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Abstract: Background: Semiquantitative dipstick tests are utilized for albuminuria screening. Meth-
ods: In a prospective cross-sectional survey, we analyzed the diagnostic test validity of the semiquan-
titative colorimetric indicator-dye-based Combur9-Test® and the albumin-specific immunochromato-
graphic assay Micral-Test® for the detection of albuminuria, the distribution of the semiquantitative
measurements within the albuminuria stages according to KDIGO, and the utility for albuminuria
screening compared with an albumin-to-creatinine ratio (ACR) in a walk-in population. Results: In
970 subjects, albuminuria (≥30 mg/g) was detected in 12.7% (95% CI 85.6–96.3%) with the ACR. Sen-
sitivity was 82.9% (95% CI 75.1–89.1%) and 91.9% (95% CI 88.7–96.9%) and specificity 71.5% (95% CI
68.4–74.6%) and 17.5% (95% CI 15.0–20.2%) for the Combur9-Test® and Micral-Test®, respectively.
Correct classification to KDIGO albuminuria stages A2/A3 with the Combur9-Test® was 15.4%,
51.4%, and 87.9% at cut-offs of 30, 100, and ≥300 mg/dL, and with the Micral-Test® it was 1.8%,
10.5%, and 53.6% at cut-offs of 2, 5, and 10 mg/dL, respectively. Overall, disagreement to KDIGO
albuminuria was seen in 27% and 73% with the Combur9-Test® and Micral-Test®, respectively. From
the total population, 62.5% and 15.3% were correctly ruled out and 2.2% and 1% were missed as
false-negatives by the Combur9-Test® and Micral-Test®, respectively. Conclusion: Compared to
the Combur9-Test®, the utility of the Micral-Test® is limited, because the fraction of correctly ruled
out patients is small and a large proportion with a positive Micral-Test® require a subsequent ACR
conformation test.

Keywords: albuminuria; urinary dipstick test; albumin-to-creatinine ratio; ACR; diagnostic test
study; Micral-Test®; Coumbur9-Test®; diagnostic evaluation; point-of-care diagnostics

1. Introduction

The burden of chronic kidney disease (CKD) is increasingly recognized as a global
public health problem, with major negative implications on quality of life, premature death,
and enormous costs on healthcare systems [1,2]. It is feared that with the ongoing increase
in patients affected by the most common CKD risk factors—diabetes [3], hypertension [4],
and obesity [5]—CKD prevalence will continue to rise globally, in both developed and
developing countries [1,6,7]. Although only a small fraction of patients with CKD are
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progressing to end-stage renal disease (ESRD), the vast majority are affected by cardiovas-
cular mortality [8,9]. Because early stages of CKD often remain undiagnosed, strategies
are required not only for treatment regimens, but also for early detection [9,10]. Albu-
minuria is a sensitive surrogate marker for kidney impairment and is independent of a
reduced estimated glomerular filtration rate (eGFR) associated with increased risk for
chronic kidney disease [7,11,12]. According to the 2012 Kidney Disease, Improving Global
Outcomes (KDIGO) guidelines, quantitative albumin-to-creatinine ratio (ACR) is the “first
priority assessment test” for the evaluation of albuminuria [13]. However, for population
screenings, research, and routine clinical check-ups, point-of-care (POC) urine dipstick
devices are often utilized, especially in ambulatory or low–middle income settings, where
rapid low-cost diagnostics are essential [9,14–16]. In clinical practice and according to
guidelines for the classification and diagnosis of albuminuria, a finding of semiquantita-
tively detected albuminuria requires a subsequent quantitative analysis for confirmation
and classification to albuminuria stages [13]. Several studies have explored sensitivity and
specificity measures of urine dipstick tests and their predictive values for the detection
of albuminuria [10,17–21]. However, relatively little is known about the usefulness of
semiquantitative urine dipstick tests for albuminuria diagnosis and classification according
to KDIGO guidelines [13].

The aim of this study was to assess the validity of a semiquantitative standard col-
orimetric indicator-dye-based multi dipstick (Combur9-Test®) and an albumin-specific
immunochromatographic assay (Micral-Test®) compared with the quantitative ACR ref-
erence diagnostic test [13]. A further aim was to classify the dipstick results according to
KDIGO albuminuria stages, and to assess the utility of the semiquantitative dipstick tests
for an albuminuria screening in an outpatient clinic (OPC) walk-in population.

2. Materials and Methods
2.1. Study Population

This is a prospective cross-sectional study performed in a walk-in population of the
outpatient clinic of the Bagamoyo District Hospital (BDH) as part of the RenalOne study as
previously described [7]. Briefly, the BDH is located in Bagamoyo township and provides
care for a semirural population. Bagamoyo district had approximately 300.000 inhabitants
in the 2012 census [22]. The OPC was visited on average by 120 (range 41–164) patients
daily. For the current study, one consultation hour of the general outpatient ward was
designated to ensure a highly standardized procedure. From the newly registered patients
of the OPC, 15 to 20 patients per day were consecutively seen. The call up of the patients
from the OPC ward was done through the medical staff, without any involvement of the
investigators. Pregnant women, patients younger than 18 years, and patients neither able
nor willing to provide informed consent were excluded.

2.2. Reporting

We followed the STARD 2015 guidelines for reporting diagnostic accuracy studies, as
described by Cohen and Korevaar et al. [23].

2.3. Measurements and Procedures

All data were collected in a case report form (CRF), translated from English to Swahili.
In all participants, past medical histories and smoking status were assessed through
interviews, and body weight and height, and blood pressure (BP) were measured and
recorded. Glycated hemoglobin A1c (HbA1c) was measured from capillary blood by using
a bedside DCA 2000+ Analyzer (Siemens Healthcare Diagnostics, 8047 Zürich, Switzerland).
A random clean urine specimen was collected in all patients. Within 30 min after returning
the urine specimen to the study team, two different types of semiquantitative dipstick
tests and an ACR test were carried out, in order to detect and to determine the degree
of albuminuria.
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As index test, two semiquantitative urine dipstick tests were performed and recorded
during the time of the ACR measurement: the colorimetric dipstick Combour9-Test®

