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Abstract: Background: Many clinical trials with potential drug treatment options for non-alcoholic
fatty liver disease (NAFLD) are focused on patients with non-alcoholic steatohepatitis (NASH) stages
2 and 3 fibrosis. As the histological features differentiating stage 1 (F1) from stage 2 (F2) NASH fibrosis
are subtle, some patients may be wrongly staged by the in-house pathologist and miss the opportunity
for enrollment into clinical trials. We hypothesized that our refined artificial intelligence (AI)-based
algorithm (qFibrosis) can identify these subtle differences and serve as an assistive tool for in-house
pathologists. Methods: Liver tissue from 160 adult patients with biopsy-proven NASH from
Singapore General Hospital (SGH) and Peking University People’s Hospital (PKUH) were used. A
consensus read by two expert hepatopathologists was organized. The refined qFibrosis algorithm
incorporated the creation of a periportal region that allowed for the increased detection of periportal
fibrosis. Consequently, an additional 28 periportal parameters were added, and 28 pre-existing
perisinusoidal parameters had altered definitions. Results: Twenty-eight parameters (20 periportal
and 8 perisinusoidal) were significantly different between the F1 and F2 cases that prompted a change
of stage after a careful consensus read. The discriminatory ability of these parameters was further
demonstrated in a comparison between the true F1 and true F2 cases as 26 out of the 28 parameters
showed significant differences. These 26 parameters constitute a novel sub-algorithm that could
accurately stratify F1 and F2 cases. Conclusion: The refined qFibrosis algorithm incorporated 26
novel parameters that showed a good discriminatory ability for NASH fibrosis stage 1 and 2 cases,
representing an invaluable assistive tool for in-house pathologists when screening patients for NASH
clinical trials.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is among the most common chronic liver diseases,
affecting an estimated 25% of the general adult population worldwide [1–4]. NAFLD pathogenesis is
complex and multifactorial and is closely linked to metabolic syndromes. It represents a spectrum of
clinical phenotypes, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), a more
aggressive form characterized by steatosis, active hepatocyte injury in the form of ballooning
degeneration, lobular inflammation, and a propensity for fibrosis [4,5]. As there are no other
non-invasive modalities that are comparable, histological evaluation of liver tissue remains critical
in defining the various phenotypes accurately, particularly for NASH [6–8]. Critically, the stage of
fibrosis is an important feature to be assessed for NAFLD, as it impacts on overall and liver-related
mortality [9,10]. Currently, there is a myriad of clinical trials in progress that seek effective therapeutic
agents [11]. However, the immense difficulty of the task at hand is illustrated by the many failed
remedies, such as simtuzumab, selonsertib, emricasan, and insulin sensitizer MSDC-0602K, all of
which were unable to meet the histological endpoint of fibrosis improvement [12].

Many of the clinical trials have focused on patients with NASH stages F2 and F3 fibrosis. For
some trial sites, patients are screened for eligibility based on historical biopsy data. Potentially, some
samples that are initially deemed suitable by in-house pathologists, due to them being perceived as
showing F2 or F3 fibrosis, fail enrollment after subsequent review by a central pathologist reader,
who re-assigns them as F1 or F4 fibrosis. Conversely, some potential subjects with F2 fibrosis are
misclassified by in-house pathologists to have lower-stage fibrosis and hence are not considered for
trials. These discordant impressions reflect the real-world setting and represent substantial numbers of
subjects being enrolled erroneously. It can be challenging to differentiate subtle changes in fibrosis
with the routine use of traditional histochemical techniques that highlight collagen, even in the hands
of expert hepatopathologists. This may represent missed opportunities to enroll suitable patients into
clinical trials.

Second-harmonic generation (SHG) microscopy (qFibrosis) has been described as a precise and
robust method for assessing fibrosis in NASH since it provides more granularity toward staging fibrosis
on a continuous score rather than the traditional semi-quantitative method [13,14]. We hypothesize
that qFibrosis can identify the subtle differences in F1 and F2 fibrosis patients and increase the accuracy
of patient enrollment into NASH clinical trials by exploring signature qFibrosis parameters that arise
because of discordant readings between in-house and central read pathologists.

2. Materials and Methods

2.1. Study Population and Samples

Liver tissue from 160 adult patients (≥18 years old) with biopsy-proven NAFLD/NASH were
included in the current study. Cases were recruited from Singapore General Hospital (SGH), Singapore,
and Peking University People’s Hospital (PKUH), China. Patients with liver disease of other etiologies,
such as alcoholic or drug-induced liver disease, autoimmune liver disease, viral hepatitis, and
cholestatic or genetic liver diseases were excluded. This study was approved by the Ethics Committee
of both the participating hospitals (CIRB reference 01 July 2015/2527).

