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Abstract: The Bland–Altman plot is the most common method to analyze and visualize agreement
between raters or methods of quantitative outcomes in health research. While very useful for studies
with two raters, a limitation of the classical Bland–Altman plot is that it is specifically used for studies
with two raters. We propose an extension of the Bland–Altman plot suitable for more than two
raters and derive the approximate limits of agreement with 95% confidence intervals. We validated
the suggested limit of agreement by a simulation study. Moreover, we offer suggestions on how
to present bias, heterogeneity among raters, as well as the uncertainty of the limits of agreement.
The resulting plot could be utilized to investigate and present agreement in studies with more than
two raters.

Keywords: Bland–Altman plot; agreement; visualization; simulation study; method comparison;
inter-rater; intra-rater

1. Introduction

In health research, it is often desired to determine to what degree different raters or
methods (either persons or devices) agree on the measurement of a continuous outcome on
the same subject (patient, diagnostic image, biological sample, etc.). The main aim is to
ensure that the variability between raters is small enough to use observations from a single
rater in future studies or clinical practice and that it does not make any difference which
rater conducted the single measurement.

Typically this situation will be dealt with by applying a mixed effect regression model
or related methods [1–3]. In addition to these quantitative results, a clinical researcher often
wishes to present the agreement graphically, to ease the interpretation and communication
of the results. The most common method used for this aim is the Bland–Altman (BA)
plot [4], which plots differences between two raters against respective means together with
95% limits of agreement (LOAs). The interpretation and reporting of these LOAs regularly
results in confusion; see [5–7] for recent overviews.

One of the drawbacks of the classical Bland–Altman plot is that it only applies to
a situation with two raters or methods, while for both practical reasons (distributing
workload to multiple raters) and statistical reasons (increased power and strengthened
generalizability), it is desirable to use more than two raters for carrying out agreement
studies. The standard suggestion is usually to present multiple Bland–Altman plots for
each pairwise comparison of raters [3,8], but this becomes awkward for more than four
raters, as m raters result in m · (m+ 1)/2 plots, which is difficult to present and cumbersome
to interpret. Moreover, the pairwise nature of the limit band in this situation restricts the
interpretability of the bands.
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Some suggestions include presenting all observations in the same plot, with one
marker for each observation instead of each subject, either connecting observations for
the same subject by lines [3] or by different marker symbols [9]. However, both of these
approaches become confusing when including many observations. Other suggested ap-
proaches decrease the number of plots to m− 1 under the assumption of one method being
a gold standard [10] or reduce the presentation to one plot, but being much different in
appearance from a classical BA plot and removing the concept of an LOA, which can be
compared with prespecified levels of clinically meaningful differences [11].

The aim of this paper is to present a novel extension of the classical BA plot together
with a generalized LOA, which only requires one plot and one marker per observed subject.
While the main aim of this proposal is the comparison of multiple raters, the plot can be
applied to comparisons of multiple methods as well. Especially for this case, it is important
to be aware of the assumption of homoscedasticity, which our proposal inherits from the
classical Bland–Altman plot; deviations from this assumption damage the interpretation of
the Bland–Altman limits of agreement [12,13].

2. Materials and Methods
2.1. Derivation of an LOA for m > 2 Raters

We are interested in investigating a situation with m raters who observe each of n
subjects once, resulting in m · n observations xi,j.

In this setting, we assume a data generating process similar to the assumptions made
by Bland and Altman [4] for the classical BA plot, but extended to more than 2 raters:

Xi,j = µi + γj + εi,j i = 1, . . . , n, j = 1, . . . , m.

Each subject’s true value µi and each rater’s bias γj are deterministic, and the mea-
surement error term εi,j ∼ N(0, σ2) determines the variation in the observations, assuming
that all εi,j are pairwise independent with constant variance.

