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Abstract: The most commonly injured ligament in the human body is an anterior cruciate ligament
(ACL). ACL injury is standard among the football, basketball and soccer players. The study aims
to detect anterior cruciate ligament injury in an early stage via efficient and thorough automatic
magnetic resonance imaging without involving radiologists, through a deep learning method. The
proposed approach in this paper used a customized 14 layers ResNet-14 architecture of convolutional
neural network (CNN) with six different directions by using class balancing and data augmentation.
The performance was evaluated using accuracy, sensitivity, specificity, precision and F1 score of our
customized ResNet-14 deep learning architecture with hybrid class balancing and real-time data
augmentation after 5-fold cross-validation, with results of 0.920%, 0.916%, 0.946%, 0.916% and 0.923%,
respectively. For our proposed ResNet-14 CNN the average area under curves (AUCs) for healthy
tear, partial tear and fully ruptured tear had results of 0.980%, 0.970%, and 0.999%, respectively. The
proposing diagnostic results indicated that our model could be used to detect automatically and
evaluate ACL injuries in athletes using the proposed deep-learning approach.

Keywords: anterior cruciate ligament; healthcare; knee injury; artificial intelligence; convolutional
neural network; MRI; detection; classification; residual network; augmentation

1. Introduction

The anterior cruciate ligament (ACL) is an important stabilizing ligament of the knee
that connects the femur to the tibia [1]. In the knee, there are four primary ligaments: two
ligaments inside the knee are anterior cruciate ligament, posterior cruciate ligament while
two outside ligaments are lateral collateral ligament, medial collateral ligament. Figure 1
shows the anatomy of knee ligament tears [2]. The ACL is the most common injured
knee ligament in athletes. It provides the stability as the knee moves. This movement can
produce increased friction on the meniscus and cartilage in the joint. The symptoms of
ACL include pain, swelling and deformation of the knee, making walking difficult [3,4].
A radiologist’s work is to detect various injuries, such as torn ACLs from radiological
scans. It is a time-consuming process to interpret knee ACL injuries, tears in meniscus,
knee cartilages abnormalities which causes knee osteoarthritis, osteoporosis and knee joint
replacement from radiology images manually [5]. There are many methods to diagnose
an ACL tear in the knee: physical tests, and biomarkers [6], X-ray, computed tomography
(CT), mammography, ultrasound imaging and magnetic resonance imaging (MRI) [7]. MRI
is the best choice for diagnosing ACL tears as ACL is not visible as a plain file X-ray [8–10].
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Figure 1. The front view of the 4 major ligaments of knee anatomy, where the anterior cruciate
ligament (ACL) is located at the center of the knee, the posterior cruciate ligament at back of the
knee, the medial collateral ligament at the inner knee and the lateral collateral ligament at the outer
knee [2].

MRI can distinguish sprains and partial tears of the ACL from complete as well as
meniscus tears [11]. Typically, an ACL is a low band of signal intensity traversing from
the femoral end to the turbulent either seen totally in one single slice or multiple slices
depending on the obliquity of the scanning done. The ACL tear has to be read in sequence
of coronal, sagittal and axial planes to give the whole idea about ACL tear [12]. The three
grades areas shown in Table 1.

Table 1. Three grade stages of the anterior cruciate ligament.

Grade Stages Injuries/Symptoms

Grade-I Intra-ligament injury
No changes in the ligaments length

Grade-II
Intra-Ligament injury

Change in ligament length
Partial tears

Grade-III Complete ligament disruption

In recent years, the machine learning and deep learning methods for image analytics
have been extensity used in the medical imagining domain to solve the problems of clas-
sification, detection, segmentation, diagnosis without involvement of radiologist [13–16].
Nowadays, researchers are using deep learning with a model of CNN and its architectures
in several applications. The CNNs architectures have an input layer and an output layer,
and there are also many convolutional layers, pooling layers, rectified linear unit layers,
dense layers and dropout layers [17,18]. The CNN shows huge success in the analysis of
radiography X-rays in the knee osteoarthritis automatically, as there is no need of image
pre-processing [19,20]. However, X-rays have not been able to improve upon three classes
of knee ACL detection, as compared to MR images.