Thick sections 4–5 µm in size from the 160 samples were used for SHG imaging and subsequently
stained with hematoxylin and eosin (H&E) and a connective tissue stain, such as Masson trichrome or
Victoria blue for the confirmatory pathologist assessment of fibrosis. The minimum length of liver
biopsy specimens was 10 mm. Specimens deemed inadequate in terms of size or unsatisfactory for
technical/other reasons by the expert hepatopathologists were excluded from the study.
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2.2. Image Acquisition

Unstained liver biopsy tissues of the 160 samples were imaged using the commercially available
Genesis system (HistoIndex Pte Ltd., Singapore 139955, Singapore), where SHG microscopy was
used to visualize collagen and two-photon excited fluorescence (TPEF) microscopy was utilized for
visualization of the pertinent cell structures. The laser settings were as previously described [15]. In
essence, the system involves a laser passed through a pulse compressor (for group velocity dispersion)
and an acoustic-optic modulator (for power attenuation), following which, is routed by a dichroic
mirror through an objective lens to the tissue sample. This creates a TPEF emission and an SHG signal,
which are collected and processed for detection. The Genesis system is a closed system, where only
the objective lens is adjustable (10×, 20×, and 40×), while all other components, such as the condenser,
dichroic mirror, collection filters, and collection frame rate are not adjustable.

The samples were laser-excited at 780 nm, SHG signals were recorded at 390 nm, and TPEF signals
were recorded at 550 nm. Images were acquired at 20×magnification with 512 × 512 pixel resolutions,
and each image tile had a dimension of 200 × 200 µm. Multiple adjacent image tiles were captured to
encompass the whole tissue areas in each slide.

2.3. Assessment of Fibrosis Stage

Of the 160 samples, 52 samples came from PKUH and 108 samples came from SGH. Liver fibrosis
was scored as F0 to F4 using the Brunt staging system, with stage 4 fibrosis (F4) indicating cirrhosis [16].
The distribution of the samples according to their fibrosis stages are shown in Table 1.

Table 1. Distribution of samples according to non-alcoholic steatohepatitis (NASH) fibrosis stages
before the consensus read.

Peking University People’s Hospital (PKUH)
(n = 52)

Singapore General Hospital (SGH)
(n = 108)

Stage Number (%) Stage Number (%)

F0 17 (33%) F0 17 (16%)
F1 14 (27%) F1 34 (31%)
F2 6 (12%) F2 11 (10%)
F3 9 (17%) F3 21 (19%)
F4 6 (12%) F4 25 (23%)

2.4. Differences between One-Time Readings and Real-Time Readings

There are important differences between the two institutions in the way the fibrosis stages of liver
biopsy samples are read. The PKUH samples were read by a single expert hepatopathologist (AW)
over 1 week for a separate study.

In contrast, the SGH samples were based on historical histopathology reports by in-house
non-specialty pathologists, which is the “real-world” setting in most NASH trial recruitment
centers. As the cases were also recruited over 10 years from 2005 to 2015, there was also significant
temporal variation.

2.5. Consensus Read

To ascertain the true fibrosis stage of the liver biopsy samples, a consensus read was organized,
with all the sample cases assessed by two expert hepatopathologists (Aileen Wee, Wei-Qiang Leow),
one of whom (Aileen Wee) was the same hepatopathologist who read the PKUH cases. The consensus
read was organized twelve months after the initial read of the PKUH samples.

During the consensus read, liver fibrosis was scored in accordance with the NASH Clinical
Research Network (NASH-CRN) criteria, which evaluates fibrosis similarly to the Brunt staging system,
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except that stage 1 is subdivided into stage 1a (delicate zone 3 perisinusoidal fibrosis), stage 1b (dense
zone 3 perisinusoidal fibrosis), and stage 1c (periportal fibrosis only; seen in pediatric NASH) [17].

2.6. Creation of Periportal Parameters for the Refined qFibrosis Algorithm

Following the consensus read data, 40.6% (65/160) of the liver biopsy samples were re-classified.
This was in part due to the recognition of portal fibrosis by the expert hepatopathologists.
According to the NAFLD Activity Score (NAS), F2 fibrosis is defined by the presence of both
pericellular/perisinusoidal fibrosis and periportal fibrosis.