In the classical Bland–Altman plot (for m = 2; see the lower row of Figure 1), the points:

(xi, di)
de f
=

(
xi,1 + xi,2

2
, xi,1 − xi,2

)
, i = 1, . . . , n

are calculated and plotted together with a bias line at:

d
de f
=

1
n

n

∑
i=1

di =
1
n

n

∑
i=1

xi,1 −
1
n

n

∑
i=1

xi,2

and LOA at:

(U, L)
de f
= d± t0.975,n−1 ·

√
1 +

1
n
· sd.

Here:

sd
de f
=

√
1

n− 1

n

∑
i=1

(
di − d

)2

is the empirical standard deviation of the observed differences. Note that the LOA corre-
sponds to a 95% prediction interval for a new Gaussian distributed difference.

Instead of t0.975,n−1 ·
√

1 + 1
n , approximations are applied in practice, mostly either

1.96, the large n limit, or the approximation 2. Usually, the term
√

1 + 1
n is dropped (see [3,8]

for discussions on this issue). In this paper, we apply the exact factor t0.975,n−1 ·
√

1 + 1
n

in the derivation of the classical BA LOA [10] due to our later investigations into small
sample sizes such as n = 10.
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For the case of m > 2 raters, we suggest plotting:

(xi, si)
de f
=

 1
m

m

∑
j=1

xi,j,

√√√√ 1
m− 1

m

∑
j=1

(
xi,j − xi

)2

, i = 1, . . . , n,

resulting in an x-axis corresponding to the classical Bland–Altman plot, but with the y-
axis presenting the intra-subject standard deviation instead of the observed differences,
resulting in only one marker for each observed subject even with more than 2 raters. This is
in accordance with a suggestion made earlier by Bland and Altman [4], but not yet widely
applied. Note that this change mathematically corresponds to switching from plotting an
L1 distance on the y-axis to plotting an L2 distance instead.

If m = 2, this results in a plot corresponding to the classical Bland–Altman plot in
which the points of the lower half of the BA plot are mirrored at the bias line and the
y axis is scaled by a factor of

√
2. Figure 1 contrasts our suggestion with the classical

Bland–Altman plot for m = 2, while Figure 2 gives examples of our plot for m > 2 and
different choices of n.
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Figure 1. Comparison between the extended and classical BA plot for 2 raters based on simulated
data with a true standard deviation σ = 2.

While it is intuitive where the sample should be placed, the placement of a 95% LOA
requires some additional considerations. Here, we use the property that the empirical
variance of m independent, normally distributed random variables with equal mean (hence,
excluding systematic bias between raters) and constant variance is χ2-distributed with
m− 1 degrees of freedom, and hence, the empirical standard deviation will be χ-distributed
with m− 1 degrees of freedom, ignoring appropriate scaling factors.
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Figure 2. Extended BA plot for varying number of raters and observed subjects based on simu-
lated data.

Applying this to our model, we observe asymptotically:

si
σ

√
m− 1 ∼ χ(m− 1) i = 1 . . . n, j = 1 . . . m.

Therefore, we propose to place our LOA at:

L
de f
= χ0.95,m−1

1√
m− 1

s (1)

where χ0.95,m−1 denotes the quantile function of a χ-distribution with m− 1 degrees of
freedom and s = n−1 ∑n

i si is the average intra-subject standard deviation. Investigating
agreement between methods or raters, this LOA then can be compared to a clinically
relevant difference by rescaling the y-axis with a factor of

√
2, which enables direct com-

parison of deviations from the different ratings as used in our method with differences of
2 ratings as used in classical BA plots. We decided not to propose this rescaling in general
for the extended plots, as the rescaled y-axis loses its clear statistical interpretation as a
within-subject standard deviation.