This study aims to further enhance the automatic performance, without involving
a radiologist, by using a deep learning model to detect the anterior cruciate ligament by
an inspecting MRI. The customized residual network (ResNet-14) architecture of CNN is
proposed in the study, and it has significantly improved the detection of healthy, partially
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and completely ruptured ACL tears. Here, we train our modified model on 6 differ-
ent approaches which have achieved promising results on the KneeMRI data set. The
two strategies: hybrid class balancing and real time data augmentation were taken to
address the KneeMRI scarcity and class imbalance issues in this study.

Our study has the following contributions that is summarized as below:

• To the best of our knowledge, this study is the first that propose a balancing method-
ology for three classes healthy, partial, and ruptured tears based on hybrid class
balancing and real-time data augmentation.

• This study propose a customized ResNet-14 CNN model without transfer learning to
detect three classes of ACL.

• We perform an extensive experimental validation of the proposed approaches in term
of sensitivity, specificity, precision, recall, F1- measure, receiver operating curve (ROC),
area under curve (AUC).

The remainder of the paper is arranged as follows: Section 2 discusses related work.
Section 3 explains the details of the data set and proposed methodology of the model and
architecture. The results of our experimental evaluation is presented in Section 4. Section 5
related to discussion of our work compared with state of art work. Finally, Section 6 related
to conclusion.

2. Related Work

There is a growing body of literature in the knee bone MRI detection. Numerous
researchers are working at their best using machine learning and deep learning techniques
to identify the disease through MR images in better and novel ways. The study [21] has
shown good results, after using support vector machines on 300 MR images of healthy,
partial and fully ruptured ACL tears. The study was classified the human articular cartilage
OARSI-scored with machine learning pattern recognition and multivariable regression tech-
niques. The regression model was achieved 86% accuracy of normal and osteoarthritic [22].
The first real attempt was related to our dataset of the KneeMRI [23] through techniques
of feature extraction, histogram-oriented gradient (HOG) descriptor and gist descriptor
manually. The performance of ACL tear was measured by the AUC for the injury-detection
0.894 problem and for full rupture case 0.943 after being coupled with both features and
machine learning support vector machines (SVM) and random forest (RF). There are vari-
ous surveys, meta-analyses and reviews [24,25] related to anterior cruciate ligament knee
injury detection through various machine learning models. It has been shown that the
accuracy remained good in the case of a smaller dataset, but in the case of more radiology
images, the machine learning models have not been a solution. The machine learning
cannot be a very useful solution for diagnosis and detection, particular in the case of knee
injury.

The authors (Manna, Bhattacharya et al. 2020 [26]) proposed a self-supervised ap-
proach with pretext and downstream tasks using class balancing through oversampling
showed accuracy of 90.6% to detect ACL tear from knee MRI.

The state-of-the-art-work [27] related to deep learning was presented as AlexNet [28]
architecture of convolutional neural network (CNN) to extract features of knee MRNet
with transfer learning ImageNet [29]. The performance of these dataset found AUC 0.937,
0.965 and 0.847 of abnormalities, ACL tears and meniscus tears respectively, whereas in the
case of external validation KneeMRI dataset the AUC was 0.911. The results were better
as compared to the semi-automated earlier work of KneeMRI [23] for ACL tear detection
in the case of machine learning. The study proposed multiple CNN architectures using
U-Net [30] and Res-Net [31] to detect complete anterior cruciate ligament tear from dataset
FastMRI [32]. The accuracy of cropped images found 0.720, cropped with dynamically
0.765 and for uncropped images that were found 0.680 only [33].

