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Abstract: There is strong evidence supporting the contribution of genetic factors to obstructive sleep
apnea syndrome (OSAHS) susceptibility. In the current study we analyzed both in a clinical cohort
and in silico, four single nucleotide polymorphisms SNPs, rs999944, rs75108997, rs35329661 and
rs116133558 that have been associated with OSAHS. In 102 patients with OSAHS and 50 healthy
volunteers, genetic testing of the above polymorphisms was performed. Polymorphism rs116133558
was invariant in our study population, whereas polymorphism rs35329661 was more than 95%
invariant. Polymorphism rs999944 displayed significant (>5%) variance in our study population
and was used in the binary logistic regression model. In silico analyses of the mechanism by which
these three SNPs may affect the pathophysiology of OSAHS revealed a transcriptomic network of
274 genes. This network was involved in multiple cancer-associated gene signatures, as well as the
adipogenesis pathway. This study, uncover a regulatory network in OSAHS using transcriptional
targets of intergenic SNPs, and map their contributions in the pathophysiology of the syndrome on
the interplay between adipocytokine signaling and cancer-related transcriptional dysregulation.

Keywords: obstructive sleep apnea syndrome; genetics; metabolic; oxidative stress; immune-
related pathways

1. Introduction

Obstructive sleep apnea hypopnea syndrome (OSAHS) is a common disorder present-
ing with recurrent episodes of partial or complete upper airway obstruction that result in
sleep disruption and intermittent hypoxemia with variable severity. On the genomic level,
this pathophysiological substrate is linked with chronic upregulation of oxidative stress
and hypoxia-responsive pathways and genes [1].

Individuals with OSAHS are at increased risk for cardiovascular disease, diabetes,
stroke, cognitive impairment and many other disorders [2,3], and enhance morbidity and
mortality rates [4].

The etiology of OSAHS is multifactorial, including the interplay between obesity,
craniofacial structure, upper airway neuronal control, ventilator control and inflamma-
tion [5–8].

There is strong evidence supporting the contribution of genetic factors to OSAHS
susceptibility [9]. Recent genome-wide association studies have revealed many hypoxia-
signaling and sleep pathways [1]. Genome-wide association studies (GWAS) in OSAHS
have been employed in order to discover genomic regions containing causal variants
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or variants influencing the expression of genes outside the identified region (e.g., en-
hancers and/or expression quantitative trait loci) [8]. The pathophysiological role of
intergenic regions and pseudogenes is far less elucidated in several diseases, including
OSAHS [10]. Specifically, no study to date has focused on the role of intergenic SNPs in
its pathophysiology.

In the current study we aimed to elucidate the role of four intergenic SNPs selected
from Cade et al.’s study [8]: rs999944 (genome-level significant association with AHI),
rs75108997 (associated with sleep SpO2), rs35329661 (associated with event duration in fe-
males) and rs116133558 (associated with sleep SpO2), previously identified by Cade et al. [8]
in a clinical cohort and via a standalone in silico workflow

2. Materials and Methods

This study was approved by the Institutional Review Board of University Hospital of
Larissa (No: 63569-24 December 2018) and written informed consent was obtained from
all participants.

2.1. Study Population

Our study included consecutive patients with suspected OSAHS who underwent
polysomnography (PSG) test in the Clinic of Sleep Disorders of the Respiratory Medicine
Department of the University General Hospital of Larissa were invited to participate in
this study. All subjects underwent an overnight laboratory-based PSG, and the apnea–
hypopnea index (AHI) was measured in all of them. OSAHS was defined as an
AHI > 5 events/hr, and daytime symptoms specific for OSAHS. Hypopnea was defined
as either (a) a >50% reduction in airflow, (b) a <50% reduction in airflow associated
with a desaturation of >3% or (c) a moderate reduction in airflow accompanied by an
electroencephalogram (EEG) -defined arousal. Patients were grouped according to the
following classification by American Academy of Sleep Medicine (AASM 2007): mild
disorder (AHI: 5–15 events/h), moderate disorder (AHI: 15–30 events/h), and severe
disorder (AHI > 30 events/h). AHI < 5 events/hr was diagnosed as healthy subjects. A
total of 102 Greek patients with OSAHS and 50 non-OSAHS, age- and gender-matched
Greek controls were included in this study.