Note that this formula only takes into account the number of raters, but neither the
number of subjects observed (that is the uncertainty in s, which in the classical Bland–
Altman plot is taken into account by using the t-quantile), nor that the coverage achieved
by the LOA should correspond to a 95% prediction interval for an additional observation
instead of covering 95% of the original observations [14] (the factor

√
1 + 1/n in the

classical Bland–Altman plot); hence, our formula is only expected to be precise for large
n. To communicate the uncertainty of the LOA, we suggest plotting 95% confidence
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intervals around the line. Here, we did this by applying bootstrapping in each sample with
1000 repetitions and reporting a 95% bias-corrected and accelerated confidence interval.
For comparison, we plot the exact confidence intervals suggested by Carkeet [15] in the
classical BA plots presented in this paper.

2.2. Suggestion for Indicating Bias

One limitation of our suggested plot is losing the information on a possible bias of a
specific rater, as well as possible heterogeneity between the uncertainty of raters. To include
information on this phenomenon in the plot, we suggest adding tick marks on the y-axis
corresponding to:

∣∣Bj
∣∣ de f
=

∣∣∣∣∣ 1
N

n

∑
i=1

xi,j − xi

∣∣∣∣∣ i = 1, . . . n, j = 1, . . . m,

the absolute mean difference between rater j’s observation and each subjects average ob-
servation. Moreover, we suggest marking each point in the plot by a color (or symbol)
to distinguish which rater was responsible for the largest deviation from this subject’s
mean; hence, a color/symbol very common in the plot would indicate a rater with larger
uncertainty than the remaining raters, violating the assumption of σ not depending on
j. Figure 3 shows these additions in a scenario without bias, a scenario in which Rater 2
systematically measures, on average, one standard deviation above the true value, and a
scenario in which Rater 2 has much larger uncertainty than the remaining raters. Moreover,
Figure 4 presents a scenario in which variability increases with the true mean, correspond-
ing to the funnel shape appearing in a classical BA plot. The full algorithm for preparing
an extended Bland–Altman plot is presented as Algorithm 1.

Algorithm 1 EXTENDED BLAND–ALTMAN PLOT FOR MULTIPLE RATERS.
Observe number of raters m and number of subjects n and individual ratings

xi,j i = 1 . . . n, j = 1 . . . m

Determine each subject’s mean and standard deviation:

(xi, si) =

 1
m

m

∑
j=1

xi,j,

√√√√ 1
m− 1

m

∑
j=1

(
xi,j − xi

)2

, i = 1, . . . , n,

Determine the position of the LOA:

L = χ0.95,m−1
1√

m− 1
s with s = n−1

n

∑
i

si.

Estimate the 95% confidence interval for the LOA by bootstrapping
Determine bias indicators for each rater:

∣∣Bj
∣∣ = ∣∣∣∣∣ 1

N

n

∑
i=1

xi,j − xi

∣∣∣∣∣ i = 1 . . . n, j = 1 . . . m,

Plot (xi, si), L with the confidence interval, and
∣∣Bj
∣∣ for all raters in a figure
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Figure 3. Marking the rater responsible for the largest deviation from the intra-subject mean by colored dots and the absolute
rater bias by tick marks on the right y axis. The first row demonstrates absent bias and heterogeneity in error, the second
row only bias, and the third row only heterogeneity (σ =

√
40 for Rater 2 in the third row; all others σ = 2).
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Figure 4. Comparison between the classic and generalized BA plot in a situation where the measurement error increases
with the true value.

2.3. Simulation Study on Coverage

To determine how reasonably our LOA agrees with the desired nominal 95% coverage
level for one new observation, we carried out a simulation. We employed 10,000 simulated
samples, as this, in the worst case scenario, should result in Monte Carlo SE below 0.5%
according to Morris et al. [16]. Data were generated by the process:

Xi,j = µi + εi,j i = 1, . . . , n + 1, j = 1, . . . , m,

that is without systematic bias, for each combination of m = 2, 3, 4, 5 raters and n = 10, 20, 100
subjects. For each of these 12 combinations, we determined the coverage of the LOA based
on simulated data. Furthermore, we calculated the empirical 95% quantile of points, both
for the original n observations used to produce the plot and for one new observation
(i = n + 1) from the same process for each sample.

