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Abstract: To compare image quality and the radiation dose of computed tomography pulmonary 

angiography (CTPA) subjected to the first deep learning-based image reconstruction (DLR) (50%) 

algorithm, with images subjected to the hybrid-iterative reconstruction (IR) technique (50%). One 

hundred forty patients who underwent CTPA for suspected pulmonary embolism (PE) between 

2018 and 2019 were retrospectively reviewed. Image quality was assessed quantitatively (image 

noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR)) and qualitatively (on a 5-point 

scale). Radiation dose parameters (CT dose index, CTDIvol; and dose-length product, DLP) were also 

recorded. Ninety-three patients were finally analyzed, 48 with hybrid-IR and 45 with DLR images. 

The image noise was significantly lower and the SNR (24.4 ± 5.9 vs. 20.7 ± 6.1) and CNR (21.8 ± 5.8 

vs. 18.6 ± 6.0) were significantly higher on DLR than hybrid-IR images (p < 0.01). DLR images 

received a significantly higher score than hybrid-IR images for image quality, with both soft (4.4 ± 

0.7 vs. 3.8 ± 0.8) and lung (4.1 ± 0.7 vs. 3.6 ± 0.9) filters (p < 0.01). No difference in diagnostic 

confidence level for PE between both techniques was found. CTDIvol (4.8 ± 1.4 vs. 4.0 ± 1.2 mGy) and 

DLP (157.9 ± 44.9 vs. 130.8 ± 41.2 mGy∙cm) were lower on DLR than hybrid-IR images. DLR both 

significantly improved the image quality and reduced the radiation dose of CTPA examinations as 

compared to the hybrid-IR technique. 

Keywords: computed tomography angiography; pulmonary embolism; artificial intelligence; image 

reconstruction; deep learning 

 

1. Introduction 

Acute pulmonary embolism (PE) is the third most frequent cardiovascular disease, after acute 

myocardial infarction and stroke, causing approximately 37,000 deaths in Europe and 60,000–100,000 

deaths in the USA each year [1,2]. Computed tomography pulmonary angiography (CTPA) is the 

first-choice diagnostic imaging modality for acute PE due to its wide availability and its minimal 
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invasiveness [2–4]. In fact, approximately 2% of all emergency department patients undergo 

pulmonary CTPA for suspected PE [5]. However, the increased use of CT scans in emergency 

situations and the stochastic low-level radiation-related carcinogenesis raise concerns about long-

term radiation exposure [6–9]. Although the radiology community applies the “As Low As 

Reasonably Achievable” principle for CT scans during scheduled exams, it is still important to 

demonstrate the efficacy and reliability of emergency low-dose CT scans [10,11]. Several approaches 

have been historically developed to reduce CT radiation dose, such as the use of fixed tube current 

reduction, automatic exposure control, and adjusted kilovoltage based on patient size and noise 

reduction filters [12]. While this has led to a significant dose reduction in many applications, image 

quality deterioration remained the main limitation for further radiation dose reduction, thus urging 

manufacturers to develop efficient reconstruction techniques. 

Originally, CT images were reconstructed by filtered back projection (FBP). As the FBP 

algorithm assumes that the acquired projection data are free of noise, it requires low computational 

power, making it the method of choice for decades [13]. Nonetheless, when the radiation dose is too 

reduced or when large, heavy patients are examined, FBP produces noisy images that are susceptible 

to artifacts [14]. With the advancement of computational power, CT reconstruction techniques have 

undergone impressive development over the last 20 years, particularly iterative reconstruction (IR) 

techniques, which are now the new gold standard. 

Briefly, IR can be divided into two main categories: hybrid-IR and model-based IR (MBIR) [15–

17]. Even though hybrid-IR is the most widely used, its performance still has room for improvement 

compared to MBIR, which can achieve higher image quality and has advantages in terms of image 

noise, image texture, and spatial resolution. However, time-consuming reconstructions with MBIR is 

still an important issue, especially in the emergency setting. Recently, artificial intelligence has 

generated a high ground-swell of interest in several imaging applications, ranging from detection, 

recognition, and segmentation to a new type of reconstruction technique based on deep learning 

reconstruction (DLR) [18,19]. The first commercialized DLR tool, Advanced Intelligent Clear-IQ 

Engine (AiCE) (Canon Medical, Otawara, Japan), has been developed for CT and uses a deep 

convolutional neural network (DCNN) to distinguish true signal from noise within the image. For 

CT scan reconstructions, high-quality target data are acquired under optimized conditions and in the 

case of AiCE, are reconstructed with advanced MBIR. Image data that have been corrupted with 

artifacts and simulated noise that corresponds to 12.5–75% of the target image dose are then used for 

training (Figure 1) [20,21]. The DCNN algorithm promises high-quality reconstructions that bring the 

benefits of state-of-the-art advanced MBIR reconstruction image quality at much faster reconstruction 

speeds, increasing its applicability in the emergency CT workflow (Figure 2). 

 

Figure 1. Schematic representation of the DLR training process. DLR, deep learning reconstruction; 

CT, computed tomography; IR, iterative reconstruction; MBIR, model-based iterative reconstruction. 
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Figure 2. Schematic representation of DCNN direct application in clinical settings. DLR’s 

reconstruction time is up to 80 slices/s (similar to conventional hybrid-IR’s reconstruction time). 

DCNN, deep convolution neural network; DLR, deep learning reconstruction; CT, computed 

tomography; IR, iterative reconstruction. 