In a previous study, Liu et al. [34] proposed hybrid architectures of CNN to detect
ACL tears. Firstly, the authors used architecture LeNet-5 [35] to detect slice detection of
ACL; secondly, they extracted an intercondylar notch in the ACL part using you only look
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once (YOLO) [36] and lastly, they adopted the densely connected convolutional network
DenseNet [37] to classify the presence or absence of an ACL tear with an AUC 0.98. The
classification is also determined through (VGG16) [38] and AlexNet with AUC 0.95 and
0.90, respectively. However, the burden of training the all three architectures, in a cascaded
fashion, is computationally expensive and time consuming. In the study, Namiri et al. [39]
used 3D CNN classify hierarchical severity stages in ACL automatically, that had an
accuracy 3% more than 2D CNN. The study of [40] related arthroscopy findings of MRI
dataset and used DenseNet architecture upon 489 MRI samples only, in which 163 were
from an ACL tear and 245 were from an intact ACL. The comparison study related to
musculoskeletal Irmakci et al. [41] performed three CNN architectures AlexNet, ResNet
and GoogleNet, that achieved AUC 0.938, 0.956 and 0.890, respectively, detecting ACL
tears on MRNet dataset. The ResNet-18 model was found better in the case of an ACL
tear, but in the case of abnormalities, the ResNet result was not good. The challenging
task was a meniscus tear with low accuracy and in terms of sensitivity as well. The recent
state-of-art work [42] used the lightweight model efficiently-layered network ELNet [43]
which was evaluated on MRNet with an AUC of 0.960 achieved detecting an ACL tear, and
on the KneeMR dataset as well. It evaluated a 5-fold cross-validation to detect injury with
AUC of 0.913.

In all the above studies, the authors mostly used knee MRI datasets related to MRNet
and KneeMRI. However, in these datasets the classes are not balanced, which causes bias
in training data. After using the deep learning architecture, comprehensive training is
required in the data. The literature suggests that performances of the area under the
curve of ELNet and ResNet were performed with excellent results, as compared to other
architectures. Moreover, there are some challenges of detecting the anterior cruciate
ligament (ACL) injury currently and efficiently through automated ways without involving
radiologist.

3. Materials and Methods

This section presents the methods and material used in this study. Section 3.1 details
the datasets of MRI images and their features and classes. Next, we will precede to the data
pre-processing and class balancing in Section 3.2. Finally, the proposed customized method
ResNet is presented and explained using real-time data augmentation in Section 3.3.

3.1. Dataset

The total of 917 knees sagittal plane DICOM MRI were obtained from the clinical
hospital center of Rijeka [23] archiving and communicating system. Images were 12-
bit greyscale color along with assigned ACL diagnosis. An Avanto 1.5T MRI Siemens
scanner which manufactured by Muenchen, Germany was used to record all volumes from
2007 to 2010, and for the collection of this data, proton density-weighted fat suppression.
The authors have provided the metadata CSV for further understanding in the Table 2.
Moreover samples of ACL diagnosis three classes are healthy (0 labels), partial (1 label)
and fully ruptured (2 labels) in the Table 2. The total samples are 917 pickle images, out of
this 690 are healthy, 172 partials and 55 complete ruptured.

Table 2. The samples of metadata of 9 features and 1 class label of ACL diagnosis.

Series
No

Knee
LR ROIX ROIY ROIZ ROI

Height
ROI

Width
ROI

Depth
Volume

Filename
ACL

Diagnosis

5 0 126 96 14 78 79 4 502889-5.pck 0
5 0 116 177 13 83 79 4 507277-5.pck 1
5 1 113 140 9 89 96 4 496580-5.pck 2

The red square in the Figure 2a–c shows the three different severity of ACL tears.
These are pickle MRI images of healthy, partial and fully ruptured tears respectively.
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Figure 2. Samples of a healthy tear: (a) no changes in the length of an ACL tear, (b) sample of an ACL partial tear, (c) full
rupture in an ACL tear.

