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Abstract: Normative brain magnetic resonance imaging (MRI) is essential to interpret the state of
an individual’s brain health. However, a normative study is often expensive for small research
groups. Although several attempts have been made to establish brain MRI norms, the focus has
been limited to certain age ranges. This study aimed to establish East Asian normative brain data
using multi-site MRI and determine the robustness of these data for clinical research. Normative MRI
was gathered covering a wide range of cognitively normal East Asian populations (age: 18–96 years)
from two open sources and three research sites. Eight sub-regional volumes were extracted in
the left and right hemispheres using an in-house deep learning-based tool. Repeated measure
consistency and multicenter reliability were determined using intraclass correlation coefficients and
compared to a widely used tool, FreeSurfer. Our results showed highly consistent outcomes with high
reliability across sites. Our method outperformed FreeSurfer in repeated measure consistency for
most structures and multicenter reliability for all structures. The normative MRI we constructed was
able to identify sub-regional differences in mild cognitive impairments and dementia after covariate
adjustments. Our investigation suggests it is possible to provide a sound normative reference for
neurodegenerative or aging research.

Keywords: MRI normative; aging; deep-learning; volumetry; multicenter

1. Introduction

Establishing a normative brain volume is of great importance for clinical assessment
and aging studies. A normative reference of neuroimaging data should provide what is
usual within a defined population, that is, race and age, at a specific point of the period [1].
Several studies have reported that brain MRI provided a normative reference for researchers
and clinicians. Brewer described the utilization of an automated tool to construct normative
ranges for volumetric brain MRI using the Alzheimer’s disease neuroimaging initiative
(ADNI) dataset [2]. Courchesne et al. investigated the normal brain during development
and aging using 116 volunteers aged 19 months to 80 years [3]. Ball et al. focused on the
normative MRI for developmental brain, who aged between 4 and 18 years [4]. Potvin et al.
provided normative population data for subcortical regional volumes using 2790 healthy
individuals aged between 18 to 94 years [5].
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While several studies have demonstrated the normative brain as described above,
only limited reports are available for East Asian populations. One recent study described
Korean normative brain data, but within a limited age range of 65 to 85 years [6]. An-
other study described mean tissue and lobe volumes in a population with an average age
of 59.5 years [7]. Normative data, including younger and wider age ranges, are required
for better assessments of normal brain aging. The collection of further data for normative
brain MRI, however, is often time-consuming and expensive for individual or small groups
of researchers.

In recent years, a growing number of open MRI data are available for researchers to
expedite brain research findings. The utilization of these open-source MRI data to create
a normative reference will expand the data size and age range with reduced research efforts
and costs. Still, these open MRI data are often multicentered and thus could be incompatible
with each other due to the heterogeneity of various imaging protocols. Heterogeneity across
MRI data is a huge challenge for neuroscientists.

This study investigated whether these open-source multicenter data could establish an
East Asian normative reference using an in-house segmentation tool. To test our hypothesis,
we gathered two East Asian open-source data that collected MRI from younger healthy par-
ticipants. These open-source data were collectively analyzed and compared with the data
from three study sites, whose participants were in the middle to later ages. This study uti-
lized our in-house deep learning-based automatic segmentation tool, specifically designed
for multicenter large-scale MRI segmentation.

Here, we describe the data gathered and then investigate the robustness of extracted
subregional volumes for repeated measure consistency and multicenter reliability. We fur-
ther compared the robustness to the FreeSurfer, a well-established and widely accepted
‘good enough’ tool. Next, we describe the brain subregional distribution across ages 18 to
96 years constructed using a multicenter normative MRI. Lastly, we further describe that
the multicenter normative data could identify a statistical difference in brain subregional
volumes for mild cognitive impairment (MCI) and dementia, even in age-stratified groups.

2. Materials and Methods
2.1. Data Description

The dataset used in this study (Figure 1) is largely obtained from three open sources
and three research sites. The details of each dataset are described below.

2.1.1. Open MRI Data O1: Multicenter Dataset

A 10-scan set of three subjects was utilized to investigate multicenter measurement
reliability. Young healthy participants were scanned in ten scanners traveling participants
across sites from October 2016 to November 2017. All the 10 scanners were 3 T MR
MAGNETOM Prisma using a 3D magnetization-prepared two rapid acquisition gradient
echo (MP2RAGE) sequence, and a detailed study design is published elsewhere [8].

