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Abstract: To evaluate the effect of radiation dose reduction on image quality and diagnostic con-
fidence in contrast-enhanced whole-body computed tomography (WBCT) staging. We randomly
selected March 2016 for retrospective inclusion of 18 consecutive patients (14 female, 60 ± 15 years)
with clinically indicated WBCT staging on the same 3rd generation dual-source CT. Using low-dose
simulations, we created data sets with 100, 80, 60, 40, and 20% of the original radiation dose. Each set
was reconstructed using filtered back projection (FBP) and Advanced Modeled Iterative Reconstruc-
tion (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength 1–5, resulting in 540 datasets
total. ADMIRE 2 was the reference standard for intraindividual comparison. The effective radiation
dose was calculated using commercially available software. For comparison of objective image
quality, noise assessments of subcutaneous adipose tissue regions were performed automatically
using the software. Three radiologists blinded to the study evaluated image quality and diagnostic
confidence independently on an equidistant 5-point Likert scale (1 = poor to 5 = excellent). At 100%,
the effective radiation dose in our population was 13.3 ± 9.1 mSv. At 20% radiation dose, it was
possible to obtain comparably low noise levels when using ADMIRE 5 (p = 1.000, r = 0.29). We
identified ADMIRE 3 at 40% radiation dose (5.3 ± 3.6 mSv) as the lowest achievable radiation dose
with image quality and diagnostic confidence equal to our reference standard (p = 1.000, r > 0.4). The
inter-rater agreement for this result was almost perfect (ICC ≥ 0.958, 95% CI 0.909–0.983). On a 3rd
generation scanner, it is feasible to maintain good subjective image quality, diagnostic confidence,
and image noise in single-energy WBCT staging at dose levels as low as 40% of the original dose
(5.3 ± 3.6 mSv), when using ADMIRE 3.

Keywords: CT; whole-body staging; radiation dose; 3rd generation dual-source scanner; iterative
reconstruction (IR); Filtered Back Projection (FBP); Advanced Modeled Iterative Reconstruction
(ADMIRE); image reconstruction
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1. Introduction

Malignant diseases are the most common indication for computed tomography (CT)
imaging [1]. In recent years, there has been a growing concern regarded increased radiation
exposure by radiological examinations and the contribution of CT scans especially [2].
Recent data show that although the absolute number of CT scans aggregate only to ap-
proximately 9% of all radiological exams, their contribution to the patient’s total radiation
exposure may be as high as 66% [3]. Since the frequency of CT examinations per person per
year has risen in the last decade, managing radiation exposure according to the “as low as
reasonably achievable” (ALARA) principle has become substantial in clinical routine, not
least to protect organs with higher sensitivity from deterministic damages like the eye lens
(max. 15 mSv/a) [3]. Nonetheless, repeated CT examinations may increase the stochastic
risk of developing long-term damages like secondary malignancies even at lower doses [4].
With newer treatments and generally rising life expectancies, this still unfortunately mainly
affects oncological patients who usually require regular follow-up staging CTs and are
known to have elevated risks for leukemia or thyroid cancer [5]. Furthermore, previous
studies have shown a significant rise in lifetime mortality in oncological patients from
radiation-induced secondary malignancies [6]. Strategies for low dose CT have hence
been the topic of several studies, with automated tube voltage selection and tube cur-
rent modulation, as well as both low kV and low tube approaches showing promising
results [7–10]. A common remaining obstacle though, is their association to significantly
higher levels of image noise, potentially impairing image quality and diagnostic confi-
dence [11,12]. Therefore, low dose CT protocols need to provide sufficient image quality
to be usable for whole-body CT (WBCT) staging. In contrast to filtered back projection
(FBP), the widespread adoption of iterative reconstruction (IR) algorithms has opened
up a multitude of approaches for low dose CT image acquisition due to their superior
noise and artifact reduction [13]. Other studies with a similar methodological approach
to our study in patients with suspected cervical abscesses, and pulmonary angiography
for suspected pulmonary embolisms respectively, have shown a large potential for image
quality improvements at low tube acquisition in combination with iterative reconstruction
techniques on 3rd generation CT scanners [14,15].