(Bayer Diagnostics, 51368 Leverkusen, Germany) and the immunochromatographic dip-
stick Micral-Test® (Roche Diagnostics, 6343 Rotkreuz, Switzerland). Both urine dipstick
tests were carried out manually according to the manufacturer’s instructions, read, in-
terpreted, and recorded by the onsite investigator and full-time technician (N.H.), and
supervised by a senior nephrologist (M.M.) [7]. The semiquantitative total urine protein
detection with the Combour9-Test® is based on the ability of the protein to change the dye
color of an acid–base indicator, forming the anion of 3′,3”,5′,5”-tetrachlorphenol-3,4,5,6-
tetrabromsulfophthalein in presence of protein in the urine, resulting in a gradational
change of the indicator dye [24]. Although the Combur9-Test® aims for total protein in the
urine, the sensitivity to albumin is higher than to other proteins found in the urine; this
is explained by the increased affinity of albumin to protons [24–26]. The rational in our
study to consider a Combur9-Test® value of ≥15–30 mg/dL (1+) as positive is based on
the statement in the KDIGO 2012 guidelines that a reagent strip with (1+) protein positivity
can substitute a quantitative albuminuria measurement where it not available [13]. Further,
it is pointed out that a reagent strip (1+) protein and ACR ≥ 30 mg/g (≥3 mg/mmol) were
associated with subsequent risk for CKD progression, acute kidney injury (AKI) [11], cardio-
vascular mortality, and all-cause mortality in the general population and in populations at
risk [13,27,28]. The semiquantitative urinary dipstick Micral-Test® is a chromatographic im-
munological procedure based on a gold-labelled monoclonal antibody with high specificity
to human albumin. The correct handling is of significant importance for the test accuracy.
With the correct amounts of fluid (urine) absorbed, the antibody–albumin conjugate is
transported to a reactive detection pad. For the Micral-Test®, the detection limit is 20 mg/L
(2 mg/dL) [24]; cut-off levels are less clear and estimations for cardiovascular mortality are
controversial, however several studies have shown that the test validity measures when
compared to quantitative methods were strong at ≥20 mg/L (≥2 mg/dL) [29,30]. Further,
at this cut-off, a sensitivity of 90% and a specificity of 96% were shown in a laboratory-
based screening against the turbidimetric immunoassay [31]. Two index tests with different
detection limits were chosen to analyze the influence of detection limits on models of
albuminuria screening algorithms.

The reference test was a POC quantitative ACR measurement in a spot urine sample.
According to the KDIGO guidelines, the urine ACR measurement is the “first priority test”
for the evaluation of albuminuria for a CKD classification [13]. The ACR is a linear contin-
uous value with a cut-off for a moderately increased albuminuria and a relevant risk for
CKD at ACR ≥ 30 mg/g (≥3 mg/mmol) [13]. We performed the albumin/creatinine assay
on the DCA 2000+ Analyzer (Siemens Healthcare Diagnostics, 8047 Zürich, Switzerland).)
in the ambulatory setting of the OPC laboratory. The test cartridges were stored at 4 ◦C,
and the calibration of the DCA 2000+ analyzer was regularly performed and recorded with
the calibration card according to the manufacturer’s guide. The albumin/creatinine assay
is based on an immunoassay for the creatinine detection and an alkaline colorimetric assay
for the creatinine test [32]. All reagents are contained in the test cartridge, all reaction steps,
measurements, and calculations are performed automatically, and results are displayed on
the instrument screen [32].

In the “Assessment of Performance” section of the United States (U.S.) Food and Drug
Administration (FDA) “510(k) Safety and Effectiveness Summary (K963142)”, it is declared
that the DCA 2000+ Analyzer and the albumin/creatinine assay were studied in clinical
settings and the results were substantially equivalent to results from methods used in
clinical laboratory practice [32]. The linear detection range of the albumin/creatinine assay
is an ACR of 1 to 2000 mg/g [32].

The Combur9-Test® was read as follows: negative (neg.), (1+/30 mg/dL), (2+/100 mg/dL),
(3+/300 mg/dL), and (4+/≥2000 mg/dL) for total protein. The Micral-Test® was read
as (neg.), (20 mg/L (2 mg/dL)), (50 mg/L (5 mg/dL)), and (100 mg/L (10 mg/dL)) for
albumin. For the reference test, albuminuria was categorized according to KDIGO stages
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A1 with ACR (1–29 mg/g) normally to mildly increased, A2 (30–299 mg/g) moderately
increased, and A3 (≥300 mg/g) severely increased albuminuria [13,33].

2.4. Outcomes/Aims

The primary outcome of this study was the assessment of the diagnostic test valid-
ity measures of an indicator-dye-based reagent strip (Combur9-Test®) and an albumin-
sensitive immunological assay (Micral-Test®), for the detection of albuminuria, and the
distribution of the semiquantitative urine protein evaluation within the albuminuria stages
according to KDIGO guidelines [13]. The secondary outcome was a utility analysis of the
semiquantitative dipsticks for albuminuria screening.

2.5. Statistical Analyses

Statistical analyses were performed using STATA version 14 (StataCorp., College Sta-
tion, TX, USA). Discrete variables were expressed as counts (percentage), and comparison
between groups was done with Pearson’s chi-square test or Fisher’s exact test. Continuous
variables were expressed as mean ± standard deviation (SD) if normally distributed or as
median and range if not normally distributed, and t-test or Mann–Whitney test was used
for comparison between groups.

For the test validity analysis, the sensitivity, specificity, and predictive values were
calculated, with numbers extracted from the measures of true positives (Combour9-Test®

(≥1+) or Micral-Test® (≥2 mg/dL) and ACR ≥ 30 mg/g), true negatives (Combour9-Test®

(<1+) or Micral-Test® (<2 mg/dL) and ACR < 30 mg/g), false positives (Combour9-Test®

(≥1+) or Micral-Test® (≥2 mg/dL) and ACR < 30 mg/g), and false negatives (Combour9-
Test® (<1+) or Micral-Test® (<2 mg/dL) and ACR ≥ 30 mg/g) cases. For a diagnostic
test validity with 95% accuracy, a sample size of n = 945 was estimated, in a population
with an assumed albuminuria prevalence of 10% [6,14]. For the albuminuria screening
algorithms, different cut-off levels for positivity were chosen: for scenario A, Combur9-
Test® ≥ 1+ (30 mg/dL) and Micral-Test® ≥ 2 mg/dL, and for scenario B, Combur9-
Test® ≥ 2+ (100 mg/dL) and Micral-Test® ≥ 5 mg/dL. For scatterplots, data were logarith-
mically transformed. p-values of <0.05 were considered as statistically significant.

3. Results

Overall, 1006 patients were recruited (Figure 1). Five patients aged less than 18 years,
19 pregnant women, and eight patients with a missing ACR test were excluded, leaving
974 patients for the final analysis. In an additional four patients, Combur9-Test® and/or
Micral-Test® results were missing, and therefore were not included in the comparison
between the semiquantitative dipstick tests and the ACR test, leaving n = 970 for the
assessment of the test validity, the distribution within albuminuria stages, and the semi-
quantitative dipstick test utility analysis for albuminuria screening algorithms.

3.1. Patient Characteristics

The study population consisted of 301 (30%) males and 673 (70%) females (Table 1). Over-
all n = 124 (12.7%; 95% CI 10.6–14.8%) patients had albuminuria with ACR ≥ 30 mg/g. The
median age was 37 years (range 18–91 years), median body mass index (BMI) was 24 kg/m2

(range 14–53 kg/m2), median HbA1c was 5.4% (range 3.9–14%), median hemoglobin was
12.8 g/dL (range 4.1–22 g/dL), and median systolic and diastolic BP were 124 mmHg
(range 70–286 mmHg) and 80 mmHg (range 36–150 mmHg), respectively. Patients with
albuminuria were older (45 years (range 18–84 years) versus 36 years (range 18–91 years)),
had higher HbA1c (5.6% (range 4.2–14%) versus 5.4% (range 3.9–14%), and more often had
diabetes (16% versus 5.5%), higher systolic BP 144 mmHg (range 72–286 mmHg) versus
129 mmHg (70–222 mmHg), and higher diastolic BP 90 mmHg (range 42–150 mmHg)
versus 80 mmHg (range 36–140 mmHg) than patients without albuminuria (p < 0.001 for
all). Patients with albuminuria had more often stage I and stage II hypertension (46%
versus 24% and 28% versus 9% (p < 0.001)), were more often HIV-positive (11% versus 5.9%
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(p = 0.032)), had more often a history of tuberculosis (11% versus 3.8% (p = 0.001)), and had
more acute infections (14% versus 7.4% (p = 0.013)) than patients without albuminuria.