In the earlier versions of the qFibrosis algorithm, although we found an increasing trend in
the SHG B-index for Brunt stages 0, 1, and 2, there was considerable overlap and thus statistical
significance could not be achieved [13]. We postulated that the qFibrosis algorithm under-recognized
the presence of portal/periportal fibrosis. Hence, a periportal region, defined as a 100 µm radial margin
around the portal tract, was incorporated into the qFibrosis algorithm (Figure 1). As a result of the new
periportal region, an additional 28 parameters were added into the refined qFibrosis algorithm (Table 2).
With the new periportal regions, the previous perisinusoidal (PS) regions were altered, which resulted
in changes to 28 perisinusoidal parameters (Table 3).
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Figure 1. (A,B) Creation of a new periportal region with altered perisinusoidal (PS) collagen parameters.
(C) Second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) image of the periportal
region (in green) and portal tract (in orange). (D) Hematoxylin and eosin (H&E)-stained image of
the periportal region.



Diagnostics 2020, 10, 643 5 of 13

Table 2. List of newly created periportal parameters.

Periportal Parameters Descriptions

%Periportal The percentage of fibers in the periportal region
%PeriportalAgg The percentage of aggregated fibers in the periportal region
%PeriportalDis The percentage of distributed fibers in the periportal region
#StrPeriportal The total number of fibers in the periportal region

#ShortStrPeriportal The number of short fibers in the periportal region
#LongStrPeriportal The number of long fibers in the periportal region
#ThinStrPeriportal The number of thin fibers in the periportal region
#ThickStrPeriportal The number of thick fibers in the periportal region
StrAreaPeriportal The total area of fibers in the periportal region

StrLengthPeriportal The total length of fibers in the periportal region
StrWidthPeriportal The total width of fibers in the periportal region
#StrPeriportalAgg The total number of aggregated fibers in the periportal region

#ShortStrPeriportalAgg The number of short aggregated fibers in the periportal region
#LongStrPeriportalAgg The number of long aggregated fibers in the periportal region
#ThinStrPeriportalAgg The number of thin aggregated fibers in the periportal region
#ThickStrPeriportalAgg The number of thick aggregated fibers in the periportal region
StrAreaPeriportalAgg The total area of aggregated fibers in the periportal region

StrLengthPeriportalAgg The total length of aggregated fibers in the periportal region
StrWidthPeriportalAgg The total width of aggregated fibers in the periportal region

#StrPeriportalDis The total number of distributed fibers in the periportal region
#ShortStrPeriportalDis The number of short distributed fibers in the periportal region
#LongStrPeriportalDis The number of long distributed fibers in the periportal region
#ThinStrPeriportalDis The number of thin distributed fibers in the periportal region
#ThickStrPeriportalDis The number of thick distributed fibers in the periportal region
StrAreaPeriportalDis The total area of distributed fibers in the periportal region

StrLengthPeriportalDis The total length of distributed fibers in the periportal region
StrWidthPeriportalDis The total width of distributed fibers in the periportal region
#IntersectionPeriportal The number of intersections in the periportal region

Table 3. List of altered perisinusoidal parameters.

Perisinusoidal Parameters Descriptions

%RPS The percentage of fibers in the reduced perisinusoidal region
%RPSAgg The percentage of aggregated fibers in the reduced perisinusoidal region
%RPSDis The percentage of distributed fibers in the reduced perisinusoidal region
#StrRPS The total number of fibers in the reduced perisinusoidal region

#ShortStrRPS The number of short fibers in the reduced perisinusoidal region
#LongStrRPS The number of long fibers in the reduced perisinusoidal region
#ThinStrRPS The number of thin fibers in the reduced perisinusoidal region
#ThickStrRPS The number of thick fibers in the reduced perisinusoidal region
StrAreaRPS The total area of fibers in the reduced perisinusoidal region

StrLengthRPS The total length of fibers in the reduced perisinusoidal region
StrWidthRPS The total width of fibers in the reduced perisinusoidal region
#StrRPSAgg The total number of aggregated fibers in the reduced perisinusoidal region

#ShortStrRPSAgg The number of short aggregated fibers in the reduced perisinusoidal region
#LongStrRPSAgg The number of long aggregated fibers in the reduced perisinusoidal region
#ThinStrRPSAgg The number of thin aggregated fibers in the reduced perisinusoidal region
#ThickStrRPSAgg The number of thick aggregated fibers in the reduced perisinusoidal region
StrAreaRPSAgg The total area of aggregated fibers in the reduced perisinusoidal region

StrLengthRPSAgg The total length of aggregated fibers in the reduced perisinusoidal region
StrWidthRPSAgg The total width of aggregated fibers in the reduced perisinusoidal region

#StrRPSDis The total number of distributed fibers in the reduced perisinusoidal region
#ShortStrRPSDis The number of short distributed fibers in the reduced perisinusoidal region
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Table 3. Cont.