While there are many studies pertaining to low dose CT imaging, systematic intra-
individual studies investigating the dose reduction potential are lacking. Therefore, we
aimed to systematically compare intraindividual WBCT staging on a 3rd generation dual-
source scanner and to evaluate the effects of simulated low tube acquisition in combination
with the use of FBP, as well as the statistical iterative image reconstruction algorithm
ADMIRE® (Advanced Modeled Iterative Reconstruction Algorithm, introduced by Siemens
Healthineers in late 2013) on low-contrast detectability, CT image quality and diagnostic
confidence [13].

2. Materials and Methods
2.1. Population

The institutional ethic committee of university hospital of Tuebingen approved this
study (approval number 414/2017BO2) and waived the requirement for informed consent.
We randomly chose March 2016 as the inclusion window and selected 30 consecutive
patients. Out of these, we included 18 patients (mean age 60 ± 15 years, 14 female) with
clinically indicated WBCT staging. We collected biometrical details such as height and
weight at the time of the examination from our clinical information system and calculated
body-mass-index (BMI) values for comparison. For homogeneity of data, reasons for
exclusion (n = 12) were dual-energy imaging, no contrast-enhanced image acquisition, and
patient age <18 years.

2.2. Radiation Exposure

We collected radiation exposure values from the patient protocols, particularly the
dose length product (DLP), the CT volume dose index (CTDIvol), the tube voltage (kV), and



Diagnostics 2021, 11, 118 3 of 13

tube current-time product (mAs). We determined the total effective radiation dose using the
commercial software Radimetrics (ver. 2.9, Bayer Medical Care, Leverkusen, Germany), a
certified dose tracking and management tool implementing the weighting factors proposed
in the International Commission on Radiological Protection (ICRP) Publication 103 [16].

2.3. Image Acquisition Protocol

Every staging CT was performed on the same 3rd-generation dual-source CT Scanner
(SOMATOM FORCE, Siemens Healthineers, Forchheim, Germany), using a stellar detector
(StellarInfinity) with improved spatial resolution, image quality, and dose efficiency [17].
We employed our institute’s standard single-energy WBCT staging protocol (base of the
skull–middle femur) with attenuation-based tube current modulation (CARE Dose4D,
reference mAs 180) and automatic tube voltage selection (80–120 kV, reference kV 110). For
WBCT staging, matrix size was set to 512, the field of view was 50 cm, collimation was
0.6 × 192 × 3.0, gantry rotation time was 0.5 s, pitch factor was 0.6, and slice thickness,
as well as increment were set to 3 mm. For scanning, patients were positioned on their
backs feet-first with arms raised above their head. A contrast agent (Imerone 400; Bracco,
Milan, Italy) was applied with adaption to body weight (body weight in g + 15 = amount
of contrast agent in mL) through a peripheral venous cannula using an automated power
injector at a flow rate of 2.2 mL/s (CT Stellant, Medrad, Indianola, PA, USA) followed by a
chaser of 50 mL saline. Scanning was performed during the portal venous phase.

2.4. Image Reconstruction Parameters

For reconstruction, we used the software solution ReconCT ver. 14.2.0.40998 (Siemens
Healthineers, Forchheim, Germany), that additionally allows for seamless low dose simula-
tion by adding overall image noise relative to a percentual radiation dose reduction [15]. To
facilitate reading and intraindividual comparison, we chose to generate datasets with the
visual impression of image noise at 100, 80, 60, 40, and 20% radiation dose. At these five
simulated dose levels, axial, coronal, and sagittal reformations were reconstructed from the
raw data using a medium soft kernel (Bf36d) and employing filtered back projection (FBP),
as well as Advanced Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers,
Forchheim, Germany) strength 1, 2, 3, 4, and 5, resulting in a total of 540 datasets (30 re-
constructions per patient). The computation-intensive ADMIRE algorithm processes the
raw data multiple times to reduce image noise and improve low-contrast detectability, as
opposed to the more traditional FBP algorithm, which processes the raw data only once.
This results in an average dose reduction potential of 41% for ADMIRE reconstructions [13].
Figure 1 illustrates a detailed flow chart of the image acquisition and reconstruction process.

Since our institute uses ADMIRE 2 as the standard reconstruction method for single-
energy WBCT staging in clinical routine, we defined 100% radiation dose ADMIRE 2 as the
reference standard for intraindividual comparison.