1 
 

 
 
 

Figure 1. Study flow: ACR: albumin-to creatinine ratio; KDIGO: Kidney Disease Improving
Global Outcome.

3.2. Sensitivity and Specificity Analysis of Semiquantitative Urine Dipstick Tests Compared with
Albumin-to-Creatinine Ratio Test

In Figure 2, the correlation of the semiquantitative dipstick test results with the ACR
is summarized. For the Combur9-Test (Figure 2A and embedded table), area (a) shows
n = 102 true positives, with a positive Combur9-Test® and a positive ACR reference test, (b)
shows n = 241 false positives, with a positive Combur9-Test® and a negative ACR reference
test, (c) shows n = 21 false negatives, with a negative Combur9-Test® and a positive ACR
reference test, and (d) shows n = 606 true negatives, with a negative Combur9-Test® and a
negative ACR reference test. For the Micral-Test® (Figure 2B and embedded table), area (a)
shows n = 113 true positives, with a positive Micral-Test® and a positive ACR reference
test, (b) shows n = 699 false positives, with a positive Micral-Test® and a negative ACR
reference test, (c) shows n = 10 false negatives, with a negative Micral-Test® and a positive
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ACR reference test, and (d) shows n = 148 true negatives, with a negative Micral-Test® and
a negative ACR reference test.

Summarized in Table 2 are the sensitivity, specificity, the positive predictive value
(PPV) and the negative predictive value (NVP) from the Combur9-Test® and the Micral-
Test® at different cut-off values compared with the ACR reference test. Overall, albuminuria
prevalence was 12.7% (n = 123/970) with the ACR reference test at a cut-off of ≥30 mg/g.
At a Combur9-Test® cut-off level of ≥30 mg/dL (≥1+), the prevalence of Combur9-Test®

positive patients was 35.4% (n = 343/970). Of those, 10.5% (n = 102) also tested positive with
the ACR reference test (≥30 mg/g). At this cut-off, the sensitivity of the Combur9-Test®

was 82.9% (95% CI: 75.1–89.1%), the specificity 71.5% (95% CI: 68.4–74.6%), the PPV 29.7%
(95% CI: 24.9–34.9%), and the NPV 96.7% (95% CI 94.9–97.9%). At a Micral-Test® cut-off
level of ≥20 mg/L (≥2 mg/dL), the prevalence of Micral-Test® test positive patients was
83.7% (n = 812/970). Of those, 11.6% (n = 113) also tested positive with the ACR reference
test at a cut-off of ≥30 mg/g. Compared to an ACR reference cut-off of ≥30 mg/g, the
sensitivity of the Micral-Test® was 91.9% (95% CI: 85.6–96.3%), the specificity 17.5% (95% CI:
15.0–20.2%), the PPV 13.9% (95% CI: 11.6–16.5%), and the NPV 93.7% (95% CI: 88.7–96.9%).
With increasing cut-off level, Combur9-Test® and Micral-Test® have increasing specificity
and decreasing sensitivity (Table 2). This is further explored and illustrated in the receiver
operator curves (ROC) and the corresponding area under the curve (AUC) values shown
in (Figure 2C,D).

Table 1. Patient characteristics.

n (Missing) Overall ACR < 30 mg/g ACR ≥ 30 mg/g p-Value

Overall 974 974 850 (87.3%) 124 (12.7%) (# CI 95%: 10.6–14.8%)
Male vs. 974 301 (30%) 261 (87%) 40 (13%)
Female 673 (70%) 589 (88%) 84 (12%) 0.755 *
Age (years) 968 (6) 37 (18–91) 36 (18–91) 45 (18–84) <0.001 ◦

BMI (kg/m2) † 971(3) 24 (14–53) 24.1 (14–53) 23.8 (15–43) 0.651 ◦

BP systolic (mmHg) ‡ 971 (3) 124 (70–286) 129 (70–222) 144 (72–286) <0.001 ◦

BP diastolic (mmHg) §

Hypertension stage I •

Hypertension stage II ••

HbA1c (%) ¶

HbA1c ≥ 6.5%
Diabetes Φ

Hemoglobin (g/dL)Anemia (WHO) **
Acute infection ##

HIV positive ƒ

History of tuberculosis

971 (3)
971 (3)
971 (3)
965 (9)
965 (9)
974
910 (64)
903 (71)
974
974
972 (2)

80 (36–150)
261 (27%)
115 (12%)
5.4 (3.9–14)
63 (6.5%)
67 (6.8%)
12.8 (4.1–22)
321 (36%)
81 (8.3%)
64 (6.6%)
46 (4.7%)

80 (36–140)
204 (24%)
80 (9%)
5.4 (3.9–14)
44 (42%)
47 (5.5%)
12.8 (4.1–22)
275 (35%)
63 (7.4%)
50 (5.9%)
32 (3.8%)

90 (42–150)
57 (46%)
35 (28%)
5.6 (4.2–14)
19 (15%)
20 (16%)
12.5 (6.3–16)
46 (43%)
18 (14%)
14 (11%)
14 (11%)

<0.001 ◦

<0.001 *
<0.001 *
0.004 ◦

<0.001 *
<0.001 *
0.017 ◦

0.084 *
0.013 *
0.032 *
0.001 *

History of Smoking 974 74 (7.6%) 65 (7.7%) 9 (7.3%) 1.000 *

Data are displayed as counts and (percent) or median and (range); ◦ Mann–Whitney-U (rank sum) test, * Fisher’s exact test; # CI: confidence
interval; † BMI: body mass index (kg/m2); ‡ BP systolic: blood pressure systolic, § BP diastolic: blood pressure diastolic; • Hypertension
stage I: BP systolic ≥ 140 mmHg and/or BP diastolic ≥ 90 mmHg; •• Hypertension stage II: BP systolic ≥ 160 mmHg and/or BP
diastolic ≥ 100 mmHg [34]; ¶ HbA1c: glycated hemoglobin; Φ Diabetes: patients with a HbA1c ≥ 6.5% and/or a history of diabetes and/or
antidiabetic medication. ** Anemia according to WHO [35]: <12 g/dL in female, <13 g/dL in male; ## Acute infection: acute systemic
infection/inflammation or possible urinary tract infection (UTI), defined as body temperature of ≥38.5 ◦C (armpit), acute malaria, acute
tuberculosis, leukocyte count > 20/high power field microscopy (HPF) in urinary sediment or newly positive tested HIV cases; ƒ HIV
positive: 44 patients were diagnosed with HIV by testing within the study, 22 patients had a history of HIV and 20 of them were on
antiretroviral therapy.
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2 

 

 
Figure 2. Correlation and agreement of the colorimetric indicator-dye-based urine Combur9-Test®

and the immunochromatographic albumin-specific urine Micral-Test® with the albumin-to-creatinine
ratio (ACR) reference test and distribution within KDIGO albuminuria classification. (A,B) with
embedded tables: Correlation of Combur9-Test® and Micral-Test® with ACR: (a) dipstick positive and
ACR≥ 30 mg/g; (b) dipstick positive and ACR < 30 mg/g; (c) dipstick negative and ACR≥ 30 mg/g;
(d) dipstick negative and ACR < 30 mg/g. Dashed horizontal black line: albuminuria cut-off of ACR
for positive testing at 30 mg/g; white area: albuminuria < 30 mg/g; light grey area: albuminuria
30–299 mg/g; dark grey area: albuminuria ≥ 300 mg/g; red line: dipstick negative versus positive;
(C,D): Receiver operator curves (ROC) of index dipstick tests against ACR reference test with cut-
off ≥30 mg/g for albuminuria. (C) Combur9-Test® versus ACR reference test; (D) Micral-Test®

versus ACR reference test; AUC: area under the curve; black line: random classifier; dotted line:
test classifier.