3.2. Data Pre-Processing

We performed three steps of data pre-processing on the metadata file and image. As
such, we first applied normal approach [44,45] to localize based upon region of interest
(ROI). As sample MR images were not of the same widths and heights. The input images
were wider ACL area of 290 × 300 × 21 to 320 × 320 × 60 with midmost measurements
320 × 320 × 32. The values were representing slice width, slice height and number of slices
respectively in a single volume file. The ROIs focused on a region or subset of tissues in
the MRI slices and get rid of unnecessary details from the inspected images. The ROIs
boundary were calculated manually sum of ROIY axis with ROI height value and sum of
ROIX axis with ROI width columns present in our metadata file or in Table 2. For this way
the ROIs obtained various dimensions from 54 × 46 × 2 to 124 × 136 × 6, having average
dimensions 92 × 91 × 3. All the ROIs were varied in size which can affect our training as
well. We rescaled all the ROIs slices using linear interpolation to fix one standard size of
75 × 75. This rescaling can enhance our model performance in Google Colab but there was
also problem of lossless of visual features exists in some slices. The Figure 3, illustrates
where the sample input image with dimensions of 320 × 320 × 60. The median dimension
of an extracted ROI is 92 × 91. The standard size of all ROI was fit into the dimension of
75 × 75.
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Secondly, before feeding our dataset into our model, we need to map our extracted
ROI with the corresponding labels that we have extracted from the structured data file.
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Lastly we handled the problem of class balance through a hybrid approach with over-
sampling and under-sampling. Thus, there are total 3081 pickle MRI images initially, which
consisted of: healthy tears (2315 images), partial tears (580 images) and fully ruptured
tears (186 images). There is problem of class imbalance in terms of distribution among
three classes. The under-sampling technique is reduced the number of samples from the
majority class to match up the total length with minority class samples. This technique is
not generalized on unseen data, so there is a chance of information loss, biased sample and
not given the accurate representation of the whole sample. For this we excluded random
under-sampling in the label 0 majority class and added randomly more observations
by replication in our minority classes of label 1 and label 2.The under-sampling is only
preferred when the minority class sample is high. On the other hand, the over-sampling
technique is increased the number of samples in the minority class to match up the number
of samples in the majority class but it caused of over-fitting [46–48].

Figure 4 shows the hybrid class balancing, the bars of each class becoming almost
equally distributed. After the hybrid class balancing the sample size of three classes are
raised. The new values are now 1487, 1027 and 1283 of healthy, partial and full ruptured
tears respectively.
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3.3. Our Proposed Custom ResNet-14 Architecture

In this section we will briefly explain the proposed CNN custom Residual ResNet
architecture. After all the pre-processing steps above the authors have built an end-to-
end model by modifying the original version-I residual ResNet-18 [31], into proposed
ResNet-14 network structure as it illustrated in Figure 5. The MR image with dimension
75 × 75 × 1 is provided as input layer in the structure. We added batch normalization
(BN) [49] in the model before the activation function rectified linear unit (Relu) and right
after convolutional layers (Conv) with 3 × 3, which acts like a regularization. The vanishing
gradient problem is reduced significantly through this operation. In addition to this, a
sequence of 3 inner ResNet stacks of convolutional with stride 2 of max pooling 3 × 3
with n = 2 parameters instead of 3 to avoid the overfitting. There are totally 6n + 2 stacked
weighted layers.

Further, we are used to controlling the learning process with fine-tuned hyper-
parameters by manually having a great impact on the performance of the model. In
the complied stage on the proposed architecture, we have chosen the Adam [50] optimizer,
which can keep tracks of an exponentially decay average. The learning rate was configured
to be set dynamically on the basic of the number of epochs, batch size to 32 and the learning
rate is 0.001 as in our case we used with 120 epochs. At the ends, 3 fully connected layers
(FC) with average pooling (Avg pool) and softmax activation function have been added to
detect the healthy, partial and rupture tears in the MRI. The details of the convolutional
layers and their order in the custom ResNet-14 model in the Table 3. The total number of
parameters are 179,075.
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Table 3. The configuration detail of customized ResNet model-14 with their output size.

Layer Name Output Size Layer Information

Input layer 75 × 75 × 1

conv1 75 × 75 1 × 1, strides 2, 16

conv2_d (1 block) 75 × 75 3 × 3, maxpool stride 2
3 × 3, 16

conv2_d (2 block) 75 × 75 3 × 3, 16

conv3_d (1 block) 38 × 38 3 × 3, 32

conv3_d (2 block) 38 × 38 3 × 3, 32

conv4_d (1 block) 19 × 19 3 × 3, 64

conv4_d (2 block) 19 × 19 maxpool
3 × 3, 64

Average Pool 4 × 4 4 × 4 average pool

Fully Connected Layer Three classes 64 × 3 fully connections

Softmax output three classes Healthy, partial and rupture

Total parameters 179,075

Finally we involved the real-time data augmentation in our model, which generated
different images after running each epoch. It randomly augmented the image at runtime
and applied transformation in mini-batches [51]. So, it is more efficient than offline aug-
mentation because it does not require extensive training. The technique of offline data
augmentation significantly increased the diversity of their available data without actually
collecting new data by cropping, padding, flipping, rotating and combining in the case of
Alzheimer’s stage detection, brain tumor and others in the MRI [52–54].