2.2. DNA Extraction and Genotyping

Genomic DNA was extracted from whole blood by DNA isolation kit, according to
the manufacturer’s protocol. The purity and concentration of DNA were measured by a
nanodrop spectrophotometer (Thermo Scientific, Waltham, MA, USA), with absorbance
ratios ranging from 1.8 to 2.0 at the length of A260/A280. Genotyping of SNPs rs999944,
rs75108997, rs35329661 and rs116133558 was performed using TaqMan single nucleotide
polymorphism (SNP) genotyping technique on an ABI PRISM® 7900 HT Fast Real–Time
PCR System (Applied Biosystems, Waltham, MA, USA).

2.3. Statistical Analysis

All data analyses were performed with SPSS 23.0 (IBM Corporation, Armonk, NY,
USA). Statistical significance was accepted at a level of p < 0.05. Deviation from the Hardy–
Weinberg equilibrium was assessed using a chi-squared test with one degree of freedom.
Statistical significance for categorical variables was assessed by the chi-squared or Fisher’s
exact test. OSAHS risk and severity associated with the candidate SNPs were estimated
by computing the odds ratios (ORs) and their 95% confidence intervals (CIs) by logistic
regression analysis, adjusting for age, gender, and BMI. The analyses were done first per
allele (allelic model) and then per genotype (additive model). Post-hoc power analysis
was performed via the Bioinformatics Institute’s Online Sample Size Estimator (OSSE)
(Available from: http://osse.bii.a-star.edu.sg/calculation2.php, accessed 16 September
2021) [11].

http://osse.bii.a-star.edu.sg/calculation2.php
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2.4. BLAST Analyses of Pseudogene and SNP Alignment in Intergenic Regions

SNPs mapped to pseudogenes and the corresponding pseudogenes themselves were
analyzed for their potential biological activity in a multistep procedure. First, we deter-
mined that said pseudogene produced transcripts by inquiring the NHGRI-EBI GWAS
catalog, a database of curated genome wide associated studies maintained by the National
Human Genome Research Institute (NHGRI; Available from: https://www.ebi.ac.uk/gwas,
accessed 16 September 2021) [12]. This resource allows the integration of both SNP and
trait characteristics, as well as the integration of SNP data from multiple studies with other
resources. As a next step, the Basic Local Alignment Sequence Tool (BLAST) [13] was used
to detect overlap between a ±100 kb region [14,15] containing the intergenic SNP and pseu-
dogenes within the same region. Subsequently, the Gene Cards database (Available from:
https://www.genecards.org/, accessed 16 September 2021) [16] was mined for potential
gene targets and transcription factor binding sites for each detected pseudogene.

2.5. Determination of SNP Interactions, and the Associated Genes’ Biological Networks

The SNPSnap tool (available from: https://data.broadinstitute.org/mpg/snpsnap/,
accessed 16 September 2021) was used in order to identify interactions between SNPs, and
identify common biological functions affected downstream [17].

Based on the above analyses and the results from the GeneCards database, we con-
structed a network of putative interactors from (a) SNP associated transcription factors (b)
downstream genes (c) ARBB1, the gene mapped to the rs35329661 SNP (3′ UTR variant).
This interactome that included a total of 274 genes was dubbed IA. Following the extraction
of the IA interactome, we performed gene set enrichment analyses via Enrichr web service
(available from https://maayanlab.cloud/Enrichr/, accessed 16 September 2021), in order
to predict its biological functions [18].

3. Results
3.1. Demographics, Clinical, Biochemical and PSG Characteristics of the Cohort

The main demographic and clinical characteristics of the 102 OSAHS cases and
50 healthy controls that underwent polysomnography are presented in Tables 1 and 2.
There were no significant differences between the OSAHS cases and control groups with
respect to age or gender (p > 0.05).

3.2. SNP Variability and Multivariate Analyses of SNP-OSAHS Associations in the Clinical
Cohort and Power Calculations

Polymorphism rs116133558, rs75108997 were invariant in our study population,
whereas polymorphism rs35329661 was more than 95% invariant (C/C: 95.4%; C/T: 1.3;
T/C:3.3%). Polymorphism rs999944 displayed significant (>5%) variance in our study
population A/G: 20%; G/G:20%) and was used in the binary logistic regression model.

Table 1. Demographic, and clinical characteristics.