Perisinusoidal Parameters Descriptions

#LongStrRPSDis The number of long distributed fibers in the reduced perisinusoidal region
#ThinStrRPSDis The number of thin distributed fibers in the reduced perisinusoidal region
#ThickStrRPSDis The number of thick distributed fibers in the reduced perisinusoidal region
StrAreaRPSDis The total area of distributed fibers in the reduced perisinusoidal region

StrLengthRPSDis The total length of distributed fibers in the reduced perisinusoidal region
StrWidthRPSDis The total width of distributed fibers in the reduced perisinusoidal region
#IntersectionRPS The number of intersections in the reduced perisinusoidal region

2.7. Validation of the Improved qFibrosis Algorithm

We used this improved qFibrosis algorithm on the cases designated as F1 and F2 after the consensus
read in order to elucidate the most statistically significant parameters with discriminatory capabilities.

2.8. Statistical Analysis

The Wilcoxon rank-sum test was performed to evaluate the difference between the parameters of
F1 and F2 cases. The statistical significance level was set at p < 0.05. Statistical analyses were done
with MATLAB R2019b (MathWorks, Inc., Natick, MA, USA).

3. Results

The consensus read by the two hepatopathologists resulted in changes to the original fibrosis
stages in 30.7% (16/52) of PKUH liver samples and 45.3% (49/108) of SGH liver samples (Table 4).

Table 4. Changes to the fibrosis stages after the consensus read. (a) # A total of 30.7% of PKUH samples
changed fibrosis stages. * Four samples changed from F1 to F2. (b) # A total of 45.3% of SGH samples
changed fibrosis stages. * Seven samples changed from F1 to F2/F3, while four samples changed from
F2 to F1, three of which were F1a and one was F1b.

(a)

PKUH Samples

Fibrosis Stages Number of Cases
Changes after Consensus Scoring

Changes to Fibrosis Stages Number (%)

F0 17
0 12 (71%)

+1 # 5 (29%)

F1 14
0 10 (71%)

+1 #* 4 (29%)

F2 6 0 6 (100%)

F3 9

−3 # 1 (11%)
−2 # 2 (22%)
−1 # 2 (22%)

0 3 (33%)
1 # 1 (11%)

F4 6
−1 # 1 (17%)

0 5 (83%)
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Table 4. Cont.

(b)

SGH Samples

Fibrosis Stages Number of Cases
Changes after Consensus Scoring

Changes to Fibrosis Stages Number (%)

F0 17
0 11 (65%)

+1 # 6 (35%)

F1 34

−1 # 10 (29%)
0 17 (50%)

+1 #* 5 (15%)
+2 #* 2 (6%)

F2 11

−2 # 2 (18%)
−1 #* 4 (36%)

0 3 (27%)
+1 # 2 (18%)

F3 21

−3 # 2 (10%)
−2 # 3 (14%)
−1 # 3 (14%)

0 4 (19%)
+1 # 9 (43%)

F4 25
−1 # 1 (4%)

0 24 (96%)

In the analysis of the performance of the 28 new periportal parameters and 28 altered perisinusoidal
parameters, we designated the cases that changed between F1 to F2/3 as one group (n = 17) and
compared it against the group of samples that did not change their fibrosis stage (n = 30). There were
interesting differences between the two institutions (Table 5).

Table 5. List of 28 significantly different parameters in the SGH cohort.

Statistically Significant Parameters PKUH p-Value SGH p-Value

%PeriportalDis 0.825 0.022

#StrPeriportal 0.414 0.003

#ShortStrPeriportal 0.710 0.003

#LongStrPeriportal 0.604 0.009

#ThinStrPeriportal 0.710 0.024

#ThickStrPeriportal 0.439 0.004

StrLengthPeriportal 1.000 0.019

StrWidthPeriportal 0.330 0.004

#StrPeriportalAgg 0.825 0.005

#ShortStrPeriportalAgg 0.940 0.004

#LongStrPeriportalAgg 0.484 0.008

#ThickStrPeriportalAgg 0.629 0.005

StrWidthPeriportalAgg 0.199 0.006

#StrPeriportalDis 0.825 0.009

#ShortStrPeriportalDis 0.940 0.005

#ThinStrPeriportalDis 0.940 0.013
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Table 5. Cont.

