

we applied a non-linear approach based on the filtering of an extended version of the 

Hough transform (HTF) [31], according to the following steps (Figure 3): 

1. Downstream of the PCA process, the two-dimensional feature space given by the two 

components explaining most of the data variance (namely, PC1 and PC2) was 

constructed for each data set. 

2. Given a feature space, the Hough transform of each point in the patient’s set with 

respect to the family of all parabolas was computed. As this family was characterized 
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by three parameters, i.e., its equation is y_PC2 = ax_PC1^2 + bx_PC1 + c, with a, b, and 

c being the parameters, and the corresponding parameter space has three dimensions. 

3. The Hough accumulator was computed by counting the number of times each Hough 

transform passed through one of the cells of the discretized parameter space. 

4. The Hough accumulator was filtered by a 5-pixel-side cube centered on the pixel with 

a maximum grey value. This cube was the smallest one enclosing the cells, with 

accumulator values higher than 50% of the maximum [32]. 

Each line passing through the filtered region was projected back to the image space, 

thus generating a cluster of points in a strip around the parabola corresponding to the 

maximum in the Hough accumulator. The remaining points represent the second cluster 

made of points outside of the strip of parabolas previously identified. 

 

Figure 3. The HTF process for stratification. The feature space is constructed by applying PCA to the set of feature vectors 

(top left panel); for each point in the feature space the HT is computed with respect to the family of all parabolas (top 

right panel); the corresponding Hough accumulator is filtered by the smallest cube, including the cells with values higher 

than 50% of the accumulator maximum (bottom left panel); each filtered line is projected back into the feature space, thus 

generating the cluster of points associated to the parabola corresponding to the maximum of the Hough accumulator 

(bottom right panel). 

3. Results 

3.1. Clinical Findings 

Focal lesion searching led to the selection of 33/51 (65%) patients (mean age, 56 years ± 7; 

range, 45–69 years; 12 females; 21 males) whose imaging data were considered for our 

computational analysis. Inter-observer agreement in differentiating diffuse from focal pattern 

between the two groups of radiologists resulted in 0.75 (95% Confidence Interval: 0.31–0.67) 

and 0.96 (95% Confidence Interval: 0.79–0.99) for the selection of patients with focal lesions. 
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3.2. AI-Based Analysis 

The AI-based analysis involved three data sets (see Table 2): data set 1, made of all 

109 local features extracted by Slicer from each focal lesion; data set 2, made of the eight 

local features mostly correlating with the relapsed/non-relapsed binary feature; and data 

set 3, made of the 17 local features mostly correlating with the 24 Bone-GUI global 

features. The application of PCA to these three data sets led to three features spaces, with 

n = 5 axes for data set 1, n = 3 axes for data set 2, and n = 2 axes for data set 3. 

Table 2. Radiomics features extracted by means of image and correlation analysis. 

Data Set Name 
Vector  

Dimension 
SW Tool Feature Type Correlation 

Data set 1 109 Slicer focal no 

Data set 2 8 Slicer focal relapses 

Data set 3 17 Slicer focal global features 

In each one of these three feature spaces, FCM and HTF computed two clusters: in 

each cluster, the black circles are associated with patients that underwent relapse within 

one year of bone marrow transplantation. Cluster A (B) contained the maximum 

(minimum) number of relapsed patients; in Figure 4, Clusters A (B) are coded with blue 

(orange). Table 3 contains a summary of how the clusters are populated for each of the 

three data sets and each of the two AI methods utilized for the analysis. 

Table 3. Results of the clustering process provided by a fuzzy clustering method (FCM) and a non-

linear filtering approach based on an extended version of the Hough transform (HTF). The symbol 

 denotes the cardinality of the set of vectors. 