2.1.2. Open MRI Data O2: Repeated Measure Dataset

For the repeated measure consistency assessments, we also used open-source test-
retest data for 57 subjects scanned two times at an interval of approximately 6 weeks.
All the participants were healthy young adult volunteers aged 19 to 30, recruited from
Beijing Normal University. All MRI data were obtained using a SIEMENS Trio Tim 3.0 T
scanner and T1-weighted MRI was obtained using a sagittal 3D magnetization prepared
rapid gradient echo (MP-RAGE) sequence. The details of the imaging parameters and
study design can be found in their descriptive paper [9].

2.1.3. Open MRI Data O3: Chinese Normative Data

From the 1000 Functional Connectomes Project (FCP), 198 MRI scans scanned at the
Beijing center were included for the healthy normal modeling. MRI is obtained using an
MP-RAGE. A detailed description can be found elsewhere [10].
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Figure 1. Data sets used in this study are shown by their source and their usage. MRI data from 
two sources are used: Open MRI data (Site ON) and our research site data (Site KN). Site O1, con-
sisting of three subjects scanned at 10 (O1-1~O1-10) different sites, was used to investigate multi-
center reliability. Site O2 data includes 57 paired scans for the same subjects from the same scan-
ner and used (1) to measure repeated measure consistency and (2) to construct normative data. 
Sites O2, O3, K1, K2, and K3 are one-time scans from cognitive normal participants. Site K1 addi-
tionally includes data for MCI and dementia, compared with our multisite normative data. MCI, 
mild cognitive impairment; D, dementia. 

2.1.1. Open MRI Data O1: Multicenter Dataset 
A 10-scan set of three subjects was utilized to investigate multicenter measurement 

reliability. Young healthy participants were scanned in ten scanners traveling participants 
across sites from October 2016 to November 2017. All the 10 scanners were 3 T MR MAG-
NETOM Prisma using a 3D magnetization-prepared two rapid acquisition gradient echo 
(MP2RAGE) sequence, and a detailed study design is published elsewhere [8]. 

2.1.2. Open MRI Data O2: Repeated Measure Dataset 
For the repeated measure consistency assessments, we also used open-source test-

retest data for 57 subjects scanned two times at an interval of approximately 6 weeks. All 
the participants were healthy young adult volunteers aged 19 to 30, recruited from Beijing 
Normal University. All MRI data were obtained using a SIEMENS Trio Tim 3.0 T scanner 
and T1-weighted MRI was obtained using a sagittal 3D magnetization prepared rapid 
gradient echo (MP-RAGE) sequence. The details of the imaging parameters and study de-
sign can be found in their descriptive paper [9]. 

2.1.3. Open MRI Data O3: Chinese Normative Data 
From the 1000 Functional Connectomes Project (FCP), 198 MRI scans scanned at the 

Beijing center were included for the healthy normal modeling. MRI is obtained using an 
MP-RAGE. A detailed description can be found elsewhere [10]. 

  

Figure 1. Data sets used in this study are shown by their source and their usage. MRI data from two
sources are used: Open MRI data (Site ON) and our research site data (Site KN). Site O1, consisting of
three subjects scanned at 10 (O1-1~O1-10) different sites, was used to investigate multicenter reliability.
Site O2 data includes 57 paired scans for the same subjects from the same scanner and used (1) to
measure repeated measure consistency and (2) to construct normative data. Sites O2, O3, K1, K2,
and K3 are one-time scans from cognitive normal participants. Site K1 additionally includes data for
MCI and dementia, compared with our multisite normative data. MCI, mild cognitive impairment;
D, dementia.

2.1.4. Research Site Data Sets in Korea

Data from three research sites in Korea were utilized. Data from these three sites are
available for 647, 62, and 29 MRI scans from Catholic University of Korea St. Mary’s Hospi-
tals (at Yeouido and Eunpyeong, K1) both using T1 MP-RAGE sequence, Wonkwang Uni-
versity Hospital (K2) using 3D T1 TFE sequence, and Catholic University of Korea Saint
Vincent’s Hospital (K3) using 3D T1 MP-RAGE sequence, respectively. In addition, we uti-
lized MCI (n = 524) and dementia (n = 163) cases from the K1 site. These two cases were
investigated in comparison to the normative data gathered from multiple sites.