The real-time data augmentation performed good accuracy with the CNN inception
v3 model for breast cancer [55]. We used real time data augmentation with a class Im-
age_Data_generator which generated batches of tensor image data [56–58] from the keras
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library. The following Table 4, describes about augmentation parameters which we used in
the real time augmentation.

Table 4. List of selected real-time augmentation with arguments and their description.

Sr.No Augmentation Arguments Description

1. featurewise_center Set input mean to 0 over the dataset
2. featurewise_std_normalization Divide inputs by standard deviation of dataset
3. zca_epsilon = 1 × 10−6 Epsilon for Zero-phase whitening (ZCA) whitening
4. fill mode = ‘nearest’ Set mode for filling points outside the input boundaries
5. horizontal flip = True Randomly flip images horizontally
6. vertical flip = True Randomly flip images vertically

Furthermore, the block diagram of the proposed work’s whole process is illustrated in
Figure 6, with four main stages. Firstly, the data input stage, where the image dimension is
combined with metadata to generate images through the pickle library. In the second stage,
the images are resized through the region of interest and then applied with hybrid-class
balancing. The model building stage is done through our custom ResNet-14 with and
without online data augmentation. In the last stage, the performance is measured and
compared through random train/test split and K-fold cross-validation to detect anterior
cruciate ligament tear.
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4. Experimental Results

In this section we will present the experimental setup, to analyze our model and to
evaluate the results.

4.1. Experimental Setup

The experiments were carried out on Google Colab with Python 3.6. The paper [59] in
which the CNN model was implemented on knee cancellous bones achieved 99% accuracy,
with better acceleration. So we selected Google Colab, providing free GPU, with the
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specifications of the Tesla K80 processor having 2496 CUDA cores and 12GB ram. The
ResNet Model is coded by using Keas (version 1.0) backend Tensor Flow. The model has
been validated with train and test split and cross-validation techniques.

4.2. Train/Test Split

The model has been validated through the train and test split, for each approach with
and without class balancing, and at the same time we have to split our full dataset into
X train and Y test after image normalization. We used 75% of the total data for training
purposes and 25% for testing purposes. We have used two samples before class balancing
and after class balancing. The detail of the train test split division is shown in the Figure 7.
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4.3. K- Fold Cross-Validation

The model has been validated in K-fold cross-validation, the data is randomly divided
up into K groups known as folds. One of those folds is kept as the validation set, and the
remaining data is used for the training. The mean loss from all the folds is the overall K
fold loss. Same as loss, the average of accuracy from all the folds is the overall accuracy. We
used techniques for this is train/test split cross-validation with K = 3 and K = 5. The k- fold
cross-validation has been reduced the bias, and the variance is reduced after each k folds.

In order to evaluate performance of our model, we measured through the confusion
matrix where the measurement criteria were precision, sensitivity, F1-score, specificity and
weighted average. We considered the receiver operating characteristic (ROC) curve and
area under curve (AUC).

4.4. Prediction Performance of Proposed ResNet

We complied to set the prediction of our model with the parameters cross-entropy loss
function, Adam optimizer with a learning rate of 0.001, the number of batch sizes are 32
and the number of epochs for training the model used here was 120. Table 5 shows the test
loss and test accuracy after fitting the model of 120 epochs. Moreover, we evaluated and
tested our model of ResNet CNN with six different approaches, as mentioned in Table 5.

The minimum loss value of 0.466 is the best approach for our model, which is after
class balancing, augmentation with 5-fold cross-validation. The accuracy is computed by
dividing the number of correct predictions by the total number of predictions made and
then multiplying by a hundred to get the percentage. We also tested result with accuracy
of all six approaches whereas the model ResNet-14 with class balancing data augmentation
achieved 92% through 5-fold fold cross validation. The detail of the performance of each
approach is shown in the Table 6.
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Table 5. The ResNet-14 CNN test loss and test accuracy.

ResNet-14 CNN Model Tested Approaches Test
Loss

Test
Accuracy

Without class balancing and data augmentation (5-fold cross-validation) 1.294 0.805

Without class balancing but data augmentation (5-fold cross-validation) 1.089 0.774

Class balancing and without data augmentation (random splitting) 0.537 0.884

Class balancing and data augmentation (random splitting) 0.526 0.895

Class balancing and data augmentation (3-fold cross-validation) 0.533 0.895

Class balancing and data augmentation (5-fold cross-validation) 0.466 0.919

Table 6. Performance Metrics of model ResNet convolutional neural network (CNN).