OSAHS (n = 102) Controls (n = 50)

Age 56.99 ± 13.1 53.5 ± 9.6
Male/Female 74 (72.5%)/28 (27.5%) 19 (38%)/31 (62%)

BMI 32.83 ± 7.16 26.56 ± 3.6
AHI 42.57 ± 24.38 38.30 ± 25.43

Smokers 41 (40.2%) 10 (20%)
Diabetes 11 (10.8%) 0 (0%)

Hyperlipidemia 52 (51%) 9 (18%)
Hypertension 61 (59.8%) 9 (18%)

Coronary heart disease 17 (16.7%) 1 (2%)
BMI: Body Mass index.

https://www.ebi.ac.uk/gwas
https://www.genecards.org/
https://www.genecards.org/
https://data.broadinstitute.org/mpg/snpsnap/
https://maayanlab.cloud/Enrichr/
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Table 2. Biochemical and PSG parameters.

Controls (n = 50) OSAHS (n = 102) p-Value

Glucose 93.08 ± 10.41 10.42 ± 18.82 0.531
Cholesterol 168.56 ± 61.80 171.84 ± 35.03 0.728
Triglyceride 140.0000 ± 85.41 142.4608 ± 54.74 0.830

HDL 51.5000 ± 10.22 46.2529 ± 8.44 0.001
LDL 119.1240 ± 33.86 113.7039 ± 35.40 0.370
CRP 0.26 ± 0.24 0.87 ± 0.92 <0.001
AHI 3.48 ± 0.63 38.30 ± 25.43 <0.001
ODI 2.80 ± 1.17 40.89 ± 30.71 <0.001
TST 7.44 ± 1.50 7.21 ± 1.15 0.334

TST90% 0.61 ± 0.76 29.67 ± 44.49 <0.001
AI 0.67 ± 0.53 15.78 ± 20.26 <0.001

HDL: high-density lipoprotein; LDL: low-density lipoprotein; CRP: C-reactive protein; TST: total sleep time in
hours; TST90%: percentage of total sleep time in hours under 90% SaO2; AI: Arousal Index.

A binary logistic regression model adjusting for age, sex, BMI and lipid profile did not
detect statistically significant associations between genotype frequency for the rs999944
SNP between OSAHS groups and controls (Table 3). Post-hoc analyses via OSSE for each
SNP revealed that our study was under-powered (power < 50%).

Table 3. Binary logistic regression model (BLRM) with G/A as the reference group for the rs999944.

B S.E. Wald df Sig. Exp(B) 95% C.I. for EXP(B)

Lower Upper

Sex −1.019 0.521 3.826 1 0.050 0.361 0.130 1.002
Age 0.027 0.021 1.615 1 0.204 1.027 0.986 1.070
BMI 0.001 0.042 0.001 1 0.978 1.001 0.922 1.087

OSAHS
Group 3.091 3 0.378

Control 0.310 0.710 0.191 1 0.662 1.364 0.339 5.485
Mild to

Moderate
OSAHS

1.011 0.974 1.077 1 0.299 2.747 0.407 18.526

Severe
OSAHS 1.261 0.784 2.588 1 0.108 3.530 0.759 16.413

Glucose 0.040 0.017 5.352 1 0.021 1.041 1.006 1.077
Cholesterol −0.004 0.007 0.288 1 0.592 0.996 0.983 1.010
Triglyceride 0.002 0.004 0.193 1 0.660 1.002 0.994 1.010

HDL 0.008 0.029 0.074 1 0.785 1.008 0.952 1.068
LDL 0.007 0.009 0.654 1 0.419 1.007 0.990 1.024
CRP −0.196 0.351 0.311 1 0.577 0.822 0.413 1.636

Constant −3.280 2.752 1.421 1 0.233 0.038
Variable(s) entered on step 1: gender, age, BMI, OSAHSGroup, glucose, cholesterol, triglycerides, HDL, LDL, CRP.

3.3. In Silico Analyses of Gene and Pathway Associations of Non-Invariant SNPs
3.3.1. BLAST Analyses

A BLAST analysis of the ±100 kb region containing rs116133558 revealed a hit in
pseudogene AC114402.

Correspondingly, BLAST analysis of rs75108997 revealed total query cover and se-
quence similarity with pseudogene AL663058.5. The subsequent GeneCards Query did not
reveal any significant transcription factor binding sites, or corresponding gene targets. The
rs999944 displayed total query cover and sequence similarity with pseudogene AC007880.2.
(Supplementary File S1).
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3.3.2. Identification of SNP Gene Targets and Transcription Factors via GeneCards
and SNPSEA

Interrogation of the GeneCards database revealed several gene targets and tran-
scription factor bindings sites (TFBS) for rs11613358 and rs999944 (Table 4). Collectively,
transcription factors (as genes) and gene targets were used to create a 274-gene signature
that comprised interactome A (IA), the putative functional network of these two SNPS.
SNPSEA did not reveal direct interaction between the two SNPS (Supplementary File S2)

Table 4. GeneCARDS Results For Pseudogene Gene Targets and Transcription-Factor Binding Sites.