2.5. Objective Analysis of Image Quality

Image noise was used for comparison of objective image quality. Image noise was
defined as the standard deviation of Hounsfield units (HU) taken from regions of interest
(ROI) placed in homogenous subcutaneous adipose tissue to account for comparability.
To further limit potential mistakes during measurements, identification of average noise
estimates was performed automatically by a previously established algorithm [18]. This
algorithm automatically identifies subcutaneous adipose tissue, randomly selects five ROIs
with 1 cm2 circumference and high levels of anatomical coherence, and estimates their
average noise levels. Figure 2 is a simplified scheme of the algorithm’s workflow.
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2.6. Subjective Analysis of Image Quality

To minimize recall bias, three radiologists (AB, FP, SA) with different levels of experi-
ence level (3–8 years) independently evaluated the anonymized CT datasets in batches of
30 regarding image quality and diagnostic confidence with 6 weeks between each block
of reading. To ensure blinded reading, a fourth radiologist (MW) randomized the CT
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datasets in advance and kept the technical background information hidden. For the sub-
jective analysis, the CT scans were primarily displayed in a soft tissue window setting
(Center 50 HU, Width 350 HU). Individual window adjustment was allowed. We rated
two different regions (neck/thorax, abdomen) using the European Guidelines on Quality
Criteria in Computed Tomography and chose to focus on one criterion for soft tissue
and parenchymal structures, and one criterion for skeletal structures in each region re-
spectively [19]. The analysis of the neck/thorax thus had to consider the visually sharp
reproduction of the cervical and thoracic spine and the anterior mediastinal structures.
For the abdomen, the criteria were a visually sharp reproduction of the lumbar spine, as
well as the liver parenchyma with intrahepatic vessels. An equidistant 5-point Likert scale
was used (5 = excellent, 4 = good, 3 = average, 2 = below average, 1 = poor). Grading
for diagnostic confidence was performed in the same fashion. To facilitate comparison,
we chose to use one grade for overall image quality and one grade for overall diagnostic
confidence, each representing the median of the individual regional results.

2.7. Statistical Analysis

We used IBM® SPSS® Statistics Version 25.0.0.1 for Windows (Armonk, NY, USA)
for statistical analysis. The normality of the data was tested using a Shapiro-Wilk test.
Normally distributed values were given as mean ± standard deviation, non-normally
distributed values as median and range. For inter-rater-agreement, an intraclass correla-
tion coefficient (ICC) was calculated [20]. ICC values of 0–0.2 were considered as slight,
0.21–0.4 as fair, 0.41–0.6 as moderate, 0.61–0.8 as substantial, and 0.81–1.00 as almost perfect
levels of agreement.

For comparison of qualitative reading scores and quantitative assessments, further
statistical testing followed using ANOVA for normally distributed values, or the Friedman
test for non-normally distributed values, respectively. post-hoc Dunn-Bonferroni tests
ensued with proper alpha correction. Thus, a p-value ≤ 0.05 could be considered statisti-
cally significant. We further calculated Pearson’s r as a measure for effect size and defined
r-values from 0.1 to 0.3 as small, 0.3 to 0.7 as medium, and ≥0.7 as large effect size.

3. Results
3.1. Population and Radiation Dose

At 100% radiation dose, we estimated a mean effective radiation dose (ED) of 13.3 ± 9.1 mSv.
We calculated ED values for 80% radiation dose to be at 10.7 ± 7.2 mSv, and for 60% radiation
dose at 8.3 ± 5.7 mSv. At 40% radiation dose, ED was calculated to be at 5.3 ± 3.6 mSv, and 20%
of the original radiation dose levels at 2.7 ± 1.8 mSv. Table 1 shows an overview of our study
population and estimated ED.

3.2. Objective Analysis of Image Quality

Table 2 shows the measured noise values at the different radiation dose percentages
and reconstructions. There were significant interactions between the noise levels (Friedman-
Test: Chi-Square (29) = 505.97, p < 0.001).

There were no significant differences between the measured noise values of the
reconstructions (p > 0.215) at 100% radiation dose. In comparison to 100% ADMIRE 2,
there were also no significant differences to the noise levels measured at 80% radiation
dose (p ≥ 0.728). At 60% radiation dose, only FBP yielded significantly higher noise values
(p ≥ 0.007) with effect size indicating a strong effect (r > 0.7). At 40% radiation dose, only
ADMIRE 1 and FBP showed significantly higher values of image noise (p ≤ 0.002; r > 0.7),
while at 20% radiation dose, every group but ADMIRE 5 yielded significantly higher noise
values (p ≤ 0.033; r > 0.7). Figure 3 is a visualization of the mean image noise levels of the
different combinations of reconstruction methods and simulated radiation dose.
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Table 1. Study Population and Radiation Dose.