Diagnostics 2021, 11, 81 8 of 16

Table 2. Sensitivity, specificity, and negative and positive predictive values of semiquantitative colorimetric indicator-
dye-based Combur9-Test® and immunochromatographic Micral-Test® compared with albumin-to-creatinine ratio (ACR)
reference test.

Test n (%)
n (%)

+ ACR
≥30 mg/g

Sensitivity %
(CI 95%)

Specificity %
(CI 95%)

PPV
(CI 95%)

NPV
(CI 95%)

ACR ≥30 mg/g 123 (12.7%)

Combur9-Test® 970 (100%)
≥30 mg/dL 343 (35.4%) 102 (10.5%) 82.9% (75.1–89.1%)

n = 102/123
* n = 21

71.5% (68.4–74.6%)
n = 606/847
◦ n = 241

29.7% (24.9–34.9%)
n = 102/343
◦ n = 241

96.7% (94.9–97.9%)
n = 606/627

* n = 21
≥100 mg/dL 102 (10.5%) 65 (6.7%) 52.8% (44.1–62.2%)

n = 65/123
* n = 58

95.5% (93.5–96.5%)
n = 809/847

◦ n = 38

63.1% (51.8–70.9%)
n = 65/103
◦ n = 38

93.3% (91.4–94.9%)
n = 809/867

* n = 58
≥300 mg/dL 33 (3.7%) 29 (3.3%) 26.0% (17.0–32.7%)

n = 29/123
* n = 94

99.5% (98.3–99.7%)
n = 843/847

◦ n = 4

87.9% (64.8–92.0%)
n = 29/33
◦ n = 4

90.0% (87.9–91.8%)
n = 843/937

* n = 94
Micral–Test® 970 (100%)
≥2 mg/dL 812 (83.7%) 113 (11.6%) 91.9% (85.6–96.3%)

n = 113/123
* n = 10

17.5% (15.0–20.2%)
n = 148/847
◦ n = 699

13.9% (11.6–16.5%)
n = 113/812
◦ n = 699

93.7% (88.7–96.9%)
n = 148/158

* n = 10
≥5 mg/dL 364 (37.4%) 105 (10.8%) 85.4% (77.9–91.1%)

n = 105/123
* n = 18

69.4% (66.2–72.5%)
n = 588/847
◦ n = 259

28.9% (24.3–33.8%)
n = 105/364
◦ n = 259

97.0% (95.4–98.2%)
n = 588/606

* n = 18
≥10 mg/dL 155 (15.9%) 83 (8.6%) 67.5% (58.5–75.7%)

n = 83/123
* n = 40

91.5% (89.4–93.3%)
n = 775/847

◦ n = 72

53.5% (45.4–61.6%)
n = 83/155
◦ n = 72

95.1% (93.4–96.5%)
n = 775/815

* n = 94

ACR: albumin-to-creatinine ratio; CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value; * false negatives;
◦ false positives; Combur9-Test® total protein urine dipstick in mg/dL; Micral-Test® albumin-specific urine dipstick in mg/dL.

3.3. Distribution of The Semiquantitative Urine Dipstick Test Results within the KDIGO
Albuminuria Classification

Summarized in Figure 3 is the distribution of the semiquantitative dipstick test
results within the KDIGO albuminuria classification scheme based on ACR testing
(Figure 3A,B). [13]. The semiquantitative Combur9-Test® dipstick was negative in 64.6%
(n = 627) of the patients (Figure 3A,C). Of those, 96.6% (n = 606) corresponded to ACR
category A1 and 3.4% (n = 21) to A2/A3. The Combur9-Test® was trace-positive (1+)
(30 mg/dL) in 24.7% (n = 240) of patients. Of those, 84.6% (n = 203) corresponded to ACR
category A1 and 15.4% (n = 37) to A2/A3. The Combur9-Test® was 2+ (100 mg/dL) in 7.2%
(n = 70) of patients. Of those, 48.6% (n = 34) corresponded to ACR category A1 and 51.4%
(n = 36) to A2/A3. From the 3.4% (n = 33) of patients with Combur9-Test® ≥ 300 mg/dL,
12.1% (n = 4) corresponded to ACR category A1 and 87.9% (n = 29) to A2/A3. Correct
classification to KDIGO albuminuria stages A2/A3 with the Combur9-Test® was 15.4%,
51.4%, and 87.9% at cut-offs of 1+ (30 mg/dL), 2+ (100 mg/dL), and ≥3+ (≥300 mg/dL),
respectively. Overall, disagreement to KDIGO albuminuria was seen in 27% (n = 262) with
the Combur9-Test®.

The semiquantitative Micral-Test® identified 16.3% (n = 158) of the patients as albuminuria-
negative (Figure 3B,D). Of those, 93.7% (n = 148) corresponded to ACR category A1 and
6.3% (n = 10) to A2/A3. The Micral-Test® dipstick identified 46.2% (n= 448) of the patients
having albuminuria of 2 mg/dL. Of those, 98.2% (n = 440) corresponded to ACR category
A1 and 1.8% (n = 8) to A2/A3. The Micral-Test® was positive at a cut-off level of 5 mg/dL
in 21.5% (n = 209) of patients. Of those, 89.5% (n = 187) corresponded to ACR category A1
and 10.5% (n = 22) to A2/A3. The Micral-Test® was positive at the cut-off level 10 mg/dL in
16% (n = 155) of patients. Of these, 46.4% (n = 72) corresponded to A1 and 53.6% (n = 83) to
A2/A3. Correct classification with the Micral-Test® was 1.8%, 10.5%, and 53.6% at cut-offs
of 2, 5, and 10 mg/dL respectively. Overall, disagreement to KDIGO albuminuria was seen
in 73% (n = 709) with the Micral-Test®.
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Figure 3. Distribution within KDIGO albuminuria classification: albuminuria stages A1: normally to mildly increased
(<10–29 mg/g), A2: moderately increased (30–299 mg/g), A3: severely increased (≥300 mg/g); green areas: true-negative
and true-positive classifications; red areas: false-positive and false-negative classifications; (A) total disagreement (red
areas) and agreement (green areas) between index test (Combur9-Test®) and ACR test in n = 262 (27%) and n = 708 (73%),
respectively; (B) total disagreement (red areas) and agreement (green areas) between index test (Micral-Test®) and ACR
test in n = 709 (73%) and n = 261 (27%), respectively. (C,D): agreement/disagreement of (C) Combur9-Test® and (D)
Micral-Test® with ACR at a cut-off of 30 mg/g: black arrow: agreement; red arrow: disagreement; arrow widths are
proportional to the percentage of agreement/disagreement; KDIGO: Kidney Disease Improving Global Outcome [13]; ACR:
albumin-to-creatinine ratio.