Method Data Set 
# of Vectors 

Cluster A 

# of Vectors 

Cluster B 

# of Relapses 

Cluster A 

# of Relapses 

Cluster B 

FCM 1 16 17 6 10 

FCM 2 25 8 8 8 

FCM 3 23 10 11 5 

HTF 1 20 13 8 8 

HTF 2 12 21 7 9 

HTF 3 25 8 16 0 
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Figure 4. Clustering results for patients’ stratification. In all six panels, the clustering methods (FCM 

for the left column and HTF for the right column) are applied to the outcomes of the PCA analysis. 

The results are presented in two-dimensional spaces for easier reading. Cluster A (blue) contains 

the highest number of relapsed patients, the opposite is true for cluster B (orange); finally, black 

circles represent the patients that underwent relapse. Each row shows the results for a different data 

set: data set 1 is in top row, data set 2 is in middle row, and data set 3 in the bottom row. 

In order to assess the performances of the clustering algorithms, we computed the 

confusion matrices for the observed relapsed patients; specifically, we counted the 

number of true positives (TPs), true negatives (TNs), false positives (FPs), and false 

negatives (FNs) using cluster A as the reference cluster for the “relapsed” class and cluster 

B as the reference cluster for the “non-relapsed” class. Using the entries of such matrices, 

we computed four different skill scores: 

Sensitivity = TP/(TP + FN) 

Specificity = TN/(TN + FP) 

Youden’s index = Sensitivity + Specificity − 1 
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Critical Success Index (CSI) = TP/(TP + FN + FP). 

We show that the CSI ranged from 0 to 1 and it was higher as much as the number of 

FPs and FNs was small, regardless the number of TNs. CSI is therefore a useful score in 

conditions like the one we considered here, where we had an unbalanced data set with 

more non-relapsed cases than relapsed ones. 

We tested the robustness of our results by performing a bootstrap analysis on the set 

33 17-dimension feature vectors of that set. We constructed 100 random realizations of 

training sets made of 20 feature vectors (of which 10 representing relapsed patients) and, 

for each realization, we applied the HTF clustering process. Then, for each realization of 

the training set, we computed the membership cluster for each one of the remaining 13 

vectors representing the test set. Repeating this procedure for each one of the 100 

realizations of the training-test set pairs led to the construction of 100 confusion matrices 

and, therefore, to 100 sets of skill score values that we averaged in Table 4, together with 

the corresponding standard deviations. We also performed a bootstrap analysis on the 

cytogenetics values. In order to compute the entries of these last confusion matrices, we 

compared the relapse/non-relapse with the high/standard cytogenetic stages: a relapsed 

patient with a “high” cytogenetic stage was a TP event, while a relapsed patient with a 

“standard” cytogenetic stage was an FN. A non-relapsed patient with a “standard” 

cytogenetic stage was a TN event and a non-relapsed patient with a “high” cytogenetic 

stage was an FP event. We show that the separation between the standard and high 

cytogenetic stage was realized according to the standard cytogenetic evaluation for 

separating patients with a high-risk mutation (poor prognosis in general) from patients 

without high-risk mutations [24,33]. 

Table 4. Skill scores corresponding to the clustering analysis performed by means of FCM and HTF 

on the three data sets considered in the paper. The mean and standard deviation values are obtained 

by means of a bootstrap analysis that generated 100 random training sets made of 30 patients and, 

correspondingly, 100 random validation sets made of 13 patients. The last two rows contain the 

results of the analysis for the cytogenetics data associated with the patients. 