R Version 3.6.1 [17] with the packages nnet [18] and boot [19,20] was used to carry
out the simulations and produce the figures. R scripts, including the seeds applied in the
simulations, are available as Supplementary Files.
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3. Results
3.1. Simulation Results

Figure 1 compares the classic and extended Bland–Altman plots in the case of two
raters with simulated data. Figure 2 shows examples of generalized Bland–Altman plots
for varying numbers of raters and observed subjects. Table 1 shows the empirical 95%
LOA compared with the line suggested by our Formula (1), as well as the coverage
obtained by applying the LOA of our formula. It can be seen that the coverage generally
is between 0.92 and 0.96, although most typically slightly below 0.95. We generally see
a coverage slightly above 95% and a narrower LOA than expected from the formula for
the original observations. On the other hand, for the new observations, the coverage is
slightly below 95%, and the empirical quantile is slightly wider than the LOA, although the
obtained coverage of 93 to 95% is deemed acceptable. This decreased coverage is expected,
as our formula for the LOA does not take into account the additional uncertainty of the
new observations.

Table 1. Coverage and empirical 95% quantiles from the simulations of different choices of m and n. Results are reported
both for the original observations used to estimate the LOA, as well as for the new observations obtained from the same
data generating process.

Original Observations New Observations
n = 10 n = 20 n = 100 n = 10 n = 20 n = 100

Raters Formula (1) 95% Quantile 95% Quantile 95% Quantile 95% Quantile 95% Quantile 95% Quantile
m = 2 1.959964 1.907143 1.939001 1.954703 2.188023 2.069437 1.963274
m = 3 1.730818 1.681992 1.709057 1.726664 1.880320 1.780882 1.741569
m = 4 1.613973 1.572103 1.609547 1.612125 1.706937 1.654243 1.624840
m = 5 1.540108 1.525253 1.536958 1.534751 1.594541 1.57577 1.552975

Coverage Coverage Coverage Coverage Coverage Coverage
m = 2 0.9575 0.9528 0.9506 0.9247 0.9400 0.9497
m = 3 0.9594 0.9542 0.9507 0.9253 0.9404 0.9488
m = 4 0.9595 0.9539 0.9510 0.9297 0.9417 0.9479
m = 5 0.9597 0.9541 0.9508 0.9361 0.9408 0.9462

Figure 3 shows the indications of bias in a single observer, as well as increased
uncertainty in a single rater compared to a situation without these phenomena. In the
second row (with bias), it can clearly be seen that Rater 2’s tick mark is elevated compared
to the other raters, while in the third row (with increased measurement error), the plot is
dominated by red points, corresponding to Rater 2 most often being further away from the
intra-subject mean. Hence, both deviations from model assumptions can be detected and
distinguished by the extended BA plot with bias tick marks and color coded observations.

Figure 4 presents a situation in which the assumption of homogenous variance is
violated, as the measurement error increases with increasing true mean. Again, we compare
classic and extended Bland–Altman plots on the same data, and the inhomogeneity of
variance is clearly visible as a funnel shape in both plots.

3.2. Application to Real World Data

To investigate the usefulness of the extended BA plot, we applied it to two datasets
with multiple raters from the literature. For the first application (Figure 5 left), we used
data from Wiinholt et al. [21] corresponding to measurements of tissue volume in 30 control
mice by four raters. Our plot corresponds to the results presented in the left side of Figure 3
of [21] as six separate BA plots. Our plot indicates an LOA around 0.85 with a 95% up to
almost one and no clear bias, but possibly a tendency of Method 4 to be more variable
compared to the other methods.

For the second application, we applied the extended BA plot to the glucose measure-
ment data from a method comparison study [22] with four methods as provided in the
MethComp [23] package for R (Figure 5 right). Our plot indicates an LOA around 1.2
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with a narrow confidence interval and no clear indication of either bias or heterogeneity
of variance.
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Figure 5. Extended BA plot on real-world data. Wiinholt et al. [21] (left) and Carstensen et al. [22] (right).