Parameter Male Female Total

Patient Population
Absolute (n) 4 14 18
Reconstructions (n) 120 420 540
Mean age (years) 62 ± 25 60 ± 14 60 ± 15
Mean BMI (kg/m2) 26 ± 2 30 ± 7 30 ± 6

Diagnosis (n)
breast cancer 11 11
melanoma 2 1 3
squamos cell carcinoma 1 1 2
oropharyngeal carcinoma 1 1
lymphoma 1 1

Image Acquisistion parameters
kV 100.00 ± 00.0 115.71 ± 22.08 112.22 ± 20.52
mAs 183.25 ± 16.01 218.43 ± 50.51 210.61 ± 47.19
Mean CTDIvol (mGy) 7.37 ± 0.65 15.03 ± 10.52 13.33 ± 9.8
Mean DLP (mGy*cm) 570.85 ± 59.85 1229.8 ± 905.42 1083.37 ± 840.93

Mean Estimated Effective Radiation Dose (mSv)
100% 7.9 ± 1.4 14.9 ± 9.8 13.3 ± 9.1
80% 6.3 ± 1.1 11.9 ± 7.8 10.7 ± 7.2
60% 4.7 ± 0.8 8.9 ± 5.9 8.0 ± 5.4
40% 3.2 ± 0.6 6.0 ± 3.9 5.3 ± 3.6
20% 1.6 ± 0.3 3.0 ± 2.0 2.7 ± 1.8

BMI = body-mass-index; CTDIvol = CT volume dose index; DLP = dose length product.

Table 2. Noise Values at Radiation Dose Levels.

Radiation Dose (%) ED (mSv) Reconstruction Noise (SD of HU)
p r

vs. 100% ADMIRE 2

100 13.3 ± 9.1

FBP 10.51 ± 1.30 1.000 0.44
ADMIRE 1 9.22 ± 1.12 1.000 <0.1
ADMIRE 2 8.98 ± 2.62
ADMIRE 3 7.06 ± 0.85 1.000 0.38
ADMIRE 4 6.14 ± 1.25 1.000 0.58
ADMIRE 5 4.62 ± 0.58 0.215 >0.7

80 10.7 ± 7.2

FBP 11.92 ± 1.53 1.000 >0.7
ADMIRE 1 10.46 ± 1.33 1.000 0.42
ADMIRE 2 9.18 ± 1.31 1.000 <0.1
ADMIRE 3 7.95 ± 1.02 1.000 0.18
ADMIRE 4 6.88 ± 1.38 1.000 0.46
ADMIRE 5 5.14 ± 0.66 0.728 >0.7

60 8.0 ± 4.5

FBP 13.74 ± 1.86 0.007 >0.7
ADMIRE 1 12.08 ± 1.63 0.491 >0.7
ADMIRE 2 10.55 ± 1.61 1.000 0.46
ADMIRE 3 9.18 ± 1.24 1.000 <0.1
ADMIRE 4 7.92 ± 1.65 1.000 0.21
ADMIRE 5 5.86 ± 0.80 1.000 0.62

40 5.3 ± 3.6

FBP 16.78 ± 2.37 <0.001 >0.7
ADMIRE 1 14.65 ± 2.18 0.002 >0.7
ADMIRE 2 12.95 ± 2.09 0.090 >0.7
ADMIRE 3 11.27 ± 1.73 1.000 0.60
ADMIRE 4 9.58 ± 2.02 1.000 0.19
ADMIRE 5 7.00 ± 1.09 1.000 0.40

20 2.7 ± 1.8

FBP 23.85 ± 3.61 <0.001 >0.7
ADMIRE 1 20.97 ± 3.14 <0.001 >0.7
ADMIRE 2 18.33 ± 3.39 <0.001 > 0.7
ADMIRE 3 15.85 ± 2.45 <0.001 >0.7
ADMIRE 4 13.55 ± 2.85 0.033 >0.7
ADMIRE 5 9.98 ± 1.53 1.000 0.29

ED = Effective Radiation Dose; SD = Standard Deviation; HU = Hounsfield Units.
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3.3. Subjective Analysis of Image Quality
3.3.1. Overall Image Quality

