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Abstract: The detection of ALK receptor tyrosine kinase (ALK), ROS proto-oncogen1, receptor tyro-
sine kinase (ROS1), ret proto-oncogen (RET), and MET proto-oncogen exon 14 skipping (MET∆ex14)
allows for the selection of specific kinase inhibitor treatment in patients with non-small cell lung
cancer (NSCLC). Multiplex technologies are recommended in this setting. We used nCounter, a
multiplexed technology based on RNA hybridization, to detect ALK, ROS1, RET, and MET∆ex14 in
RNA purified from cytological specimens (n = 16) and biopsies (n = 132). Twelve of the 16 cytological
samples (75.0%) were evaluable by nCounter compared to 120 out of 132 (90.9%) biopsies. The
geometrical mean (geomean) of the housekeeping genes of the nCounter panel, but not the total
amount of RNA purified, was significantly higher in biopsies vs. cytological samples. Among
cytological samples, we detected ALK (n = 3), MET∆ex14 (n = 1) and very high MET expression
(n = 1) positive cases. The patient with MET∆ex14 had a partial response to tepotinib, one of the
patients with ALK fusions was treated with crizotinib with a complete response. Cell blocks and
cytological extensions can be successfully used for the detection of fusions and splicing variants
using RNA-based methods such as nCounter.

Keywords: cytology; nCounter; NSCLC

1. Introduction

Although lung cancer continues to be one of the tumors with the highest mortality rate
in the world, in recent years, the identification of specific alterations in various genes has
allowed the development of targeted therapies, which have improved the clinical outcome
of selected groups of patients. Mutations in the EGFR gene and the MET∆ex14 splicing
variant associate with responses to EGFR and MET tyrosine kinase inhibitors, respectively
(EGFR- and MET-TKIs) [1–3], while fusions involving ALK and ROS1 genes predict a
clinical benefit from crizotinib, alectinib, and other ALK tyrosine kinase inhibitors (ALK
TKIs) [4,5].

The need to test all markers associated with therapeutic options and the fact that
a significant number of patients with non-small cell lung cancer (NSCLC) only have
cytological samples available for molecular diagnosis makes urgent the development
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of multiplexed techniques that can detect clinically relevant markers with a minimum
amount of sample. The most widely used multiplexed methodologies for the detection
of mutations, amplifications, and fusions in formalin-fixed, paraffin embedded (FFPE)
biopsies are DNA and RNA based next generation sequencing (NGS) platforms such as
those developed by Illumina, Agilent or Qiagen. However, other methodologies have
recently been employed, including mass array and direct hibrydization techniques such as
nCounter and the Nanostring platform, which has the advantages of not depending on
enzymatic amplification reactions, being an easy technology, and allowing the analysis
of low quantity samples. Although several reports have described the use of nCounter
for the detection of ALK, ROS1, and RET fusions in FFPE samples [6–8], only one of them
specifically described results of fusion testing in cytological samples, while MET alterations
were not assayed [8].

We have previously reported the use of nCounter for simultaneous detection of fusions
in ALK, ROS1, and RET [9,10] and, more recently, for MET alterations [11]. In this article,
we analyze the prospective use of the nCounter technology for the detection of fusions,
MET∆ex14 splicing and MET very high expression in NSCLC cytological samples and we
compare the results with FFPE biopsies.

2. Materials and Methods
2.1. Patient and Cell Line Samples

Samples were obtained from the Quirón Dexeus University Hospital, Hospital General
de Cataluña, Teknon Medical Center and Hospital de Mataro with previous informed
patient consent. The study had been approved by the ethical committees of each hospital
(approval number 51/2018, 1 May 2018) and was conducted according to the Declaration
of Helsinki. Formalin-fixed, paraffin embedded (FFPE) 4 µm slides, obtained by standard
procedures, were stained with hematoxylin and eosin. A pathologist determined the tumor
areas and evaluated the percentage of tumor infiltration, which were subsequently macro-
or micro-dissected. For nCounter analysis, RNA was extracted with a high purity FFPET
RNA isolation kit (Roche Diagnostics, Mannheim, FRG) according to the manufacturer’s
instructions. RNA concentration was estimated using the Qubit 3.0 fluorometer (Invitrogen,
Eugene, OR, USA).