SNP (RSID) Pseudogene
Accession GH Type BLAST %

Identity Gene Targets TFBS GH Score

rs116133558 AC114402.1 enhancer 100%

ENSG00000227417,
LOC100420338,
SNRPE, LAX1,

ZBED6, ZC3H11A,
ENSG00000223505

CEBPB, FOS,
JUND, RAD21 0.6

rs999944 AC007880.2 promoter,
enhancer 100%

lnc-SLC1A4-5,
VPS54, SERTAD2,

RN7SL211P,
LINC02576,

SLC1A4, RAB1A,
LINC01800,

ACTR2, AFTPH,
ENSG00000199964

256 TFs 1.8

SNP: single nucleotide polymorphism, TF: transcription factor, tfbs: transcription-factor binding site.

Subsequently, the IA network (Supplementary File S3) was used for GSEA in order to
identify significantly enriched biological networks (Supplementary File S4).

Tables 5 and 6 report on the 10 first (sorted by adj.p-value) pathways resulting from
GSEA on IA via Enrichr (see Supplementary File S4 for the raw data).

Table 5. The 10 first pathways associated with IA—WikiPathways.

Index Pathway p-Value Adj.p-Value

1 prion disease pathway WP3995 3.815 × 10−18 1.026 × 10−15

2 androgen receptor signaling pathway WP138 4.897 × 10−15 6.587 × 10−13

3 adipogenesis WP236 2.142 × 10−13 1.887 × 10−11

4 TGF-beta signaling pathway WP366 2.806 × 10−13 1.887 × 10−11

5 sudden infant death syndrome (SIDS)
susceptibility pathways WP706 6.118 × 10−13 3.292 × 10−11

6
The effect of progerin on the involved genes
in Hutchinson–Gilford progeria syndrome

WP4320
1.628 × 10−12 7.299 × 10−11

7 circadian rhythm related genes WP3594 5.297 × 10−12 2.036 × 10−10

8 integrated breast Cancer pathway WP1984 3.026 × 10−11 1.017 × 10−9

9 nuclear receptors WP170 6.664 × 10−11 1.992 × 10−9

10 hematopoietic stem cell gene regulation by
GABP alpha/beta complex WP3657 1.224 × 10−10 3.292 × 10−9
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Table 6. The 10 first pathways associated with IA—KEGG.

Index Pathway p-Value Adj.p-Value

1 transcriptional misregulation in cancer 6.270 × 10−19 8.652 × 10−17

2 pathways in cancer 1.167 × 10−9 8.053 × 10−8

3 osteoclast differentiation 2.292 × 10−9 1.054 × 10−7

4 human T-cell leukemia virus 1 infection 9.866 × 10−9 3.404 × 10−7

5 viral carcinogenesis 1.898 × 10−8 5.237 × 10−7

6 acutemyeloid leukemia 2.789 × 10−7 5.499 × 10−6

7 Th17 cell differentiation 2.530 × 10−7 5.499 × 10−6

8 thyroidcancer 6.078 × 10−7 1.048 × 10−5

9 hepatocellular carcinoma 3.648 × 10−6 5.594 × 10−5

10 thyroid hormone signaling pathway 4.501 × 10−6 5.647 × 10−5

4. Discussion

In this study, we explored the potential role of four intergenic SNPs in the pathogenesis
of sleep apnea, both in a clinical cohort and in silico. Among the four selected variants, only
rs999944 displayed significant variance in our population. No significant associations were
detected between the genotype frequency of rs999944 and OSAHS biological parameters. In
silico analyses of the mechanism by which these three SNPs may affect the pathophysiology
of OSAHS revealed a transcriptomic network of 274 genes. This network was involved in
multiple cancer-associated gene signatures, as well as the adipogenesis pathway.

4.1. Adipocytokine Signaling in OSAHS

The exposure of adipose tissue to intermittent hypoxia (IH) is an established pertur-
bator in the pathophysiology of OSAHS [19]. In animal models of IH exposure, IH has
been shown to prime adipocytes via C/EBP, disrupting PPAR and adiponectin signalling
via adipocytokine release [20]. The sole study of visceral fat transcriptomes from OSAHS
patients has corroborated this model in humans. More specifically, the PPAR system and
adiponectin signalling cascades were disrupted in the setting increased proinflammatory
signalling [21].