There were significant interactions between the subjective ratings of the overall image
quality (Friedman-Test: Chi-Square (29) = 485.04, p < 0.001). Reducing radiation dose
to 60% resulted in good overall image quality (4; overall IQR 3-5) for ADMIRE 1, 2, 3,
4, and 5. Only FBP achieved significantly lower grades (p = 0.003, r > 0.7). At 40%
radiation dose, ADMIRE 3 managed to perform comparably well (4; IQR 4–5) with no
significant differences to our reference standard, the other groups were rated significantly
lower (p > 0.001, r > 0.7). The overall image quality at 20% radiation dose generally
received significantly lower grades (p < 0.001, r > 0.7) in all groups. Inter-rater-agreement
concerning the overall image quality was substantial for 100% radiation dose ADMIRE 5
(ICC = 0.750, 95% CI 0.457–0.899) and almost perfect for all other groups (ICC ≥ 0.885,
95% CI 0.748–0.953). For further details, see Table 3.

3.3.2. Overall Diagnostic Confidence

There were significant interactions between the subjective ratings of the overall di-
agnostic confidence (Friedman-Test: Chi-Square (29) = 474.67, p < 0.001). As with overall
image quality, diagnostic confidence was rated average (3; IQR 3–4) at 60% radiation
dose for FBP, ranking significantly lower (p = 0.002, r > 0.7) than the other groups. In
concordance with our previous results, overall diagnostic confidence at 40% radiation
dose was only comparably good (4; IQR 4–5) in ADMIRE 3 (p = 1.000). The other groups
received significantly lower grades (p < 0.002, r > 0.7). At 20% radiation dose, overall
diagnostic confidence dose was rated significantly lower (p < 0.001, r > 0.7) in all groups
when compared to 100% ADMIRE 2. Inter-rater-agreement concerning the diagnostic
confidence was almost perfect in all groups (ICC ≥ 0.915, 95% CI 0.814–0.966). See Table 4
for further details.
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Table 3. Overall Image Quality.

Radiation Dose (%) ED (mSv) Reconstruction
Rating ICC ICC: 95% CI p r

Median IQR Average
Measure

Lower
Bound

Upper
Bound vs. 100% ADMIRE 2

100 13.3 ± 9.1

FBP 5 4–5 0.942 0.874 – 0.976 1.000 <0.1
ADMIRE 1 5 4–5 0.896 0.775 – 0.958 1.000 <0.1
ADMIRE 2 5 4–5 1.000
ADMIRE 3 5 4–5 1.000 1.000 <0.1
ADMIRE 4 5 4–5 0.896 0.775 – 0.958 1.000 <0.1
ADMIRE 5 5 4–5 0.750 0.457 – 0.899 1.000 <0.1

80 10.7 ± 7.2

FBP 4 3–5 0.983 0.962 – 0.993 0.971 >0.7
ADMIRE 1 4 3–5 0.980 0.957 – 0.992 1.000 0.68
ADMIRE 2 4 4–5 0.968 0.930 – 0.987 1.000 0.48
ADMIRE 3 4 4–5 0.970 0.935 – 0.988 1.000 0.46
ADMIRE 4 4 3–5 0.950 0.891 – 0.980 1.000 0.60
ADMIRE 5 4 3–5 0.956 0.904 – 0.982 1.000 0.68

60 8.0 ± 4.5

FBP 3 3–4 0.968 0.930 – 0.987 0.003 >0.7
ADMIRE 1 4 3–4 0.961 0.916 – 0.984 0.542 >0.7
ADMIRE 2 4 4–5 0.949 0.889 – 0.979 1.000 0.56
ADMIRE 3 4 4–5 0.958 0.909 – 0.983 1.000 0.54
ADMIRE 4 4 3–4 0.885 0.748 – 0.953 1.000 0.68
ADMIRE 5 4 3–4 0.907 0.798 – 0.962 0.542 >0.7

40 5.3 ± 3.6

FBP 2 1–2 0.968 0.930 – 0.987 <0.001 >0.7
ADMIRE 1 3 2–3 0.961 0.916 – 0.984 <0.001 >0.7
ADMIRE 2 3 3–4 0.949 0.889 – 0.979 <0.001 >0.7
ADMIRE 3 4 4–5 0.958 0.909 – 0.983 1.000 0.46
ADMIRE 4 3 2–3 0.885 0.748 – 0.953 <0.001 >0.7
ADMIRE 5 3 2–3 0.907 0.798 – 0.962 <0.001 >0.7