3.4. Agreement of the Micral-Test® with the Combur9-Test®

Summarized in Figure 4A is the agreement of the semiquantitative Combur9-Test®

with the ACR reference test and the Micral-Test®. From the 627 (100%) patients with a
negative Combur9-Test®, 96.6% (n = 606) had a negative and 3.4% (n = 21) a positive ACR
and 22.8% (n = 143) a negative and 77.2% (n = 481) a positive Micral-Test®. From the 240
(100%) patients with a 1+ (30 mg/dL) Combur9-Test®, 84.6% (n = 203) had a negative and
15.4% (n = 37) a positive ACR and 5.5% (n = 13) a negative and 94.5% (n = 227) a positive
Micral-Test®. From the 70 (100%) patients with 2+ (100 mg/dL) positive Combur9-Test®,
48.6% (n = 34) had a negative and 51.4% (n = 36) a positive ACR and 4.3% (n = 3) a negative
and 95.7% (n = 67) a positive Micral-Test®. From the n = 33 (100%) patients with a ≥3+
(≥300 mg/dL) positive Combur9-Test®, 12.1% (n = 4) had a negative and 87.9% (n = 29) a
positive ACR and 100% (n = 33) a positive Micral-Test®.
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 Figure 4. Agreement of Combur9-Test® and Micral-Test® with the albumin-to-creatinine ratio (ACR).
ACR as reference test with cut-off ≥30mg/g. (A) Colorimetric urinary dipstick Combur9-Test®

results compared to the albumin-to-creatinine ratio and to the immunochromatographic Micral-Test®;
(B) immunochromatographic Micral-Test® results compared to the albumin-to-creatinine ratio and to
the colorimetric urinary dipstick Combur9-Test®; ACR: albumin-to-creatinine ratio.

Summarized in Figure 4B is the agreement of the semiquantitative Micral-Test® with
the ACR reference test and the Combur9-Test®. From the 158 (100%) patients with a
negative Micral-Test®, 93.7% (n = 148) had a negative and 6.3% (n = 10) a positive ACR
and 91% (n = 143) a negative and 9% (n = 15) a positive Combur9-Test®. From the 448
(100%) patients with a 2 mg/dL positive Micral-Test®, 98.2% (n = 440) had a negative and
1.8% (n = 8) a positive ACR and 87.3% (n = 391) a negative and 12.7% (n = 57) a positive
Combur9-Test®. From the 209 (100%) patients with a 5 mg/dL positive Micral-Test®, 89.5%
(n = 187) had a negative and 11.5% (n = 22) a positive ACR and 31.6% (n = 66) a negative
and 68.4% (n = 143) a positive Combur9-Test®. From the n = 155 (100%) patients with a
10 mg/dL positive Micral-Test®, 46.4% (n = 72) had a negative and 53.6% (n = 83) a positive
ACR and 11% (n = 17) a negative and 89% (n = 138) a positive Combur9-Test®.

3.5. Significance of Possible Models for Albuminuria Screening Algorithms Based on
Combur9-Test® or Micral-Test® in Clinical Practice

Figure 5 shows the significance of two possible models for albuminuria screening
algorithms based on semiquantitative urine dipsticks for a walk-in population with an
albuminuria prevalence of approximately 10% [6,14].
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Figure 5. Models for albuminuria screening algorithms with Combur9-Test® and Micral-Test® in 970 patients (reference test:
albumin-to-creatinine ratio (ACR) with a cut-off of ≥30 mg/g): (A) cut-off for negative index tests: Combur9-Test® cut-off
≥1+ (≥30 mg/dL) and Micral-Test® cut-off ≥2 mg/dL; NPV all negative Combur9-Test® and Micral-Test®; (B) cut-off for
negative index tests: Combur9-Test® cut-off ≥2+ (≥100 mg/dL) and Micral-Test® cut-off ≥5 mg/dL; NPV all patients ≤1+
Combur9-Test®, all patients ≤5 mg/dL Micral-Test®; true neg: true negatives with index test and confirmation test negative;
true pos: true positives with index test and confirmation test positive; PPV: positive predictive value; (C) Distribution of
correctly confirmed Combur9-Test® and Micral-Test® by an ACR at a cut-off of 30 mg/g; (a) Combur9-Test® cut-off ≥1+
(≥30 mg/dL) (b) Micral-Test® cut-off ≥2 mg/dL, (c) Combur9-Test® cut-off ≥2+ (≥100 mg/dL) (d) Micral-Test® cut-off
≥5 mg/dL for positivity; NPV: negative predictive value; ACR: albumin-to-creatinine ratio.

In scenario A, the cut-off for Combur9-Test® positivity was set at (1+) ≥30 mg/dL.
A negative test had a high NPV of 96% and included 64.6% (n = 627/970) of the screened
population (Figure 5A). Without further confirmation of a negative test result, 2.2%
(n = 21/970) and 17% (n = 21/123) cases with a relevant albuminuria of the whole pop-
ulation and of all albuminuria-positives would be missed, respectively. Correctly ruled
out would be 62.5% (n = 606/970) and 71.5% (n= 606/847) of the whole population and all
albuminuria-negatives, respectively. Of the 343 patients with a positive dipstick Combur9-
Test® and a subsequent ACR conformation test, 10.5% (n = 102/970) and 83% (n = 102/123)
of the whole population and of all albuminuria-positives would be confirmed, and 24.8%
(n = 241/970) and 70.2% (n = 241/343) of the whole population and of all Combur9-Test®

positives would be over tested, respectively. In summary, the proposed algorithm would
mean that 17% of the true positive results would be missed (i.e., 2.2% of the whole popu-
lation) and that an unnecessary additional test would have to be carried out in 70.2% of
patients with a positive screening dipstick test (i.e., in 24.8% of the whole population).

In scenario A, for Micral-Test® positivity, the cut-off was set at ≥2 mg/dL. A negative
test had an NPV of 94% and included 16.3% (n = 158/970) of the screened population.
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Without further confirmation of a negative test result, 1% (n = 10/970) and 8% (10/123) of
cases with a relevant albuminuria of the whole population and of all albuminuria-positives
would be missed, respectively. Correctly ruled-out would be 15.3% (n = 148/970) of the
population and 17.5% (n = 148/847) of all albuminuria-negatives, respectively. Of the 83%
(n = 812/970) with a positive dipstick Micral-Test® and a subsequent ACR conformation
test, 11.6% (113/970) of the population and 92% (n = 113/123) of all albuminuria-positives
would be confirmed, and 72.1% (n = 699/970) of the population and 86% (n = 699/812) of
all Micral-Test® positives would be over tested, respectively. In summary, the proposed
algorithm would mean that 8% of the true positive results would be missed (i.e., 1% of the
whole population) and that an unnecessary additional test would have to be carried out
in 86% of the patients with a positive screening dipstick test (i.e., in 72.1% of the whole
population) (Figure 5A).