2.2. nCounter Elements Assay for ALK, ROS1, RET Gene Fusions and MET Alterations

nCounter (NanoString Technologies Inc., Seattle, WA, USA) is a fluorescence-based
technique for multiplexed digital transcript profiling without enzyme requirements, am-
plification, or generation of cDNA. Total RNA (between 5–250 ng) was hybridized with a
custom-designed mixture (“codeset”) of biotinylated capture tags and fluorescently labeled
reporter probes (Elements Chemistry, Nanostring, Technologies, Seattle, WA, USA). The
codeset also contained probes for housekeeping genes, positive and negative controls
(Table 1). All processes of hybridization, capture, cleanup, and digital data acquisition
were performed with nCounter Prep Station® and Digital Analyzer® (NanoString Tech-
nologies) according to the manufacturer’s instructions. Reporter counts were collected
with the nSolver analysis software version 3.0. Samples were considered not evaluable if
the geometrical mean (geomean) of counts corresponding to the housekeeping genes was
lower than 300. Counts from all probes were normalized in two steps and samples were
categorized according to previously described threshold values [9].
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Table 1. Description of the nCounter codeset used in the study.

Probes Number

Gene Fusions Probes (ALK, ROS1, RET, NTRK1) 29 pairs

Imbalance Probes (ALK, ROS1, RET, NTRK1) 32 pairs

Housekeeping Genes Probes (ACTB, GAPDH, PSMC4, MRPL19) 3 pairs

MET Gene Probes (MET∆ex14, MET wild type) 2 pairs

2.3. DNA Purification and NGS

The GeneRead DNA FFPE Kit (Qiagen, Hilden, Germany) was used for DNA ex-
traction from FFPE samples, as described [12]. DNA-based NGS was performed with the
GeneRead® QIAact Custom DNA UMI Panel (Qiagen, Hilden, FRG), which can detect
mutations in ALK, BRAF, CDK4, CDK6, EGFR, ERBB2, ERBB4, FGFR1, IDH1, IDH2, KIT,
KRAS, MET, NRAS, PDGFRA, PIK3CA, RICTOR, ROS1, STK11, TP53, and copy number
variations (CNVs) in BRAF, CDK4, CDK6, EGFR, FGFR1, ERBB2/HER2, KRAS, MET, RIC-
TOR. For the GeneRead panel, up to 40 ng of purified DNA were used as a template. Clonal
amplification was performed on 625 pg of pooled libraries and, following bead enrichment,
the GeneReader instrument was used for sequencing. Qiagen Clinical Insight Analyze
(QCI-A) software was employed to align the read data and call sequence variants, which
were imported into the Qiagen Clinical Insight Interpret (QCI-I) web interface for data
interpretation and generation of final custom report.

2.4. RT-PCR for ALK and MET

RNA was retrotranscribed with the M-MLV retrotranscriptase (ThermoFisher Sci-
entific, Waltham, MA, USA) and random primers. HotStart Taq polymerase (Qiagen)
was used for MET∆ex14 and EML4-ALK amplification using a 20 µL reaction (45 cycles)
and visualized in agarose gels, as described [9,11]. Positive samples were confirmed by
bidirectional Sanger sequencing of RT-PCR products, using the big-dye 3.1 sequencing kit
(Applied Biosystems, Foster City, CA, USA).