The study was designed based on the ethical and safety guidelines set forth by the
Institutional Review Board of Catholic University of Korea, which approved all research
activities. Informed and written consent was obtained from all participants. Our MCI
and dementia groups were based on the clinical dementia rating (CDR) scales, where MCI
had a CDR of 0.5 and dementia had a CDR of 1 or higher. Although not specified,
our dementia condition mostly consists of participants with probable Alzheimer’s disease
(AD), who met the National Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association criteria for probable AD.
Participants who had other neuropsychological conditions, such as rarer forms of dementia
or traumatic injury, those who were receiving psychotropic medications were excluded.
Imaging protocols and other details have been described in a previous study [11].
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2.2. Brain MRI Segmentation

The entire image processing pipeline was implemented using Python 3.7 with Tensor-
Flow version 1.5.

2.2.1. Preprocessing

We applied an identical pipeline from the pre-processing pipeline for all the data
utilized in this study. Our preprocessing includes resampling, zero-padding, and intensity
normalization using histogram matching. We first resampled the image in an isotropic
voxel (1 mm3), then padded it with zero using a filter size of 16 × 16 × 16 and 24 × 24 × 24
for training and testing, respectively. Finally, we normalized the MRI intensity by applying
a histogram matching algorithm as described elsewhere [12]. The entire preprocessing
pipeline was implemented using the NiftiNet library [13].

2.2.2. Deep Learning Segmentation

Our in-house segmentation tool was developed from the existing UNet++ deep learn-
ing architecture with a three-dimensional methodology to train 104 labels. Our deep
learning design has a convolutional layer in the skip path, which bridges the semantic
gap between the encoder and decoder characteristic maps. A dense skip connection in the
skip path, which improves the gradient flow, has deep supervision, which enables model
pruning, improves performance, or, at worst, compares using only one lossy layer (Figure 2,
bottom). The cross-entropy loss function was used for the voxel-by-voxel segmentation
learning and the learning rate for the Adam optimizer was 0.0001.Diagnostics 2020, 10 x FOR PEER REVIEW 5 of 14 

 

 

 

 
Figure 2. Three-dimensional patch-based training scheme explanation (upper) and Improved U-Net++ architecture (bottom). 
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mentation on 388 patients from public datasets including HCP, ADNI, PPMI, AIBL, and 
IXI, and two experts performed manual correction to produce a fine-tuned gold standard. 
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For the training dataset, we performed Desikan–Killiany atlas-based FreeSurfer seg-
mentation on 388 patients from public datasets including HCP, ADNI, PPMI, AIBL, and IXI,
and two experts performed manual correction to produce a fine-tuned gold standard.
Among the entire data set, we first randomly shuffled and set aside 49 datasets for testing.
The remaining data were then categorized for training and validation (9.5:0.5). The train-
ing data were constructed by extracting the three-dimensional patch image using uni-
form sampling (96 × 96 × 96) for the individual ground truth data (Figure 2, upper).
With the aforementioned training parameters, the model was iteratively trained 500,000
times. The batch size was set to 1, which was the limit that could be handled by the
11 GB RAM of one RTX 2080Ti GPU. For comparison, FreeSurfer software (version 7.0.0,
https://surfer.nmr.mgh.harvard.edu) was used to identify subregional brain volumes.

2.2.3. Postprocessing

To increase the validity of the structures, we further applied connected-component
labeling [14]. No other postprocessing was applied and volumes with regard to the original
MRI were computed for the analysis. The Dice similarity coefficient (DSC) was computed
to note the segmentation validity of our method against gold-standard labels edited using
FreeSurfer (Table S2).