4. Discussion
4.1. Statement of Principal Findings

We showed that it is possible to present the agreement of more than two methods or
raters in one combined plot and to obtain similar information as can be obtained from a
classical BA plot including LOA and the corresponding confidence intervals; moreover,
we indicated the possibility of detecting inhomogeneity in variance, as well as bias among
raters. We showed by simulation that our suggested formula for the LOA of the extended
BA obtains approximately 95% coverage.

4.2. Strengths and Weaknesses of the Study

The main strength of this study is that we combined a closed formula for the LOA
based on mathematical arguments with transparent simulations documenting that the
method behaves well even with small sample sizes. Moreover, we showed that our
suggested plot can combine information presented in multiple plots in applications from
the literature. A weakness of this study is that the LOA is only an approximation, as it does
not fully capture the uncertainty of new observations, as well as only being equipped with
approximate bootstrapped confidence intervals.
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4.3. Strengths and Weaknesses in Relation to Other Studies, Particularly any Differences
in the Results

Compared to the literature, the main strength of our approach is that only one plot is
required for the comparison of multiple methods or raters and that only one dot is included
in the plot for each observation unit, resulting in plots that are easier to comprehend.
Moreover, these facts imply that the points on our plot are independent observations
facilitating the estimation of accurate LOA and confidence intervals. Although it is possible
to indicate bias and variance heterogeneity in our plot, it might be less clear than in some of
the methods presented in the literature. Additionally, as our plot is only one-sided due to
the non-negativity of standard deviations, this might impede its interpretation for readers
used to classical BA plots.

An additional weakness of the proposed method is that it shares the assumption of
homoscedasticity with the classical BA plot. It is well known from the literature that this
assumption can be problematic, especially in the case of method comparison studies [12,13].
There have been detailed proposals of replacements of the classical BA plot, which handle
heteroscedasticity in a more suitable manner both theoretically [24,25] and with practical
applications and software implementations [26–28]. We consider this problem to be mainly
prominent in the case of method comparison studies and to a lesser degree when comparing
raters. As the suggested approach by Taffé (similarly to the classical BA plot) only handles
comparison of two methods, we consider our proposal to be a relevant extension of the
classical BA plot in the case of multiple raters and homoscedasticity.

4.4. Meaning of the Study: Possible Mechanisms and Implications for Clinicians or Policymakers

The possibility to present agreement information for more than two raters hopefully
increases the possibility to report this information in agreement studies and to better
inform the readers. Indirectly, this also might increase the inclination to include multiple
raters in agreement studies, improving the generalizability of such studies. This implies
that researchers can include the same observations in a graphical presentation as in more
advanced analyses in studies with multiple raters, e.g., mixed models, improving the
transparency of the studies. The fact that our LOA is presented with 95% confidence bands
hopefully increases the likelihood that users of this plot will include confidence bands as
well, which still is not the case in many papers published with classical BA plots [5,29]. One
of the challenges for the extended BA plot, as well as for most other suggested extensions or
replacements of the classical BA plot, is the inertia in health research of replacing commonly
used methods (think, for instance, of scatter plots of two methods’ raw measurements with
a 45 degree line and respective correlation coefficients back in the 1970s). We hope that our
suggested plot is similar enough to the classical BA plot to aid its adoption in practice.

4.5. Unanswered Questions and Future Research

There are still some outstanding questions with regard to our suggested extension
of the BA plot. Firstly, it would be desirable to obtain a more precise, non-asymptotic
formula for the LOA taking into account the full amount of uncertainty in the observations.
Secondly, a closed formula for the confidence interval would be preferable to our bootstrap
approach. Finally, implementations of our plot in standard software packages will improve
its applicability.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/1/54/s1: Simulation.R: Source code for the simulations, Figures.R: Source code for Figures 1–4,
Examples.R: Source code for real-world examples, Figure 5.
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