Statistically Significant Parameters PKUH p-Value SGH p-Value

#ThickStrPeriportalDis 0.710 0.009

StrAreaPeriportalDis 0.825 0.022

StrLengthPeriportalDis 0.604 0.013

StrWidthPeriportalDis 0.825 0.019

#StrPS 0.454 0.049

#ThickStrPS 0.454 0.049

StrLengthPS 0.635 0.049

StrWidthPS 0.539 0.026

#StrPSAgg 0.839 0.042

#LongStrPSAgg 0.733 0.036

#ThickStrPSAgg 0.733 0.042

StrWidthPSAgg 0.635 0.036

Note: The parameters with p < 0.05 are in bold.

In the PKUH column, none of the 56 parameters showed any differences when we compared
the two groups. In striking contrast, the SGH column showed statistical differences in 28 out of the 56
parameters when we compared the two groups. Of these 28 parameters, 20 parameters were from
the new periportal region and 8 parameters were from the altered perisinusoidal regions.

We postulate that the differences between the two institutions were due to the one-time reading
method of PKUH as opposed to the real-time reading method of SGH. As the SGH samples
were read by non-specialty pathologists, fibrosis in the periportal and perisinusoidal regions may
be under-appreciated, whereas the one-time read by the expert histopathologist for the PKUH
samples allowed for the upfront histopathological identification of finer forms of fibrosis. This
underscores the need for a central histopathology read or an assistive tool with similar abilities prior to
recruitment. The significant temporal variation of 10 years in the SGH cohort likely contributed to
the reporting variability.

We further validated the discriminatory ability of these 28 parameters by comparing them between
the consolidated F1 and F2 cases that did not change stages after the consensus read of both institutions
and were deemed as true F1 and F2 cases. Twenty-six out of the 28 parameters showed significant
differences, further substantiating the excellent discriminatory ability of these parameters (Table 6).

Table 6. Validation of the discriminatory parameters.

Parameters True F1 vs. True F2 Cases

%PeriportalDis 0.011
#StrPeriportal 0.003

#ShortStrPeriportal 0.003
#LongStrPeriportal 0.005
#ThinStrPeriportal 0.054
#ThickStrPeriportal 0.005
StrLengthPeriportal 0.005
StrWidthPeriportal 0.011
#StrPeriportalAgg 0.005

#ShortStrPeriportalAgg 0.005
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Table 6. Cont.

Parameters True F1 vs. True F2 Cases

#LongStrPeriportalAgg 0.005
#ThickStrPeriportalAgg 0.008
StrWidthPeriportalAgg 0.011

#StrPeriportalDis 0.003
#ShortStrPeriportalDis 0.003
#ThinStrPeriportalDis 0.054
#ThickStrPeriportalDis 0.004
StrAreaPeriportalDis 0.011

StrLengthPeriportalDis 0.011
StrWidthPeriportalDis 0.008

#StrRPS 0.022
#ThickStrRPS 0.022
StrLengthRPS 0.022
StrWidthRPS 0.022
#StrRPSAgg 0.018

#LongStrRPSAgg 0.018
#ThickStrRPSAgg 0.022
StrWidthRPSAgg 0.022

Note: The parameters with p < 0.05 are in bold.

4. Discussion

Although the NAFLD activity score (NAS) from the NASH Clinical Research Network
(NASH-CRN) is the most commonly used index in NASH clinical trials, there are only a few
studies that have evaluated the operating properties of the NAS [18,19]. These studies demonstrated
weak-to-moderate inter-observer agreement for the diagnosis of NASH between community general
pathologists and expert hepatopathologists, highlighting a real-world issue in the applicability of such
scoring systems. Despite the use of various histochemical techniques, including collagen fiber stains,
such as Masson trichrome, or elastic fiber stains, such as Victoria blue, there is still considerable inter-
and intra-pathologist variation [20]. Serendipitously, it was also this real-world issue that has allowed
us to discover our discriminatory parameters.

R.K. Pai, in his critical review of NAFLD scoring systems, highlights the inability of the staging
system to fully capture the degree of perisinusoidal fibrosis that can be present at all stages [21].
Although perisinusoidal fibrosis defines F1 disease in adults, it is not evaluated at the higher stages of
fibrosis. A system that can detect and quantify this pattern of fibrosis will have value in predicting
liver-related outcomes.