2.3. Statistical Analysis

All analyses were performed using R version 4.0.0, and R package “irr” was used
to compute intraclass correlation (ICC). ICC was computed to provide the degree of
similarities between repeated volume measurements of the same subjects [15]. Two-way
ICC correspondence and agreement were computed for repeated measure consistency
and multisite reliability, respectively. Higher ICC values represent better compliance
across repeated or multisite measures, and ICC values of 0.75 or higher were suggested
to be reliable [15]. Normative data were constructed using data from sites O3 and K1–3.
In summary, a total of 993 MRI scans were available for normative data, including ages
from 18 to 96. Analysis of variance was conducted to identify statistical differences in
demographic characteristics between our constructed normative data, MCI, and dementia.
A generalized linear regression model was used to compute the adjusted mean difference
in eight regional brain volumes for MCI and dementia when compared to the normative
group. From among the entire dataset, age subgroup analyses were conducted to identify
age-independent differences between groups in intracranial volumes. The analyses for the
age subgroup were only conducted for the 71–80 years and 81–100 years groups due to
their limited sample size. Each regression model was adjusted for age at MRI, sex, site,
and intracranial volume.

3. Results
3.1. Repeated Measure Consistency

The ICC computed for test-retest MRI of the 57 subjects is shown in Figure 3. Both-
FreeSurfer and our proposed method achieved ICC > 0.75. In all eight sub-regions investi-
gated, our proposed method showed higher ICC values than those from FreeSurfer.

3.2. Multicenter Reliability

The ICC measured for ten multicenter data of three subjects is shown in Figure 4.
Although our proposed method was inferior in ICC values for the frontal, parietal, temporal,
and cingulate volumes, the ICC from both methods was above 0.75 for frontal, parietal,
temporal, and occipital grey matter volume (GMV) in both hemispheres, the left insula, the
right hippocampus, and the right lateral ventricle. Our proposed method further showed
ICC > 0.75 in the left lateral ventricle and right insula areas.

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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3.3. Normative Distribution for Adults Ages between 19 and 96 Years

The demographic characteristics of normative modeling are described in the upper
left in Table 1. The mean age of the cognitively normal group was 51.4 years, with 64.1%
females. The mean years of education was 12.1 years, and the mean intracranial volume
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(ICV) was 1519.3 mL. The bottom part of Table 1 describes the participants’ characteristics
across the five centers.

Table 1. Participants description for cognitive normal brain ages from 18 to 96 years.

Cognitive Normal n = 992 MCI n = 524 Dementia
n = 163 p

Age, years 51.4 ± 20.9 75.2 ± 8.2 78.9 ± 8.4 <0.001
CDR 0.0 ± 0.0 0.5 ± 0.0 1.3 ± 0.6 <0.001

CDR Sum of box 0.1 ± 0.3 1.8 ± 1.2 7.2 ± 3.5 <0.001
Female, % (n) 64.1 (636) 67.7 (354) 70.6 (115)

Education, years 12.1 ± 4.2 9.5 ± 5.2 8.5 ± 5.6 <0.001
ICV, mL 1519.3 ± 136.5 1487.9 ± 132.5 1476.5 ± 137.3 <0.001

Cognitive normal across centers
Site K1 Site K2 Site K3 Site O3 Site O2

n = 647 n = 62 n = 29 n = 198 n = 57
Age, years 61.4 (13.8) 62.8 (7.2) 64.0 (8.2) 21.2 (1.8) 23.1 (2.3)

Age, min-max 18–96 51–82 49–78 18–26 19–30
Female, % (n) 65.8% (426) 75.8% (47) 34.5% (10) 61.6% (122) 65.8% (30)

Education,
years 12.1 (4.4) 10.9 (4.3) 11.4 (4) 14.0 (0.0)

ICV, mL 1501.9 (131.5) 1470.6 (113.9) 1500.7 (130.4) 1571.4 (135.9) 1598.0
(142.2)

Cognitive normal constitutes data from centers K1-3 and O2-3. Mild cognitive impairment (MCI) and dementia participants were all
recruited from Site K1. CDR, clinical dementia rating; ICV, intracranial volume; Site K1, Catholic University of Korea Saint Marry Hospitals;
Site K2, Wonkwang University hospital; Site K3, Catholic University of Korea Saint Vincent’s hospital; Site O3 1000 Functional Connectomes
Project (FCP) at Beijing; Site O2, China 57 for the first visit.

The trend of sub-regional brain volume and age group is shown in Figure 5 for
the left and right hemispheres. The frontal lobe and lateral ventricle area showed a
consistent decrease or increase in volume with age from 10 s to 90 s in both the left and
right hemispheres. Other areas of interest, temporal, parietal, occipital, cingulate, insula,
and hippocampus, presented increasing trend in volume until its ages of 30 s and then
decreased with age.