20 2.7 ± 1.8

FBP 2 1–2 0.974 0.943 – 0.989 <0.001 >0.7
ADMIRE 1 2 1–2 0.971 0.938 – 0.988 <0.001 >0.7
ADMIRE 2 2 1–2 0.968 0.930 – 0.987 <0.001 >0.7
ADMIRE 3 2 1–3 0.968 0.930 – 0.987 <0.001 >0.7
ADMIRE 4 3 2–3 0.933 0.853 – 0.973 <0.001 >0.7
ADMIRE 5 3 2–3 0.936 0.861 – 0.974 <0.001 >0.7

ED = Effective Radiation Dose.

Table 4. Overall Diagnostic Confidence.

Radiation Dose (%) ED (mSv) Reconstruction
Rating ICC ICC: 95% CI p r

Median IQR Average
Measure

Lower
Bound

Upper
Bound vs. 100% ADMIRE 2

100 13.3 ± 9.1

FBP 5 4–5 0.958 0.909 – 0.983 1.000 <0.1
ADMIRE 1 5 4–5 0.942 0.874 – 0.976 1.000 <0.1
ADMIRE 2 5 4–5 1.000
ADMIRE 3 5 4–5 1.000 1.000 <0.1
ADMIRE 4 5 4–5 0.942 0.874 – 0.976 1.000 <0.1
ADMIRE 5 5 4–5 0.919 0.823 – 0.967 1.000 <0.1

80 10.7 ± 7.2

FBP 4 3–5 0.985 0.969 – 0.994 0.777 >0.7
ADMIRE 1 4 3–5 0.984 0.966 – 0.994 1.000 0.70
ADMIRE 2 4 4–5 0.974 0.943 – 0.989 1.000 0.37
ADMIRE 3 4 4–5 0.973 0.941 – 0.989 1.000 0.40
ADMIRE 4 4 3–5 0.959 0.910 – 0.983 1.000 0.59
ADMIRE 5 4 3–5 0.962 0.918 – 0.985 1.000 0.67

60 8.0 ± 4.5

FBP 3 3–4 0.974 0.943 – 0.989 0.002 >0.7
ADMIRE 1 4 3–4 0.971 0.823 – 0.967 0.429 >0.7
ADMIRE 2 4 4–5 0.968 0.930 – 0.987 1.000 0.45
ADMIRE 3 4 4–5 0.966 0.926 – 0.986 1.000 0.48
ADMIRE 4 4 3–4 0.915 0.814 – 0.966 1.000 0.67
ADMIRE 5 4 3–4 0.926 0.839 – 0.970 0.639 >0.7

40 5.3 ± 3.6

FBP 2 1–2 0.974 0.943 – 0.989 <0.001 >0.7
ADMIRE 1 3 2–3 0.971 0.938 – 0.988 <0.001 >0.7
ADMIRE 2 3 3–4 0.968 0.930 – 0.987 0.002 >0.7
ADMIRE 3 4 3–4 0.966 0.926 – 0.986 1.000 0.40
ADMIRE 4 3 2–3 0.915 0.814 – 0.966 <0.001 >0.7
ADMIRE 5 3 2–3 0.926 0.839 – 0.970 <0.001 >0.7

20 2.7 ± 1.8

FBP 2 1–2 0.975 0.947 – 0.990 <0.001 >0.7
ADMIRE 1 2 1–2 0.975 0.945 – 0.990 <0.001 >0.7
ADMIRE 2 2 1–2 0.974 0.943 – 0.989 <0.001 >0.7
ADMIRE 3 2 1–3 0.974 0.943 – 0.989 <0.001 >0.7
ADMIRE 4 3 2–3 0.945 0.879 – 0.978 <0.001 >0.7
ADMIRE 5 3 2–3 0.946 0.882 – 0.978 <0.001 >0.7

ED = Effective Radiation Dose
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3.4. Images

Figure 4 shows an overview of the reconstructions at different radiation dose levels.
The green background marks excellent levels of overall image quality and diagnostic
confidence (identical in this patient), the blue background is good, the yellow background
average, and the red background indicates below-average levels.
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4. Discussion

In this study, we systematically compared and evaluated intraindividual WBCT stag-
ing regarding the effects of tube current reduction on image noise, subjective image quality,
and diagnostic confidence. We conducted this study by comparing simulated low dose
WBCT at different reconstruction settings to our reference standard (100% ADMIRE 2). In
the first step, we investigated image noise only to identify the lowest possible combination
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of radiation dose and reconstruction setting with noise levels comparable to our reference
standard. At 40% radiation dose, ADMIRE 2–5 showed comparably low noise levels, and
at 20% radiation dose, only ADMIRE 5 was comparable. Next, we compared the subjec-
tive ratings for image quality and diagnostic confidence, to identify the lowest possible
combination of radiation dose and reconstruction setting with grades comparable to 100%
ADMIRE 2. We found the lowest possible combination to be 40% ADMIRE 3, which we
identified as our sweet spot.