2.5. FISH and IHC

FISH for ALK, ROS1 and MET was performed on 4 µm sections using the FDA-
approved Vysis LSI ALK Dual Color Break Apart Probe (Abbott Molecular Inc., Des
Plaines, IL, USA), the ZytoLight® SPEC ROS1 Dual Color Break Apart Probe (ZytoVision,
Bremerhaven, Germany) and ZytoLight® SPEC MET/centromere 7 (MET/CEP7) Dual
Color Probe (ZytoVision, Bremerhaven, Germany) and, according to manufacturer’s in-
structions. MET immunostaining was performed with SP44 clone (Roche, Mannheim,
Germany) and ALK with the FDA-approved Ventana anti-ALK rabbit monoclonal pri-
mary antibody (Clone D5F3, Ventana Medical Systems, Tucson, AZ, USA). In both cases, a
BenchMark ULTRA automated tissue staining system was used (Ventana Medical Systems,
Valle del Oro, AZ, USA). Membrane staining was graded as described [9,11].

3. Results
3.1. Sample Characterization

From January 2017 to December 2019, we analyzed 151 samples by nCounter, includ-
ing FFPE biopsies, cell blocks and cytological smears. Of them, 16/151 (11%) did not meet
the quality requirements on nCounter analysis (geomean of housekeeping counts < 300)
and were considered non evaluable. Three non-evaluable samples were cell blocks, one
was a cytological smear and the remaining 12 were FFPE biospsies (Figure 1).
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Figure 1. Flow chart of the samples included in the study. Abbreviation: FFPE: formalin-fixed paraffin-embedded HK:
housekeeping.

Among the valid samples (n = 135), 120 corresponded to FFPE biopsies, 14 were cell
blocks, and one a cytological smear. All 15 evaluable cytological samples had more than
40% of tumor cells and presented adenocarcinoma histology. After purification, RNA
concentration ranged between 1.65–49.3 ng/µL, as quantified by Qubit (Tables 2 and 3).
The FFPE biopsies showed a tumor infiltration between 5% and 85%; adenocarcinomas rep-
resented 80% of cases and RNA concentration was measured in 56/135 specimens, ranged
from 1.65 to148 ng/µL, as measured with Qubit. The RNA was significantly different
between cytological samples (n = 14) and biopsies (n = 56) (p = 0.037 in a Mann–Whitney
test; Figure 2a). Also, upon nCounter analysis, the geometric mean of the endogenous gene
counts was significantly higher in the biopsies (n = 120) vs. cytological samples (n = 15)
(p = 0.0028 in a Mann–Whitney test; Figure 2b).

Table 2. Characteristics of the valid samples included in the study.

Characteristics Cytological Samples
(n = 15)

Biopsies
(n = 120)

Histological type
Adenocarcinoma 15 96
Squamous cell carcinoma 0 10
Other 0 13
Unknown 0 1

UICC stage
I-IIIA 0 13
IIIB-IV 12 84
Unknown 3 23

Collection time
Basal 10 73
Progression 3 11
Unknown 2 36
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Table 3. Characteristics of the valid cytological samples included in the study.

Case
Number Sample Type Procedure Organ % of Tumor

Cell Histology RNA
ng/µL

GeoMean
Housekeeping

1 Cytologic
smear nd nd 60 ADK 5.2 1027

2 Cell Block FNA Lymph node 80 ADK 40 3043
3 Cell Block FNA Suprarrenal 85 ADK 13.4 3250
4 Cell Block FNA Lung 75 ADK 1.65 399
5 Cell Block nd nd 40 ADK 22.6 4282
6 Cell Block FNA nd 90 ADK 49.3 10,358
7 Cell Block FNA Lung 50 ADK 1.8 311
8 Cell Block FNA ND 70 ADK 16.2 3575
9 Cell Block nd Lung 50 ADK 1.8 323
10 Cell Block FNA Lymph node 80 ADK 3.05 1650
11 Cell Block FNA Lung 50 ADK nd 5838
12 Cell Block FNA Lymph node 40 ADK 6 343
13 Cell Block FNA Lymph node 40 ADK 10.1 1232.98
14 Cell Block FNA Lung 60 ADK 3.99 516.98
15 Cell Block FNA Lymph node 90 ADK 3.04 1738.58

Abbreviation: ADK, adenocarcinome; FNA, fine-needle aspiration; nd, non detected.