3.4. Usage of Normative Modeling: Differences of MCI and Dementia in Volumes

Adjusted volume differences of MCI and dementia compared to the constructed
multisite normative data are shown in Table 2. Normative data gathered from five centers
successfully identified adjusted mean differences in volumes from both MCI and dementia.
Significance levels after adjusting for age at MRI, sex, site information, and ICV were
mostly p < 0.001, except for the left frontal GMV (p = 0.002), left occipital GMV (p = 0.009),
and right occipital (p = 0.001) in the MCI group compared to the constructed normative
group. Adjusted mean differences in volumes for MCI range from −15 mL for the left insula
to +5.68 mL for the left lateral ventricle, where the larger ventricle is often related to age or
pathology. For the dementia group, the adjusted volume difference was from −0.36 mL
for the left insula and +9.63 mL for the left lateral ventricle. Furthermore, our results also
presented a smooth trend in volumes from 10 to 100 years, as shown in Figure 5.
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Figure 5. Distribution of regional gray matter (GM) volume (mL) for multicenter normative data of East Asians. Participant
ages range from 18 to 96 years and are marked for left (LH, black) and right (RH, gray) hemispheres. Lat. Ventricle,
lateral ventricle area volume.

Table 2. Adjusted mean atrophy in regional brain volume for mild cognitive impairment (MCI) and
dementia when compared to the cognitive normal reference group.

All Age Groups

MCI, mL p † Dementia, mL p †

Frontal L −0.93 ± 0.30 0.002 −3.21 ± 0.43 <0.001
R −1.15 ± 0.30 <0.001 −3.25 ± 0.44 <0.001

Temporal L −2.18 ± 0.21 <0.001 −5.03 ± 0.31 <0.001
R −2.44 ± 0.22 <0.001 −4.76 ± 0.32 <0.001

Parietal L −1.23 ± 0.21 <0.001 −2.74 ± 0.31 <0.001
R −1.60 ± 0.22 <0.001 −3.37 ± 0.32 <0.001

Occipital L −0.33 ± 0.13 0.009 −1.00 ± 0.18 <0.001
R −0.42 ± 0.13 0.001 −1.01 ± 0.18 <0.001

Insula L −0.15 ± 0.03 <0.001 −0.36 ± 0.05 <0.001
R −0.22 ± 0.03 <0.001 −0.51 ± 0.05 <0.001

Cingulate L −0.30 ± 0.06 <0.001 −0.68 ± 0.08 <0.001
R −0.41 ± 0.06 <0.001 −0.74 ± 0.09 <0.001

Hippocampus L −0.37 ± 0.02 <0.001 −0.66 ± 0.04 <0.001
R −0.39 ± 0.03 <0.001 −0.65 ± 0.04 <0.001

Lateral ventricle L 5.68 ± 0.52 <0.001 9.63 ± 0.76 <0.001
R 5.12 ± 0.45 <0.001 8.87 ± 0.66 <0.001

† Adjusted mean difference was calculated using a general linear regression model including co-
variates, age at magnetic resonance imaging (MRI) scan, sex, site information, and intracranial
volume (ICV).
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3.5. Usage of Normative Modeling: Group Differences in Volumes within Age Subgroups

A similar analysis in age subgroups for 71–80 years and 81–100 years is shown in
Table 3. When compared to the cognitive normal controls, the lower volume in the dementia
group remained significant for age subgroups of 71–80 and 81–100 years (p < 0.05) after
adjustments. The difference in MCI, however, slightly differed when an age-subgroup
analysis was conducted. The MCI participants in their 71–100 years old showed no
difference in the left occipital (71–80 years for p = 0.867; p = 0.532 for and 81–100 years)
and in the right occipital (p = 0.238 for 71–80 years and p = 0.213 for 81–100 years) lobes.
In addition, MCI participants in their 81–100 years further presented no difference in the
insula in both hemispheres (p = 0.077 and p = 0.082 for the left and right areas, respectively)
and the left cingulate area (p = 0.120) when compared to the same age groups of cognitively
normal participants.

Table 3. Age categorized analysis.