In scenario B, the cut-off for Combur9-Test® positivity was set at (≥2+) ≥100 mg/dL.
A negative test had an NPV of 85.4% and included 89.4% (n = 867/970) of the screened pop-
ulation (Figure 5B). Without further confirmation of a negative test result, 6.0% (n = 58/970)
and 47% (n = 48/123) of cases with a relevant albuminuria of the whole population and
of all albuminuria-positives would be missed, respectively. Correctly ruled out would
be 83.4% (n = 809/970) and 95.5% (n= 809/847) of the population and all albuminuria-
negatives, respectively. Of the n = 103 patients with a positive dipstick Combur9-Test® and
a subsequent ACR conformation test, 6.7% (n = 65/970) and 53% (n = 65/123) of the whole
population and of all albuminuria-positives would be confirmed, and 3.9% (n = 38/970)
and 37% (n = 38/103) of the whole population and of all Combur9-Test® positives would
be over tested, respectively. In summary, the proposed algorithm would mean that 47% of
the true positive results would be missed (i.e., 6% of the whole population) and that an
unnecessary additional test would have to be carried out in 37% of patients with a positive
screening dipstick test (i.e., in 3.9% of the whole population).

In scenario B, for Micral-Test® positivity, the cut-off was set at ≥5 mg/dL. A negative
test had an NPV of 98% and included 62.4% (n = 606/970) of the screened population.
Without further confirmation of a negative test result, 1.9% (n = 18/970) and 15% (18/123) of
cases with a relevant albuminuria of the whole population and of all albuminuria-positives
would be missed, respectively. Correctly ruled out would be 60.6% (n = 588/970) of the
population and 69.4% (n = 588/847) of all albuminuria-negatives, respectively. Of the 37.5%
(n = 364/970) with a positive dipstick Micral-Test® and a subsequent ACR conformation
test, 10.8% (105/970) of the population and 85% (n = 105/123) of all albuminuria-positives
would be confirmed, and 26.7% (n = 259/970) of the population and 71% (n = 259/812) of
all Micral-Test® positives would be over tested, respectively. In summary, the proposed
algorithm would mean that 15% of the true positive results would be missed (i.e., 1.9% of
the whole population) and that an unnecessary additional test would have to be carried
out in 71% of the patients with a positive screening dipstick test (i.e., in 26.7% of the whole
population) (Figure 5A).

4. Discussion

We compared the performance of two different urine dipstick tests in nearly 1000 pa-
tients. Numerically, both tests had a comparable test validity and performance for test
sensitivity and its NPV, but relevant differences in the specificity and the corresponding
PPV. This finding is also reflected in the classification to KDIGO albuminuria stages A1–A3
(Figure 3A,B). The Micral-Test® showed weak allocation to all albuminuria stages when
positive and was too sensitive to classify the large fraction of subjects without albuminuria
to stage A1 (normal to mildly increased). The Combur9-Test® has its limitations but was
accurately classifying patients with strong positive (≥3+) results to the corresponding al-
buminuria stages A2/A3 (moderately/severely increased), and a majority of those subjects
without albuminuria correctly to stage A1. Our data illustrate a dose-dependency between
the two urine dipstick tests, which leads to a clear concordance with increasing albumin
amounts in urine (Figure 4). This consistency makes it clear that both index tests detect
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the same individuals when albuminuria is present, whereas the immunochromatographic
albumin-specific Micral-Test® already detects albuminuria in concentrations in which the
standard colorimetric indicator-dye-based multi dipstick Combur9-Test® is still negative.

In the models for albuminuria screening algorithms, we clearly illustrate that both
tests have a high accuracy in correctly ruling out patients with no further need for ACR
conformation (Figure 5A,B). However, the difference in absolute numbers was significantly
different for the two surveyed index tests. The immunochromatographic albumin-specific
Micral-Test® had a specificity of 17.5% (n = 148/847 of all ACR negatives) and therefore
was correctly ruling out only 15% (n = 148/970) of the population. While the colorimetric
indicator-dye reagent strip Combur9-Test® with a specificity of 71.5% (n = 606/847 of all
ACR negatives) was four times more (62% of the population (n = 606/970)) efficient in
correctly ruling out albuminuria-negatives from the population screened. The consequence
of the high proportion already ruled out with the reagent strip Combur9-Test® was resulting
in a relevant smaller fraction (35% (n = 343/970)) of subsequent ACR testing compared
with the Micral-Test®, where 83% (n = 812/970) of the entire population would require an
ACR conformation test.

Although the specificity improved with increasing cut-off level (i.e., ≥5 mg/dL or
≥10 mg/dL), the Micral-Test® did not exceed a PPV of over 54%. Therefore, the chance for
a correct detection of a clinically relevant albuminuria according to the KDIGO guidelines
with the albumin-specific dipstick test was nearly fifty-fifty, even at its highest test positivity
level (≥10 mg/dL) [13]. The vast majority (72.1%; n = 699/970) of Micral-Test® positive
patients were not confirmed to have albuminuria in a ACR test, and therefore were over
tested. Similarly, for the Combur9-Test®, more than two-thirds (70.3%, n = 241/343) of
the patients with a positive dipstick test result were not confirmed to have albuminuria
in an ACR conformation test. However, the decisive difference is that the overall number
for a required ACR conformation test was significantly smaller with the Combur9-Test®

(35%; n = 343/970) compared with the Micral-Test® (72.1%; n = 699/970). The indicator-
dye-based Combur9-Test® strip is of good value to correctly rule out patients with no
albuminuria, but the semiquantitative detection device has its limitations, with weak test
validity measures for ≥1+ (30 mg/dL) and ≥2+ (100 mg/dL) cut-offs, and therefore these
quantifications are of little value for albuminuria classification according to KDIGO [13].

If the cut-off level was increased by one level for each index test, the performance of
the Combur9-Test® ≥2+ (100 mg/dL), in regard to correctly ruling out patients, further
increased to 83.4%, but at the cost of a relevant number of patients that were missed and
judged falsely as negatives (47% of all true positives). If the cut-off level for the Micral-
Test® was increased to ≥5 mg/dL, the overall distribution of correctly detected, ruled out,
missed, and over tested patients was nearly equal to the Combur9-Test® with its regular
cut-off levels at ≥1+ (30 mg/dL) Figure 5C(a,d).

With these results from the colorimetric indicator-dye-based urine test strip, we con-
firm the findings of large population-based studies from across the globe, and several
smaller studies in at-risk cohorts, including some from SSA [17,21,36–40]. However, con-
trary to the opinion of other authors [41], the utility value of the Micral-Test® to correctly
rule out patients is only partially correct, because the fraction of correctly ruled out healthy
patients was comparatively small, and a large proportion with a positive Micral-Test®

would require a subsequent ACR conformation test according to guideline-orientated
clinical practice [13].