Figure 2. (a) Comparison of RNA concentration in ng/µL in biopsies (n = 56) vs. cytologies (n = 14). (b) Comparison of the
geomean of housekeeping (HK) mRNA levels in biopsies (n = 120) and cytologies (n = 15).

3.2. nCounter Results of Cytological Samples and Biopsies

The only evaluable cytological extension did not present fusions or MET∆ex14 tran-
scripts. Among the 14 FFPE cell blocks, nCounter detected alterations in 7 (50%), including
ALK fusions (n = 5), MET∆ex14 transcripts (n = 1) and very high levels of MET mRNA
expression (n = 1). In contrast, among the 120 valid biopsy samples, 16 (13%) harbored
ALK (n = 7), ROS1 (n = 2), or RET fusions (n = 1), and MET∆ex14 (n = 3) or very high MET
expression (n = 3) by nCounter (Figure 3).
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Figure 3. Distribution of alterations detected by nCounter in (a) biopsies (b) cytological samples.

Four ALK cytological samples were positive by 5′/3′ imbalance and specific fusion
probes; three corresponded to variant 1 and the remaining sample to variant 3. The other
ALK cytological sample was positive only by 5′/3′ imblance (Table 4). Three of the ALK
cases could be confirmed by IHC and another by FISH, while the specimen with the
MET∆ex14 was confirmed by RT-PCR and NGS (Figure 4). The sample with very high MET
expression was submitted to IHC, FISH and NGS. The results were MET amplification by
both FISH and NGS (ratio MET/CEP7 > 5 and copy number = 25.12, respectively) and high
protein expression (histoscore = 240), as expected (Figure 4 and Table 4).

Finally, 11 out of 15 cytological samples yielded valid results by NGS. Amplifications
in EGFR (n = 2), ERBB2 (n = 2) and CDK4 (n = 1) and mutation in ERBB2 (n = 1) were
detected, which were mutually exclusive with fusions and MET skipping variant. No
mutations in driver genes such as KRAS or EGFR were found.
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Table 4. Genotying results of the cytological samples.

Case
Number

nCounter
Result

FISH
Genes/Result

IHC
Genes/Result

RT-PCR
Genes/Result

Other Results NGS
Genes/Result

1 Wt na na na ERBB2/Amplification copies = 11

2 Wt na na na ERBB2/Amplification copies = 9

3 Wt

ALK/No fusión;
ROS1/No fusión;

MET/No
amplification

ALK/Neg;
MET/Neg MET∆ex14/nd nd

4 ALK fusión
(5′/3′, v1) ALK/n v ALK/95% 3+

MET∆ex14/nd;
ALK v1, v2,

v3/detected v1
nd

5 Wt na ALK/Neg;
MET/Neg MET∆ex14/nd nd

6 Wt na na MET∆ex14/nd EGFR/Amplification copies = 11

7
Very high

MET
expression

MET/Amplification
r > 5 MET/80% 3+ MET∆ex14/nd MET Amplification copies = 25.1

8 Wt na na na EGFR/Amplification copies = 7

9 ALK fusión
(5′/3′, v1) na na na na

10 ALK fusión
(5′/3′, v3) ALK/Fusión 58% na MET∆ex14/nd nd

11 MET∆ex14 na na MET∆ex14/detected MET∆ex14

12 Wt na na MET∆ex14/nd CDK4/Amplification;
TP53/p.R248W

13 Wt na na na ERBB2 p.S335P; TP53 p.V157F

14 ALK fusión
(5′/3′, v1) na ALK/Pos na na

15 ALK fusión
(5′/3′, nd) na ALK/Pos na na

Abbreviation: FFPE: formalin-fixed paraffin-embedded, HK: housekeeping, na: non analyzed, nd: non detected, Neg: negative, nv:
non evaluable.