Evaluation Metrics of ResNet-14 CNN

Multi Classes

Approaches Evaluation Healthy Tear Partial Tear Full Torn Average

Without class balancing and data
augmentation (5-fold cross-validation)

Precision 0.85 0.57 0.57 0.663

Sensitivity 0.96 0.39 0.22 0.523

F1-Score 0.90 0.47 0.31 0.563

Specificity 0.78 0.86 0.95 0.863

Accuracy 0.81

AUC 0.87 0.81 0.91 0.863

Without class balancing with
data augmentation (5-fold cross validation)

Precision 0.83 0.47 0.47 0.590

Sensitivity 0.94 0.29 0.22 0.483

F1-Score 0.88 0.36 0.30 0.513

Specificity 0.70 0.78 0.96 0.813

Accuracy 0.77

AUC 0.83 0.76 0.91 0.833

Hybrid class balancing without data
augmentation (Random Splitting)

Precision 0.87 0.81 0.96 0.880

Sensitivity 0.85 0.79 0.99 0.877

F1-score 0.86 0.80 0.98 0.880

Specificity 0.90 0.92 0,99 0.910

Accuracy 0.88

AUC 0.96 0.95 0.99 0.967

Hybrid class balancing with data
augmentation (random splitting)

Precision 0.89 0.84 0.94 0.890

Sensitivity 0.86 0.81 0.99 0.887

F1- score 0.88 0.83 0.97 0.893

Specificity 0.91 0.92 0.99 0.940

Accuracy 0.90

AUC 0.97 0.96 0.99 0.973
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Table 6. Cont.

Evaluation Metrics of ResNet-14 CNN

Multi Classes

Approaches Evaluation Healthy Tear Partial Tear Full Torn Average

Hybrid class balancing with data
augmentation (3-fold cross validation)

Precision 0.90 0.83 0.94 0.890

Sensitivity 0.87 0.80 0.99 0.887

F1- score 0.88 0.82 0.97 0.890

Specificity 0.91 0.92 0.99 0.940

Accuracy 0.90

AUC 0.97 0.94 0.99 0.967

Hybrid class balancing with data
augmentation (5-fold cross validation)

Precision 0.92 0.87 0.96 0.917

Sensitivity 0.89 0.87 0.99 0.917

F1-score 0.90 0.87 0.98 0.917

Specificity 0.93 0.92 0.99 0.947

Accuracy 0.92

AUC 0.98 0.97 0.99 0.980

5. Discussion

In this study, we demonstrate in detail a fully automated ACL detection with the
related work. We study the problem of efficient detection of ACL and the accurate selection
of the ROI boundaries using the deep learning-based custom Residual Network of 14 layers
CNN. We compare the performance of a ResNet-14 with and without class balancing and
data augmentation as explained in Table 6. When we applied the model without class
balancing the overall accuracy remained under 80.5% for detecting healthy, partial and
ruptured tears. There was no significant difference in the accuracy in the case of hybrid class
balance data augmentation with random splitting and k-fold cross validation. However,
the highest accuracy is observed with hybrid class balancing using data augmentation of
ResNet-14 CNN model of 92%.

The three approaches are, (1) without class balancing and data augmentation, (2) class
balancing without data augmentation, and (3) class balancing and data augmentation.
There are the comparison of three approaches in between loss values vs. each split. The
orange line is related to our standard approach of class balancing and with data augmenta-
tion in Figure 8. It is illustrated that the error loss value in the case of 1-split is 01.05, and
that remained less than the other two approaches even after the 5-split is 0.113.

Figure 9a–f is related to the confusion matrix of all six approaches with true positive,
true negative, false positive and false negative of three classes of healthy, partially and
completely ruptured tears. Next, the ROC curves were plotted by computing the true
positive ratio (TPR) and false positive ratio (FPR) for six approaches accuracy thresholds as
shown in Figure 10 The area under curves of the ResNet CNN Model. Figure 10a–f. From
this, the proposed ResNet-14 with hybrid class balancing and data augmentation managed
to achieve an area under curve of the ROC curve (AUC) average of 98%.