In our study, we face some limitations. A change in prevalence may lead to different
test validity measures and must be considered also for event (albuminuria) probabili-
ties [42]. There are several reasons why albuminuria prevalence might be overestimated
with a single-point measurement of ACR. First, transient albuminuria (due to the day-
to-day variability) could not be excluded due to the cross-sectional study design with a
missing second urine sample for confirmation, but this is the common practice in preva-
lence studies and therefore the results should be comparable and to a certain degree
generalizable [6,14,43]. The second reason why our prevalence could be overestimated
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is the study setting within an outpatient clinic, enrolling a clientele which could have a
higher estimated albuminuria or CKD prevalence, compared with a community-based
setting [14,43,44]. Finally, due to the variability of albuminuria during the day, the random
collection of urine samples could skew the prevalence rate [45], but this should not influ-
ence the finding of the concordance and agreement between index and reference tests. Both
semiquantitative urine dipstick tests are dependent on urine concentration and the urine
specific gravity [46], which was not assessed in our laboratory. Further, the albuminuria
screening algorithm models were built under the assumption that we detected patients
with persistent and not transient albuminuria. However, a strength of our study remains
that the index dipstick tests and the ACR reference test were carried out simultaneously
from the same urine specimen, supporting the concordance and agreement of the tests.

5. Conclusions

The two semiquantitative index tests differ strongly in specificity, especially at their
lowest positivity levels. Compared to the Combur9-Test®, the more expensive and more
specific Micral-Test® does not add any significant benefit to clinical practice and would
require a much higher rate of unnecessary subsequent ACR clarification testing, in order
to diagnose albuminuria according to guideline recommendations [13]. The Combur9-
Test® with the ability to rule out albuminuria accurately, without a relevant loss of missed
albuminuria cases, is therefore a valid initial diagnostic tool to screen for albuminuria and
CKD in a walk-in population with an assumed albuminuria prevalence of 10%. These
findings are of importance considering the distribution of resources in clinical practice and
research settings, where upon a positive dipstick test result a subsequent ACR conformation
test should be executed.

Author Contributions: All authors made contributions to the study. N.C.H. carried out the fieldwork
in the laboratory and clinic, collected, entered, and analyzed the data, conceptualized, wrote and
illustrated the manuscript. M.M. designed the study, wrote and revised the manuscript, cleaned data,
and supervised the fieldwork. A.H. coordinated the fieldwork and the approval of ethical clearance,
informed the Bagamoyo community authorities about the study, translated protocols from English
to Swahili, and revised the manuscript. K.R. coordinated this study onsite and provided important
intellectual content input for study design. I.M.K. carried out clinical fieldwork and supported the
translation of the protocols. A.S. revised statistical analysis. S.A. coordinated the fieldwork and
communicated with local authorities. C.F.R.H. coordinated the fieldwork and provided important
intellectual content input for the study design. All authors have read and agreed to the published
version of the manuscript.

Funding: The study was supported by a project fund from the University Hospital Basel (VFWAWFPool
—section medicine) and the “Freiwillige Akademische Gesellschaft Basel (FAG, No. 02/12/11)”. The
sponsors did not influence study design, or collection, analysis and interpretation of data, writing of
the report, or the decision to submit the report for publication.

Institutional Review Board Statement: The study was approved by the Ethical Committee of the
Cantons Basel-Stadt and Basel-Land (University of Basel) in Switzerland (No. 220/10, approval
date: 07 September 2010), the Institutional Review Board of the Ifakara health institute (IHI) in
Tanzania (IHI/IRB/No.20-2010, approval date: 08 September 2010), and the Tanzanian National
Institute for Medical Research (NIMR/HQ/R.8a/Vol.IX/1057, approval date: 10 December 2010).
ClinicalTrials.gov Identiver: NCT03458338.

Informed Consent Statement: All included patients signed an informed consent form in Swahili.
For illiterate patients, the informed consent was read, and a fingerprint of the index finger was used
instead of a signature.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We cordially thank Marcel Tanner from the Swiss Tropical and Public Health-
Institute and the University of Basel, for his assistance to facilitate this fruitful Tanzanian-Swiss-
collaboration.

ClinicalTrials.gov
ClinicalTrials.gov


Diagnostics 2021, 11, 81 15 of 16

Conflicts of Interest: The authors declare no conflict of interest. The sponsors did not influence
study design, or collection, analysis and interpretation of data, writing of the report or the decision
to submit the report for publication.

References
1. Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-

based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [CrossRef] [PubMed]
2. Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet 2017, 389, 1238–1252. [CrossRef]
3. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes. Estimates for the year 2000 and projections for

2030. Diabetes Care 2004, 27, 1047–1053. [CrossRef] [PubMed]
4. Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide

data. Lancet 2005, 365, 217–223. [CrossRef]
5. Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32,

1431. [CrossRef]
6. Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global prevalence of chronic kidney

disease—A systematic review and meta-analysis. PLoS ONE 2016, 11, e0158765. [CrossRef] [PubMed]
7. Hodel, N.C.; Hamad, A.; Praehauser, C.; Mwangoka, G.; Kasella, I.M.; Reither, K.; Abdulla, S.; Hatz, C.F.R.; Mayr, M. The

epidemiology of chronic kidney disease and the association with non-communicable and communicable disorders in a population
of Sub-Saharan Africa. PLoS ONE 2018, 13, e0205326. [CrossRef]

8. Hallan, S.; Astor, B.; Romundstad, S.; Aasarod, K.; Kvenild, K.; Coresh, J. Association of kidney function and albuminuria with
cardiovascular mortality in older vs younger individuals: The hunt II study. Arch. Intern. Med. 2007, 167, 2490–2496. [CrossRef]

9. Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic
kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [CrossRef]

10. Graziani, M.S.; Gambaro, G.; Mantovani, L.; Sorio, A.; Yabarek, T.; Abaterusso, C.; Lupo, A.; Rizzotti, P. Diagnostic accuracy of a
reagent strip for assessing urinary albumin excretion in the general population. Nephrol. Dial. Transplant. 2009, 24, 1490–1494.
[CrossRef]

11. Gansevoort, R.T.; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J. Lower
estimated gfr and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and
high-risk population cohorts. Kidney Int. 2011, 80, 93–104. [CrossRef] [PubMed]

12. Hemmelgarn, B.R.; Manns, B.J.; Lloyd, A.; James, M.T.; Klarenbach, S.; Quinn, R.R.; Wiebe, N.; Tonelli, M. Relation between
kidney function, proteinuria, and adverse outcomes. JAMA 2010, 303, 423–429. [CrossRef] [PubMed]

13. Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.;
Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline
for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150.