Age 71–80
p † Age 81–100

p †

MCI p † Dementia MCI p † Dementia

Frontal L −1.52 ± 0.45 0.001 −3.84 ± 0.64 <0.001 −1.64 ± 0.81 0.043 −3.59 ± 0.87 <0.001
R −1.61 ± 0.47 0.001 −3.41 ± 0.68 <0.001 −1.82 ± 0.79 0.023 −3.50 ± 0.86 <0.001

Temporal L −1.51 ± 0.34 <0.001 −4.14 ± 0.49 <0.001 −2.26 ± 0.64 0.001 −4.21 ± 0.69 <0.001
R −1.79 ± 0.36 <0.001 −4.30 ± 0.52 <0.001 −2.63 ± 0.64 <0.001 −3.80 ± 0.69 <0.001

Parietal L −0.61 ± 0.31 0.047 −2.16 ± 0.44 <0.001 −1.62 ± 0.63 0.011 −2.84 ± 0.68 <0.001
R −0.75 ± 0.31 0.015 −2.41 ± 0.44 <0.001 −1.45 ± 0.54 0.008 −2.36 ± 0.59 <0.001

Occipital L −0.03 ± 0.20 0.867 −0.60 ± 0.29 0.040 −0.40 ± 0.34 0.238 −0.88 ± 0.36 0.016
R −0.12 ± 0.19 0.532 −0.72 ± 0.28 0.009 −0.40 ± 0.32 0.213 −0.83 ± 0.34 0.017

Insula L −0.30 ± 0.09 0.002 −0.78 ± 0.14 <0.001 −0.28 ± 0.16 0.077 −0.46 ± 0.17 0.008
R −0.44 ± 0.10 <0.001 −0.85 ± 0.14 <0.001 −0.31 ± 0.18 0.082 −0.48 ± 0.19 0.015

Cingulate L −0.20 ± 0.05 <0.001 −0.47 ± 0.08 <0.001 −0.16 ± 0.10 0.120 −0.25 ± 0.11 0.023
R −0.22 ± 0.05 <0.001 −0.52 ± 0.08 <0.001 −0.23 ± 0.10 0.023 −0.44 ± 0.11 <0.001

Hippocampus
L −0.30 ± 0.04 <0.001 −0.57 ± 0.06 <0.001 −0.34 ± 0.07 <0.001 −0.50 ± 0.08 <0.001

R −0.28 ± 0.05 <0.001 −0.53 ± 0.07 <0.001 −0.36 ± 0.08 <0.001 −0.45 ± 0.08 <0.001
Lateral

ventricle L 4.84 ± 1.01 <0.001 10.45 ± 1.44 <0.001 5.00 ± 1.90 0.009 6.05 ± 2.04 0.003

R 4.14 ± 0.87 <0.001 8.39 ± 1.25 <0.001 6.37 ± 1.67 <0.001 7.51 ± 1.80 <0.001
† Adjusted mean difference was calculated using a general linear regression model including covariates, age at magnetic resonance imaging
(MRI) scan, sex, site information, and intracranial volume (ICV). p-values numbers marked in bold indicate at the significant level of 0.05.
MCI, mild cognitive impairment.

4. Discussion

This study sought to construct normative brain volumes using MRI collected from
multiple centers using our in-house deep learning-based segmentation tool for eight regions
of interest (ROIs), frontal, parietal, temporal, occipital, cingulate, insula, hippocampus,
and lateral ventricle in the left and right hemispheres. Consistency for repeated measures
and reliability for multiple sites were evaluated and compared to those from FreeSurfer.
Our proposed segmentation method presented high ICC (>0.75) in general for both repeated
measure reliability and multisite reliability (except for the left hippocampus). Our proposed
method outperformed FreeSurfer for the insula, hippocampus, and ventricles in multisite
reliability and for all eight ROIs in repeated measure consistency. Our multisite-gathered
normative data further indicated that the data could be used to identify subregional vol-
umetric differences in MCI and dementia. These large-scale normative data processed
through the segmentation tool customized for the multicenter study could help to under-
stand developmental, aging, and pathological changes in the brain.

For the repeated measure reliability investigation, FreeSurfer and our proposed
method both achieved ICC values all higher than 0.75. Our proposed method further
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presented higher ICC than FreeSurfer in all ROIs we investigated. As noted above, a higher
ICC means a higher correlation between two independent measurements in a series of
data. Repeated MRI used in this study was acquired in a short time interval (<6 weeks),
where meaningful biological changes were not expected. Therefore, the measurements
obtained from these repeated MRI should indicate no significant differences from each
other. Our results indicated that both methods we tested, FreeSurfer and our proposed
method, achieved good agreement in terms of ICC (>0.75) and further noted that our
proposed method achieved higher agreement than FreeSurfer.