Figure 4. (a) Fluorescence in situ hybridization analysis for ALK in sample 10, blue arrows indicate translocated signals;
(b) Visualization by agarose gel of the PCR band corresponding to the MET∆ex14 splicing variant in sample 11. The upper
band corresponds to the amplification of the wt region. (c) Fluorescence in situ hybridization analysis for MET in sample 7,
blue arrows indicate amplified cells. The scale bars correspond to 20 µm.
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3.3. Response to TKIs

Clinical data were available from four patients in which ALK or MET alterations
were detected in cytological samples. One patient with MET∆ex14 was treated with MET
tepotinib and had a partial response. Regarding ALK-positive patients, three were treated
with TKIs and derived clinical benefit, two complete responses (to crizotinib and alectinib)
and one partial response (to alectinib).

4. Discussion

The use of multiplexed panels for the detection of mutations and fusions in the
lung cancer clinical environment has been exponentially increasing over the last few
years [10,13]. Previous studies have shown that cytological smears and cell blocks are
suitable for performing DNA and RNA massive sequencing [14–16]. In the 2018, the
Molecular Testing Guideline for the selection of Lung Cancer patients for treatment with
targeted tyrosine kinase inhibitors included a recommendation for the use of cell blocks
and other cytologic preparations as suitable specimens for biomarker molecular testing.
The Guideline strongly recommends ALK and ROS1 testing in all NSCLC samples, and
presents expert consensus group opinions suggesting the use of multiplex testing panels
for testing RET fusions and MET alterations in the context of clinical trial [17].

The nCounter platform is increasingly being used for fusion detection in NSCLC
and other types of tumors [18–21]. However, there is only one report in the literature
describing the performance of nCounter in cytological samples, and MET alterations were
not tested [8]. In consequence, we decided to investigate if cytological samples can be used
for multiplex detection of fusions and splicing variants in NSCLC. We found that, although
both, the mRNA levels of housekeeping genes and the mRNA concentrations are lower
in cytological samples compared to biopsies, they are generally sufficient for multiplex
analysis of fusions and MET alterations by nCounter. In our study, 10% of FFPE biopsies
were non evaluable by nCounter vs. 17.6% for cell blocks. Regarding cytological smears,
only two were tested and one of them (50%) was not assessable. The higher percentage of
non-evaluable cytology samples is probably a consequence of the lower amounts of tumor
cells present compared to biopsies. These results endorse the incorporation of RNA-based
testing of fusions in cytological samples into the routine of clinically-oriented molecular
laboratories. This testing could be particularly useful in patients at progression, where
sampling is frequently performed by FNA or related techniques.

In our cohort of 104 FFPE biopsies we found 6% ALK positive samples, 4% of speci-
mens with MET alterations and 3% of RET and ROS1 fusions (Figure 3). These percentages
are in line with those described in the literature when using nCounter or other method-
ologies in advanced NSCLC samples [22,23]. In contrast, five out of 15 (33%) cytological
specimens harbored ALK fusion transcripts, and 2/15 (13%) MET alterations. These fre-
quencies are significantly higher than those described in NSCLC populations and we did
not detect any single case of EGFR or KRAS mutations in our series, strongly suggesting a
biased population. Regarding the reason of this bias, the percentage of smokers and former
smokers in our cytologies and biopsies was similar. Also, mutations in EGFR have been
described to be associated with pleural retraction and ALK fusions with pleural effusion,
but almost all our cytological samples corresponded to FNAs [24]. Finally, the incidence of
lymph node metastasis has been found to be significantly higher in ALK-positive (45.1%)
compared with wild-type, KRAS, and EGFR-mut NSCLC [25], and a significant percentage
of our FNAs corresponded to lymph node metastasis (33%; Table 3), a fact that could partly
explain the observed bias. Among the 120 FFPE biopsies of our series, only five (4.2%)
were taken from lymph nodes. Remarkably, two of them were fusion-positive for ALK
(n = 1) and RET (n = 1).
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5. Conclusions

Cell blocks and cytological extensions can be successfully used for the detection of
fusions and splicing variants using a multiplexed RNA-based hybridization technology
such as nCounter.
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