14. Stanifer, J.W.; Maro, V.; Egger, J.; Karia, F.; Thielman, N.; Turner, E.L.; Shimbi, D.; Kilaweh, H.; Matemu, O.; Patel, U.D. The
epidemiology of chronic kidney disease in northern Tanzania: A population-based survey. PLoS ONE 2015, 10, e0124506.
[CrossRef]

15. Kaze, F.F.; Kengne, A.-P.; Magatsing, C.T.; Halle, M.-P.; Yiagnigni, E.; Ngu, K.B. Prevalence and determinants of chronic kidney
disease among hypertensive Cameroonians according to three common estimators of the glomerular filtration rate. J. Clin.
Hypertens. 2016, 18, 408–414. [CrossRef] [PubMed]

16. Gutierrez-Padilla, J.A.; Mendoza-Garcia, M.; Plascencia-Perez, S.; Renoirte-Lopez, K.; Garcia-Garcia, G.; Lloyd, A.; Tonelli, M.
Screening for CKD and cardiovascular disease risk factors using mobile clinics in Jalisco, Mexico. Am. J. Kidney Dis. 2010, 55,
474–484. [CrossRef]

17. Park, J.I.; Baek, H.; Kim, B.R.; Jung, H.H. Comparison of urine dipstick and albumin: Creatinine ratio for chronic kidney disease
screening: A population-based study. PLoS ONE 2017, 12, e0171106. [CrossRef]

18. Konta, T.; Hao, Z.; Takasaki, S.; Abiko, H.; Ishikawa, M.; Takahashi, T.; Ikeda, A.; Ichikawa, K.; Kato, T.; Kawata, S.; et al.
Clinical utility of trace proteinuria for microalbuminuria screening in the general population. Clin. Exp. Nephrol. 2007, 11, 51–55.
[CrossRef]

19. Efundem, N.T.; Assob, J.C.N.; Feteh, V.F.; Choukem, S.-P. Prevalence and associations of microalbuminuria in proteinuria-negative
patients with type 2 diabetes in two regional hospitals in Cameroon: A cross-sectional study. BMC Res. Notes 2017, 10, 477.
[CrossRef]

20. Davidson, M.B.; Smiley, J.F. Relationship between dipstick positive proteinuria and albumin: Creatinine ratios. J. Diabetes
Complicat. 1999, 13, 52–55. [CrossRef]

21. White, S.L.; Yu, R.; Craig, J.C.; Polkinghorne, K.R.; Atkins, R.C.; Chadban, S.J. Diagnostic accuracy of urine dipsticks for detection
of albuminuria in the general community. Am. J. Kidney Dis. 2011, 58, 19–28. [CrossRef] [PubMed]

22. Tanzania Population Census 2012. National Bureau of Statistics Ministry of Finance dDar es Salaam. Available online:
https://www.Nbs.Go.Tz/nbstz/index.Php/english/statistics-by-subject/population-and-housing-census (accessed on 12 De-
cember 2017).

http://doi.org/10.1038/ki.2015.230
http://www.ncbi.nlm.nih.gov/pubmed/26221752
http://doi.org/10.1016/S0140-6736(16)32064-5
http://doi.org/10.2337/diacare.27.5.1047
http://www.ncbi.nlm.nih.gov/pubmed/15111519
http://doi.org/10.1016/S0140-6736(05)17741-1
http://doi.org/10.1038/ijo.2008.102
http://doi.org/10.1371/journal.pone.0158765
http://www.ncbi.nlm.nih.gov/pubmed/27383068
http://doi.org/10.1371/journal.pone.0205326
http://doi.org/10.1001/archinte.167.22.2490
http://doi.org/10.1016/S0140-6736(13)60595-4
http://doi.org/10.1093/ndt/gfn639
http://doi.org/10.1038/ki.2010.531
http://www.ncbi.nlm.nih.gov/pubmed/21289597
http://doi.org/10.1001/jama.2010.39
http://www.ncbi.nlm.nih.gov/pubmed/20124537
http://doi.org/10.1371/journal.pone.0124506
http://doi.org/10.1111/jch.12781
http://www.ncbi.nlm.nih.gov/pubmed/26791352
http://doi.org/10.1053/j.ajkd.2009.07.023
http://doi.org/10.1371/journal.pone.0171106
http://doi.org/10.1007/s10157-006-0458-z
http://doi.org/10.1186/s13104-017-2804-5
http://doi.org/10.1016/S1056-8727(98)00017-8
http://doi.org/10.1053/j.ajkd.2010.12.026
http://www.ncbi.nlm.nih.gov/pubmed/21411199
https://www.Nbs.Go.Tz/nbstz/index.Php/english/statistics-by-subject/population-and-housing-census


Diagnostics 2021, 11, 81 16 of 16

23. Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.;
et al. Stard 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799.
[CrossRef] [PubMed]

24. La-Roche. Kompendium der Urinanalyse. 2014. Available online: https://www.scribd.com/document/346737863/urinanalyse-
kompendium (accessed on 5 March 2020).

25. Boege, F.; Luther, A. Gesamtproteinbestimmung im urin: Adaptierung einer nephelometrischen methode zur erfassung typischer
leitproteine und bence-jones-proteine. LaboratoriumsMedizin/J. Lab. Med. 1989, 13, 14. [CrossRef]

26. Bökenkamp, A. Proteinuria—Take a closer look! Pediatr. Nephrol. 2020, 35, 533–541. [CrossRef] [PubMed]
27. Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association

of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts:
A collaborative meta-analysis. Lancet 2010, 375, 2073–2081.

28. Van der Velde, M.; Matsushita, K.; Coresh, J.; Astor, B.C.; Woodward, M.; Levey, A.; de Jong, P.; Gansevoort, R.T.; van der Velde, M.;
Matsushita, K.; et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and
cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011, 79, 1341–1352.
[CrossRef]

29. Danaei, G.; Lu, Y.; Singh, G.M.; Carnahan, E.; Stevens, G.A.; Cowan, M.J.; Farzadfar, F.; Lin, J.K.; Finucane, M.M.; Rao, M.
Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010:
A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647.

30. Gilbert, R.E.; Akdeniz, A.; Jerums, G. Detection of microalbuminuria in diabetic patients by urinary dipstick. Diabetes Res. Clin.
Pract. 1997, 35, 57–60. [CrossRef]

31. Spooren, P.F.M.J.; Lekkerkerker, J.F.F.; Vermes, I. Micral-test®: A qualitative dipstick test for micro-albuminuria. Diabetes Res. Clin.
Pract. 1992, 18, 83–87. [CrossRef]

32. FDA (U.S. Food and Drug Administration). 510(k) Safety and Effectiveness Summary (k963142). 1996. Available online:
https://www.Accessdata.Fda.Gov/cdrh_docs/pdf/k963142.Pdf (accessed on 10 April 2020).

33. Levey, A.S.; de Jong, P.E.; Coresh, J.; Nahas, M.E.I.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.-U. The
definition, classification, and prognosis of chronic kidney disease: A KDIGO controversies conference report. Kidney Int. 2011, 80,
17–28. [CrossRef]

34. Mancia, G. Hypertension: Strengths and limitations of the JNC 8 hypertension guidelines. Nat. Rev. Cardiol. 2014, 11, 189–190.
[CrossRef] [PubMed]

35. WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Vitamin and Mineral Nutrition Information
System; World Health Organization: Geneva, Switzerland, 2011. Available online: http://www.Who.Int/vmnis/indicators/
haemoglobin.Pdf (accessed on 21 February 2019).

36. Nagrebetsky, A.; Jin, J.; Stevens, R.; James, T.; Adler, A.; Park, P.; Craven, A.; Shine, B.; Farmer, A. Diagnostic accuracy of urine
dipstick testing in screening for microalbuminuria in type 2 diabetes: A cohort study in primary care. Fam. Pract. 2012, 30,
142–152. [CrossRef]

37. Zeller, A.; Sigle, J.P.; Battegay, E.; Martina, B. Value of a standard urinary dipstick test for detecting microalbuminuria in patients
with newly diagnosed hypertension. Swiss Med. Wkly. 2005, 135, 57–61.
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