Method Data Set Sensitivity Specificity Youden CSI 

FCM 1 0.46 ± 0.12 0.5 ± 0.14 −0.04 ± 0.13 0.3 ± 0.08 

FCM 2 0.58 ± 0.35 0.55 ± 0.48 0.13 ± 0.15 0.3 ± 0.08 

FCM 3 0.4 ± 0.24 0.55 ± 0.22 −0.06 ± 0.15 0.25 ± 0.12 

HTF 1 0.38 ± 0.13 0.55 ± 0.16 −0.06 ± 0.15 0.25 ± 0.09 

HTF 2 0.63 ± 0.19 0.33 ± 0.25 −0.04 ± 0.34 0.37 ± 0.16 

HTF 3 0.87 ± 0.14 0.4 ± 0.13 0.27 ± 0.2 0.52 ± 0.1 

Cytogenetics  0.45 ± 0.16 1.00 ± 0.02 0.44 ± 0.16 0.44 ± 0.16 

3.3. Feature Ranking 

To investigate which radiomics features mostly contribute to an effective 

stratification of the MM patients, we focused on the case of data set 3. The reason for this 

choice is because, when analyzed with HTF, this set provided, by far, the highest 

sensitivity values and, significantly, the highest CSI values among the three data sets 

considered. Therefore, we analyzed the feature compositions of the two axes produced by 

the application of PCA on the original feature space of this data set, made of 17 features. 

In Figure 5, we show the contribution of the 17 features to the first (light blue) and second 

(dark purple) principal component (PC). These contributions were weighted by the 

percentage of explained variance of the two PCs (77% and 9% for the first and second PC, 

respectively). A Mann–Whitney U-test on these features showed that just three of them 

did not pass the null hypothesis (p > 99%): “MaskMaximum”, which denotes the 

maximum grey level value in the mask segmenting the focal lesion (172.6 ± 64.4 in Cluster 

A; 321.9 ± 48.6 in Cluster B); “firstorderRange”, which denotes the range of the distribution 

of the voxel intensities (194.7 ± 61.8 in Cluster A; 343.4 ± 66.9 in Cluster B); and 
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“ngtdmComplexity” (29.8 ± 24.9 in Cluster A; 79.4 ± 43.5 in Cluster B), which is a measure 

of the non-uniformity of the lesion image in the grey level intensity. 

 

Figure 5. For data set 3, the first two principal components explain at least 80% of the data variance. 

In the figure, the make-up of the first two principal components is represented as follows: it is shown 

how much each feature contributes to the PC1 (light blue) and to the PC2 (dark purple), and these 

values are weighted for the percentage of data variation explained by each principal component 

considered. 

4. Discussion 

This study demonstrates that AI supported radiomics realize a clustering of MM 

patients with a statistical reliability that, for some skill scores, is higher than the one 

provided by standard biochemical staging. The possibility to increase the predictive 

potential of the standard CT images of patients with multiple myeloma is clinically 

relevant for several reasons. 

The first is that although MM is still considered a single disease, it is actually a 

collection of several different cytogenetically distinct plasma cell malignancies [2]. 

Trisomies and IgH translocations are considered primary cytogenetic abnormalities, and 

occur at the time of establishment of MGUS [2]. At the present time, there are three specific 

biomarkers for MM with an approximately 80% risk of progression to symptomatic end-

organ damage in two or more independent studies: clonal bone marrow plasma cells 

≥60%, serum free light chain (FLC) ratio ≥100 (provided involved FLC level is ≥100 mg/L), 

and more than one focal lesion on magnetic resonance imaging (MRI). It is known that 

almost all patients with MM eventually relapse and the choice of a treatment regimen at 

relapse is affected by many factors, including the timing of relapse, response to prior 

therapy, aggressiveness of relapse, and performance status (TRAP) [2]. Therefore, the 

prediction of relapse early is important to foresee a therapy. Second, several studies have 

correlated bone patterns in MM with their prognostic value using MRI and CT 

[9,10,17,18,21,34]. MRI can be used to differentiate up to five different patterns of plasma 

cell infiltration, including normal appearance, focal involvement, homogeneous diffuse 

infiltration, diffuse infiltration with additional focal lesions, and variegated or salt-and-

pepper patterns; on the other hand, CT is well suited for small (below 5 mm) focal bone 

lesions due to its high spatial resolution capabilities [9]. 
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The AI-based analysis of the radiomics properties extracted from the focal lesions 