Eight groups have previously used deep learning methodology to detect ACL tears of
various pathology. Table 7 provides a comparison of the performance, datasets and models
with our work. The dataset of our work, collected at the Clinical Hospital by Stajduhar
et al. [23], related to KneeMRI which showed AUC 0.894 in the case of non-injured cases.
These were not recognized well in the case of partial tears. The original MRNet by Bien
et al. [27] had no significant change in accuracy in the case of detecting abnormalities
and was unable to distinguish in abnormalities because it has taken a tiny portion in 3D
imaging. The ACLs full torn sensitivity is 76%, and the AUC was determined as 0.965. For
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the external data set KneeMRI, it enhanced the AUC 0.911. The ground truth values were
not measured correctly by the surgeon. Chang et al. [33] applied the dynamic patch-based
residual network to 260 subjects to detect the ACL with accuracy 0.967. However, it had
low prevalence in the complete ACL and biased towards high sensitivity due to unbalanced
samples. Liu et al. [34] was only considering three CNN models in a cascaded way not a
single pipeline which leads the burden of training, no verification of bias, the dataset for
training was significantly less. Moreover, it evaluated only on full thickness of ACL tears,
not on other classes.
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Table 7. Comparison state of the art works with our proposed model.

Author,
Year

Model Dataset
Target
Output

Evaluation

Accuracy Sensitivity Precision Specificity AUC

Štajduhar
et al., [23]

HOG+
Linear-

kernel SVM
(k = 10)

KneeMRI
917 (exams)

partial tear - - - - 0.894

ruptured
tear - - - - 0.943

Bien et al.,
2018 [27]

AlexNet
MRNet

1370 exams

ACL tear 0.867 0.759 - 0.968 0.965

abnormal 0.850 0.879 - 0.714 0.937

meniscus
tear 0.725 0.892 0.741 0.847

Logistic
Regression

KneeMRI
917 exam

partial tear,
ruptured

tear
- - - - 0.911
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Table 7. Cont.

Author,
Year

Model Dataset
Target
Output

Evaluation

Accuracy Sensitivity Precision Specificity AUC

Chang
et al., 2019

[33]

Dynamic
patch +
ResNet

260 MRI
coronal

volumes

partial AC,
full torn 0.967 1.00 0.938 0.933 -

Liu et al.,
2019 [34]

VGG16
sagittal MR
175 (exams)

full
thickness
ACL tear,

Intact ACL

- 0.92 - 0.92 0.95

DenseNet - 0.96 - 0.96 0.98

Alex Net - 0.89 - 0.88 0.90

Namiri
et al., 2019

[39]

2D CNN
3D CNN

NIH MRI
1243

(exams)

Intact ACL - 0.22
0.89 - 0.90

0.88 -

2D CNN
3D CNN Partial tear - 0.75

0.25 - 1.00
0.92 -

2D CNN
3D CNN Full tear - 0.82

0.76 - 0.94
1.00 -

Zhang
et al., 2020

[40]

3D
DenseNet

sagittal MR
408 (exams)

ACL tears
Intact ACL

0.957
0.943
0.899

0.976
0.952
0.912

0.940
0.952
0.869

0.944
0.909
0.886

0.960
0.946
0.859

ResNet

VGG16

Irmakci
et al., 2020

[41]

AlexNet

MRNet
1370

exams

abnormal 0.8583 0.978 - 0.400 0.891

ACL tear 0.833 0.685 - 0.954 0.938

ResNet-18
abnormal 0.825 0.968 - 0.280 0.811

ACL tear 0.866 0.777 - 0.939 0.954

GoogleLeNet
abnormal 0.833 0.978 - 0.280 0.909

ACL tear 0.808 0.666 - 0.924 0.890

Tsai et al.,
2020 [42]