In the multicenter reliability investigation, we found that the ICC was generally similar
between our proposed method and FreeSurfer for relatively larger areas, such as the frontal,
parietal, temporal, occipital, and cingulate volumes. In addition, our proposed method
presented higher ICC than from FreeSurfer in smaller regions of interest, including the
insula, hippocampus, and lateral ventricle area in both the left and right hemispheres.
This difference in ICC, which is known to be sensitive to intra-method variances as well as
inter-method correlation, also reflected improved measurement reliability. Our proposed
method achieved high ICC (>0.75), suggesting a cutoff for a good agreement [15], for most
ROIs, except for the left hippocampus [15].

Our results indicate that our proposed tool can be used to construct normative data
using a multicenter MRI. In this study, we gathered normative data from five different sites
with a wide age range from 18 to 96 years. Our mean ICV (1519.3 mL) was compatible with
those reported previously (1501.1 mL for older individuals [16]; 1291.0 mL and 1425.0 mL
for females and males, respectively [17]). The trend of our normative brain volume across
ages is well in line with previous age-associated reports as follows: The decreasing trend
of GMV with age has also been well documented in several previous studies [18–20].
The hippocampus trajectory across age groups has been reported to be curved across the
ages from the 20 s to 100 s [21], and our data showed a similar trend using multicenter
gathered normative data (Figure 5).

Our investigation further indicated that the multisite normative data could be used to
identify differences in MCI and dementia groups for all ROIs. After adjusting for age at
MRI, sex, site information, and ICV, all ROIs were significantly smaller than the reference
normative data except for the lateral ventricles. The ventricle areas were significantly larger
than the normative group, as the larger ventricle often presents a smaller brain tissue area.

We also conducted age-subgroup analyses to minimize the confounding effects of
age, where MCI and dementia tend to have an older age than in cognitively normal
participants (e.g., mean ages 51.4 ± 20.9, 75.2 ± 8.2, and 78.9 ± 8.4 years for cognitive
normal, MCI, and dementia groups, respectively). The age subgroup analyses of both
71–80 and 81–100 years consistently revealed smaller volumes in the dementia than the
cognitive normal for all the ROIs we investigated (p < 0.05 after adjustments). In addition,
we also showed that the MCI group also had significantly (p < 0.05 after adjustments)
smaller volumes in most structures, except for the occipital lobe in both age subgroups
and the insula and left cingulate area in older age groups of 81–100 years. These results
are in line with previous studies reporting that AD-related atrophy is mostly observed
in the temporal (mostly medial temporal) area and the hippocampus, followed by the
parietal and frontal areas [22]. The difference in the occipital lobe was not significant in our
age subgroup analysis, which is also in good agreement with a previous study reporting
marginal or no age-related atrophy in the occipital lobe [23]. The older age group also
did not show differences in both the insula and left cingulate areas, where all the areas
marginally showed dementia-related changes [22–24].

The limitations of the present study must be acknowledged before drawing conclu-
sions. First, more segmentation methods have to be incorporated to investigate which is the
best method for multisite normative brain MRI studies. Second, further validation datasets
may be needed to better understand the capacity and limitations of using multicenter data
to construct multisite normative groups. Third, our results may not be applicable to other
imaging modalities, such as diffusion-weighted MRI or CT.
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5. Conclusions

We have presented evidence that multisite brain MRI using a deep learning-based
segmentation tool could be used to construct normative brain volume and can identify
subregional volumetric differences in MCI and dementia participants. The utilization of
multisite data to construct reliable and consistent normative volumes from brain MRI
volume could advance brain science and research effectively. A normative MRI dataset
could be acquired from multicenter studies and could advance brain science and research
effectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4418
/11/1/13/s1, Table S1: Cognitive normal (CN), mild cognitive impairment (MCI), and dementia by
age group and Table S2: Mean and standard deviation of dice similarity coefficients (DSC) between
the proposed method and the gold-standard (manually corrected from FreeSurfer).
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