Many recent studies showed that increasing image noise is a common problem when
reducing radiation dose in CT imaging [21]. In concordance to Gordic et al., we found noise
levels to decrease with higher levels of IR [22]. Another study by Scholz et al. reported
a possible radiation dose reduction of up to 63% in contrast-enhanced head and neck
CT at comparable noise levels when using a combination of automated dose modulation
and iterative reconstruction [23]. When looking at image noise only, our findings mirror
these results: our data suggest that a radiation dose reduction to 20% (2.7 ± 1.8 mSv)
is feasible when choosing ADMIRE 5 without any significant differences to noise levels
at 100% ADMIRE 2. Noise levels, however, can only be used to provide an impression
of objective image quality, without addressing subjective image quality. In recent years,
several studies have shown that a significant reduction in radiation dose is possible while
maintaining good image quality when combining low dose image acquisition with it-
erative reconstruction [24–27]. Murphy et al. reported a possible mSv target as low as
1.05 ± 0.17 mSv for thoracic CT and 1.92 ± 0.57 mSv for abdominopelvic CT respectively
at equal levels of image quality in their feasibility study regarding low dose follow-up CT
image acquisition in patients with testicular cancer [28]. In comparison to our data, their
target is approximately 2 mSv lower than ours. However, when reviewing and discussing
our data in an unblinded reference standard assessment, our readers reaffirmed their
decisions regarding subjective image quality and diagnostic confidence. In our view, the
visual impression of higher IR levels at lower radiation doses was simply too overdriven
and artificial to be awarded higher grades. Additionally, as some studies have pointed
out before, the nonlinear smoothing of higher IR levels may even lead to a change of
appearance in anatomical features at lower doses, potentially endangering diagnostic
confidence and leading to wrong diagnoses [29–32]. Our scope was to identify a potential
target that reliably produces images with the overall image quality of 100% ADMIRE 2
and equally high levels of diagnostic confidence. In summary, we therefore cautiously
advise against targeting 2.7 ± 1.8 mSv in combination with ADMIRE 5, even though noise
levels are comparable. In comparison to 100% ADMIRE 2, our findings indicate that a tube
current reduction to 40% of the original radiation dose (5.3 ± 3.6 mSv) in combination
with ADMIRE 3 is the sweet spot, maintaining good overall image quality and diagnostic
confidence, as well as comparably low noise levels.

5. Limitations

Our study has several limitations. Although ReconCT software is proven to provide
reliable simulations of low dose CT images, our data sets are based on simulations rather
than multiple scans to avoid excessive radiation exposure. Additionally, while ReconCT
allows for seamless low dose simulation from 100 to 1% radiation dose, we only focused on
datasets with the visual impression of overall image noise at 100%, 80%, 60%, 40%, and 20%
radiation dose. While this choice certainly facilitated reading and intraindividual compari-
son, more steps might have helped to narrow the target down even further. Furthermore,
we chose a retrospective approach with a relatively small patient population. However, we
bring forward the argument that the inherently higher statistical power of intraindividual
comparisons minimizes potential biases. Indeed, a prospective study with real low dose
image acquisition is needed to confirm our results. Lastly, we need to point out that this
study was performed, employing our institute’s custom WBCT single-energy protocol in
combination with the body-weight adapted application of Imerone 400 on a high-end 3rd
generation CT scanner (Siemens SOMATOM FORCE) that is not readily available at every
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clinical site. Our results may therefore be specific to our setup and might not necessarily be
applicable to other sites, or older scanner generations.

6. Conclusions

On a 3rd generation scanner, it is feasible to maintain good subjective image quality,
diagnostic confidence, and image noise in single-energy WBCT staging at dose levels as
low as 40% of the original dose (5.3 ± 3.6 mSv), when using ADMIRE 3.
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