EfficientNet
MRNet

1370

abnormal 0.917 0.968 - 0.72 0.941

ACL tear 0.904 0.923 - 0.891 0.960

ELNet 5
-fold

KneeMRI
917 exams

ruptured
ACL - - - - 0.913

Proposed
Customized ResNet-14
5-fold cross-validation

KneeMRI
917 exams

ACL Intact 0.92 0.89 0.92 0.93 0.98

partial tear 0.91 0.87 0.87 0.92 0.97

ruptured 0.93 0.99 0.96 0.99 0.99

The 3D CNN models were not performed well as compared to 2D CNN due to the
small dataset in the work of Namiri et al. [39]. The model was found over-fitting in the case
of partial tears, however obtained better results with 3D CNN than with 2D.The sample of
patients were not balanced among all grading and dataset split based upon the patients,
which caused correlations among multiple images. Lastly, data augmentation techniques
were also not applied to enhance the images. The specificity in the case of ACL intact is
88%. Zhang et al. [40] were a long time in the training of each patient, retrospective study
inherent biases, the dataset used in this was small, and patient’s category was imbalanced.
Moreover, the study did not classify the complete, partial tears of ACL. The study Irmakci
et al. [41] was where the average AUC 0.878, 0.857 and 0.859 of models of three classes for
AlexNet, ResNet-18 and GoogleNet 0.859 respectively. The one of the state work Tsai et al.,
2020 [42] was used EfficientNet which is optimized and in the case of MRNet the AUC was
0.960, but on the knee, MRI AUC was 0.913 due to imbalanced classes.
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Figure 10. The area under curves of the ResNet CNN Model. (a) The area under curve of each class after 5-fold cross-
validation in the case without class balancing and without data augmentation where the average AUC is 0.863. (b) The area
under curve of each class after 5-fold cross-validation in the case without class balancing but with data augmentation of AUC
0.833. (c) The area under curve of each class after random train/test split in the case of hybrid class balancing but without
data augmentation, the AUC is 0.966. (d) The area under curve after random train/test split in the case of hybrid class
balancing and also apply data augmentation of AUC 0.973 (e) The area under curve 3-fold cross-validation in the case of
hybrid class balancing and with data augmentation of AUC 0.966. (f) The area under curve after plot 5-fold cross-validation
in the case of hybrid class balancing and with data augmentation and AUC is highest 0.98 from all approaches.
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Zhang et al. [40] took a long time in the training of each patient, with retrospective
study inherent biases; the dataset used in this was small and the patient’s category was
imbalanced. Moreover, the study did not classify the complete, partial tears of ACL. The
study of Irmakci et al. [41] was where the average AUC was 0.878, 0.857 and 0.859 for the
models of three classes for AlexNet, ResNet-18 and GoogleNet, respectively. The work of
Tsai et al., 2020 [42] used EfficientNet which is optimized and in the case of MRNet the
AUC was 0.960, but on the knee, MRI AUC was 0.913 due to imbalanced classes.

6. Limitations

Our study had several limitations. First, our ResNet-14 model for ACL tear detection
performed individually on all six approaches, which may increase the training burden
overall. Secondly, the technique was used for hybrid class balancing, which randomly
enhanced the records in the partial tear and fully ruptured tear. The down-sampling in the
class label of healthy ACLs in the metadata file was not an appropriate technique, which
may have a biased result in the case of the fully ruptured class. The use of class weighting
in future studies may further improve the detection performance of the ACL tear detection
system. Furthermore, the results were not evaluated on more than 5-fold cross-validation
in the case without class balancing.

7. Conclusions

This paper has presented an automated system to efficiently detect the presence of
anterior cruciate ligament (ACL) injury from MR images in a human knee. The proposed
method implements a customized ResNet of 14 layers CNN architecture and has been
tested using random splitting, 3-fold cross-validation and 5-fold cross-validation. Using the
approach of CNN-ResNet-14, the classes of imbalance distribution was enhanced by hybrid
class balancing and the diversity of images was increased without effecting extensive
training by applying the real-time data augmentation method. The novel integration of
hybrid class balancing and real-time data augmentation operations allow the custom Res-
Net model to remain efficient, accurately detect the ACL tears and to avoid the overfitting
problem on the KneeMRI dataset. The performance of the CNN customized ResNet-14
with 5-fold cross-validation presents an average accuracy, sensitivity and precision of 92%,
91% and 91% respectively. However, the model achieved a better performance and in the
case of the average specificity and AUC for the three classes was 95% and 98%, respectively.
In addition, the model has been tested and compared with 3-fold cross-validation and
random splitting as well. To the best of the authors’ knowledge, there is no such study that
proposes an automated method to detect the anterior cruciate ligament of all three classes
of healthy, partial and full ruptured tears through hybrid class balancing of the ResNet-14
model with AUC 98%.
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