essentially pointed out two aspects. First, the redundancy of the radiomics features seem 

to impact the prognostic power of the clustering methods. However, the stratification 

power increases when correlation-based and PCA-based reduction of redundancy 

processes are applied. Second, the use of a non-linear approach to clustering, namely HTF, 

seems to provide better results with respect to a more standard fuzzy clustering 

algorithm; this may be explained because of the high degree of heterogeneity that 

characterizes MM. The skill scores computed for each data set and each classification 

method helped us to determine which approach to redundancy reduction and which 

algorithm performs better for stratification purposes. Among the four skill scores, CSI 

probably represents the one that best interprets the outcomes of the confusion matrices in 

this context. Indeed, this score emphasizes the correct prediction of relapses in 

correspondence with a low rate of misclassification. Interestingly, the application of HTF 

on the focal features mostly correlating with the skeleton asset’s global properties (which 

are extracted by Bone-GUI) leads to the highest value for this score: this seems to point 

out a favorable prognostic role for the interplay between local and global descriptors of 

the MM bone tissue. In this case, the CSI value is higher than the discriminative value 

provided by the cytogenetic data, which supports the reliability of radiomics as a 

prognostic tool for MM clinical practice. This conclusion is confirmed by a bootstrap 

analysis performed on data set 3. 

Data set 3 is made of the focal descriptors that mostly correlate with the whole 

skeleton’s asset properties. Therefore, this correlation analysis per se realizes a feature 

selection process whose outcome is a set of 17 features. A finer feature selection is 

provided by PCA, as shown in Figure 5. This figure and the related Mann–Whitney U-test 

point to a significant emphasis on properties related to the heterogeneity of the focal 

lesion, such as the Hounsfield unit range and maximum values found in the lesion, and 

the complexity, which measures the non-uniformity of the image and the presence of 

rapid changes in intensity. 

We finally show that the data collection for this study has been realized by means of a 

single, specific CT scanner, so that the images we used for feature extraction were 

homogeneous. Recent studies [35] have shown that the characteristics of the extracted features 

may depend on non-tumor related factors like the signal-to-noise ratio of the experimental 

data. Therefore, in the case of studies that utilize data from more than one scanner, data 

homogenization should be implemented prior to the data extraction process [36]. 

5. Conclusions 

This computational approach to the interpretation of radiomics focal features shows 

the potential for the stratification of relapsed and non-relapsed MM patients, and could 

represent a prognostic procedure for determining the disease follow-up and therapy. 

Concerning the technical issues to be discussed, the present study has several strengths: 

the use of clinically available CT images collected in the normal daily workup did not 

influenced patient care in any way. Second, we used a free open-source tool for radiomics 

assessment of the focal lytic lesions. Among the limitations of the present study, we 

acknowledge the retrospective nature, which did not allow for perfect timing between CT, 

diagnosis, and therapy or relapse. In addition, the evaluation of the radiomics features 

was made only with one open-source tool, and we did not evaluate whether the usage of 

other tools would have introduced variability to a significant extent. Finally, the overall 

number of patients included was relatively low: indeed, a correct sample size in radiomics 

is at least five times the number of extracted features [37], and this condition would 

require a population of at least 100 MM patients. Nonetheless, the possibility to obtain a 

cluster of features to identify relapses even in a 33 patient sample is in favor of the validity 

of this method. This initial study warrants prospective studies with a high number of 

patients, which are currently underway, in order to validate this approach, with the aim 
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of implementing, it in a more systematic way, a method of obtaining a more robust 

prognostic score for MM patients. 

Summing up the results of this study, we remind that our objective was to validate 

the feasibility of the automatic stratification of MM patients by means of an analysis of the 

descriptors extracted fromCT data within the framework of a radiomics retrospective 

study. This analysis showed that unsupervised AI can predict relapse within one year 

after transplantation and can identify a few imaging features associated with the 

heterogeneity of the focal lesion with a high prognostic value. 
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