Many studies have shown that fibrosis is the most important feature when predicting adverse
liver-related outcomes and mortality in NAFLD [7,22–24]. Most trials have designated endpoints
that include a change in the total NAS score, a ≥ 2-point reduction in the steatosis-activity-fibrosis
(SAF) score, a ≥ 2-point reduction in the NAS with no worsening of fibrosis, and a ≥ 1-stage decrease
in fibrosis [25]. The endpoint in fibrosis has been hard to achieve, partly due to the lack of a linear
relationship between the fibrosis stage and collagen deposition, and partly due to the limited range
of fibrosis stages in the scoring systems. Hence, utilizing a system that can perform quantitative
measurements of collagen and measure perisinusoidal fibrosis at all stages will improve the evaluation
of this essential outcome.

In recent years, many studies have utilized analytic imaging tools to quantify the amount of
collagen. Through machine learning and deep neural learning networks, such automated measurements
have shown considerable correlations to outcomes [26–32]. As a result, clinical trials are exploring
the utility of such technologies in the definition of their trial endpoints. As with all new technology,
a lead-time is needed for maturation, and it is this continuous refinement of the algorithms anchored
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by biological relevance that will allow the technology to flourish. As F2 fibrosis starts at the periportal
regions, we have refined our algorithmic parameters and incorporated additional novel parameters
that allow us to identify patients with F2 fibrosis with more accuracy. Future algorithms should also
assimilate similar conceptual changes.

Quantitative fibrosis changes are small during the early stages of fibrosis progression. Such minute
changes may be hard to discern, even with histochemical techniques. SHG and TPEF microscopy
techniques allow for the visualization and quantification of early collagen. In our earlier study, the SHG
B-index was able to differentiate advanced fibrosis (Brunt stage 3 and 4) from no or mild fibrosis (Brunt
stage 0 and 1) [13]. Although there was considerable overlap between Brunt stages 0, 1, and 2, we
noted an increasing trend in the SHG B-index.

Our hypothesis that an algorithm with a better discriminatory ability for F1 and F2 cases lies in
a focused look at the periportal region was proven correct by the discovery of 28 parameters, where
20 of them pertain specifically to the collagen changes in the periportal region. Furthermore, we
were able to validate 26 of these 28 parameters when we used them to differentiate F1 from F2 cases
in both institutions. These parameters provided the basis for the refinement of qFibrosis and were
targeted at increasing the discriminatory ability of the algorithm in the early fibrosis stages, accurately
stratifying F1 and F2 cases. As NASH clinical trial results are highly dependent on accurate F2 patient
inclusion and F1 patient exclusion, we hope that this tool will provide better patient selection, increase
enrollment, and lead to a breakthrough in the search for a NASH therapeutic option.

There are limitations to this system. The first is that liver core biopsy tissue is still required. As
the risk of an invasive procedure is still not negated, non-invasive blood and imaging-based biomarkers
will always have the upper hand [33,34]. The widespread use of transient elastography is a testament
to the clinical preference of non-invasive tools. The amount of tissue in an adequate core biopsy
represents only 1/50,000 of the entire organ, and as with all biopsies, there is the issue of sampling
bias [35,36]. Although statistical significance was found for almost all the parameters, we are mindful
that the cohort that led to this discovery was small. Thus, we seek to validate our findings with a larger
external cohort, which we are currently in the midst of coordinating. The external cohort validation
will also overcome the potential intra-observer bias in the evaluation of the PKUH cohort.

An aim for future research is to be able to predict the progression or regression of disease.
The Beijing Classification developed by N.D. Theise for patients with chronic viral hepatitis is prophetic
and future refinements of the technology should work toward this aim of prediction [37,38]. In addition,
as we recognize that response to an improvement in steatohepatitis, such as decreased ballooning
degeneration, steatosis, and portal inflammation, may also indicate therapeutic efficacy, both fibrosis
and disease activity should be measured endpoints, as both are markers of therapeutic efficacy [39]. A
combined system, such as qFIBS, addresses that need with a single technology [14].

5. Conclusions

The refined qFibrosis algorithm incorporated 28 additional parameters (20 periportal and 8
perisinusoidal), of which 26 novel parameters showed a good discriminatory ability for NASH fibrosis
stage 1 and 2 cases, representing an invaluable assistive tool for in-house pathologists when screening
patients for NASH clinical trials.
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