Our findings corroborate the findings of these studies on both the gene- and pathway-
level. On the pathway level, the TNF, adipogenesis and adipocytokine signatures that
we detected may reflect disruption of adiponectin signalling that has been correlated to
adipocyte volume [19]. On the gene level, key targets of the rs116133558 and rs999944-
associated pseudogenes have been previously reported as differentially expressed genes
in IH models [19] and OSAHS [21], including PPARG, CEPA, CEPB, STAT3, RXRA and
RXRB. Interestingly, the genotype frequency of rs999944 was independently associated
with glucose levels in our clinical cohort, a relationship that could reflect decreased
adiponectin signalling.

These findings indicate that the mechanism by which both intergenic polymorphisms
contribute to OSAHS lies in their interaction with transcription factors and second-order
phenomena, such as the disruption of regulatory networks [20], in contrast with other
polymorphisms such as missense variants, where the disease association can be approached
as a knock-out vs. wild type comparison.

4.2. Cancer-Related Networks in OSAHS

The epidemiological link between OSAHS and cancer is a complex one, potentially
riddled with both clinical and biochemical confounders [22]. The main issue with the
OSAHS—cancer connection is that both diseases are multifactorial and share both mech-
anisms [23] and comorbidities [24]. On the genomic level, this interplay may be further
refined into sex- and site- specific correlates between OSAHS and cancer [25]. One of the
few studies assessing the genetic components of OSAHS determined that cancer related
pathways were affected by CPAP therapy [26].
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Our findings corroborate with the latter study on both the gene- and pathway- level.
Specifically, significantly enriched signatures that overlap between our studies included
androgen signaling, breast cancer, and leukemia related pathways (see [20] and Supple-
mentary Materials File S4; FDR < 0.05); Furthermore, key regulators of neoplastic processes
and transcriptional dysregulation included genes such as JUN, SMAD3, MYC, HDAC1
and BRCA1 that were also part of the regulatory networks associated with rs999944.

Within this context, our findings support a model of long-range regulation by non-
genic SNPs [19], and potentially add to the evolving concept of transcriptional regulation
by intergenic regions and perturbations introduced by their polymorphisms [26].

4.3. Adipocytokines, Cancer and OSAHS

Adipocytokines signaling and cancer, as they arise in our analyses and are corrobo-
rated by others [19–21,26] should be considered as cross-talking pathophysiological sub-
strates, further enhanced by OSAHS. The relationship between OSAHS and adipocytokines
may arise from a common genetic substrate, as the recently discovered interplay between
OSAHS and hypertriglyceridaemia has shown [27].

Adipocytokine cascades are well established clinical correlates with cancer [26], with
obesity-related proteins in general being associated with an increased risk of breast cancer
in females [28]. In this setting, adipocytokine signaling and hypoxia combined in the
setting of a metabolically active adipose tissue creates favorable conditions for tumorigen-
esis, including sustained proinflammatory signaling and remodeling of the extracellular
matrix [29].

4.4. Limitations and Strengths

Our findings should be interpreted within the conceptual framework of this study’s
limitations and strengths. A major limitation of our study is that the clinical cohort did not
achieve sufficient sample size, reflected by the invariance of rs116133558 and rs75108997. As
such, we were not able to sufficiently detect associations between genotype frequency and
OSAHS parameters at the clinical level. Considering that recruitment was greatly affected
due to the pandemic, this obstacle could not be overcome within the given timeframe of
our study. Another important caveat regarding the clinical cohort is that as a nested study,
the reference population is specific and thus any finding we could have drawn would be of
reduced generalization. Furthermore, while we reconstructed a regulatory gene network
from two intergenic SNPs, we cannot confirm our findings in a prospective cohort. We
overcome this limitation by comparing our findings with two of the most comprehensive
studies in OSAHS and we managed to validate our major findings both on the genomic
and pathway level.

5. Conclusions

This is the first study to uncover a regulatory network in OSAHS using transcriptional
targets of intergenic SNPs and map their contributions in the pathophysiology of the
syndrome on the interplay between adipocytokine signaling and cancer-related transcrip-
tional dysregulation. Further studies are needed to expand this concept in other intergenic
SNPs and outline the non-genic networks governing long-range transcriptional regulation
in OSAHS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11101753/s1, Supplementary File S1: Raw results from BLAST Analysis; Supple-
mentary File S2: SNPSnap report; Supplementary File S3: Gene Signature; Supplementary File S4:
Enrichr GSEA Results.

https://www.mdpi.com/article/10.3390/diagnostics11101753/s1
https://www.mdpi.com/article/10.3390/diagnostics11101753/s1
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