Previous DLR studies estimated that despite a 30% dose reduction, the quality of DLR images 

should be better than that of hybrid-IR images with reference dose [22,23]. However, the current 

version of AiCE requires 0.5 mm-thick native slices, resulting in slices twice as thin as in the imaging 

protocol performed with Adaptive Iterative Dose Reduction 3-Dimensional technique (AIDR 3D) 

from the same constructor and corresponding to hybrid-IR set up. On one hand, thinner slices should 

provide more accurate diagnosis in distal PE [24]; on the other hand, as the slice thickness is divided 

by a factor of two, it is expected to increase image noise by approximately a factor of 1.4 [25]. Based 

on these estimations, our initial experience in the clinical setting, and vendor recommendation, we 

intended to reduce the radiation dose by an estimated 20% in the AiCE group by increasing the noise 

index settings, expecting a significant dose reduction while still improving the overall image quality. 

The aim of the present study was to investigate the impact of the DLR reconstruction technique 

(AiCE) on the image quality and radiation dose of CTPA compared to the current gold-standard 

hybrid-IR technique (AIDR) used as part of the PE imaging protocol in the emergency setting. 

2. Materials and Methods 

2.1. Study Population 

A retrospective single-center study of all consecutive patients referred to our emergency 

department between November 2018 and January 2019 and who underwent a CTPA scan for 

suspected PE was employed. Patients were recruited using our Radiology Information System’s 

built-in thesaurus (XPLORE; EDL, La Seyne-Sur-Mer, France). For each search, a set of “PE” 

keywords (“pulmonary embolism”, “PE”) was combined with a “CTPA” filter using the Boolean 

operator “AND”. Exclusion criteria were as follows: allergy to iodinated contrast, severe renal 

disease, age < 18 years old, no recent (<6 months) body max index (BMI) assessment, and the use of 

a non-standard CTPA protocol. Patients with suboptimal enhancement of the pulmonary arterial 

trunk (<250 Hounsfield units) were secondarily excluded. Institutional Review Board approval and 

prior written informed patient consent were waived owing to the investigation’s retrospective nature 

of the study using existing CT images. Patients’ records and information were de-identified prior to 

analysis. 

2.2. CT Scanning Protocol 

All CT examinations were performed with a 320-detector row CT machine (Aquilion ONE 

GENESIS; Canon Medical Systems, Otawara, Japan). For each exam, the main scan parameters were 

as follows: helical acquisition, 0.5 mm × 80 rows, beam pitch of 0.813, 0.275 s gantry rotation time, 512 

× 512 matrix, and 400 mm field of view. Automatic adjustment of the kVp was not available with the 

subtraction CT technique as all parameters (except the mA modulation) had to be identical for an 
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accurate subtraction. Therefore, we decided to set up 100 kVp on our standard PE protocol in order 

to avoid beam hardening artifacts in patients with arms along the body or with a higher BMI. 

Automatic tube current modulation (SUREExposure 3D) was used for all scans with a noise index set 

at 10.0 (defined as “Standard +1”) for AiCE with a mA range of 140–600 mA versus a noise index set 

at 8.5 with a mA range of 150–600 mA for AIDR 3D. The noise index settings (8.5 and 10) were based 

on our initial experience in the clinical setting and vendor recommendations. Reconstruction 

parameters were 0.5-mm slice thickness and 0.3-mm slice interval for the AiCE group and 1.0-mm 

slice thickness and 0.8-mm slice interval for the AIDR 3D group, respectively. Scan acquisition and 

reconstruction parameters are summarized in Table 1. In accordance with our standard CTPA 

protocol with the subtraction CT technique, all patients received a weight adapted 50–65 mL 

intravenous bolus of Iomeron 350 iodine per mL (Bracco Imaging, Courcouronnes, France), followed 

by a 50 mL chasing bolus of saline to guarantee sufficient contrast circulation in the pulmonary 

parenchyma and to obtain optimal iodine maps with the subtraction technique. Image acquisition 

was triggered using a predefined attenuation threshold in the pulmonary trunk at the level of the 

pulmonary artery bifurcation. As DLR reconstructions were available from December 2018 in our 

center, patients were allocated to the AIDR 3D group prior to this date and to AiCE afterwards. 

Table 1. CTPA acquisition and reconstruction parameters for hybrid-IR (AIDR 3D) and DLR (AiCE). 

Parameters AIDR 3D AiCE 

Reconstruction technique Iterative Deep learning 

Acquisition mode Helical Helical 

Tube voltage (kVp) 100 100 

Tube current (mA) 150–500 140–600 

Collimation (mm) 0.5 × 80 row 0.5 × 80 row 

Rotation time (s) 0.275 0.275 

Field of view (mm) 400 400 

Slice thickness (mm) 1.0 0.5 

Interval (mm) 0.8 0.3 

Pitch 0.813 0.813 

Noise index 8.5 10 

CTPA, computed tomography pulmonary angiography; Hybrid-IR, hybrid iterative reconstruction; 

DLR, deep learning reconstruction; AIDR 3D, adaptive iterative dose reduction 3-dimensional; AiCE, 

advanced intelligent clear-IQ engine; kVp, kilovoltage peak; mA, milliampere; mm, millimeter; s, 

second; ms, millisecond. 

2.3. Image Quality Assessment 

2.3.1. Objective Quantitative Evaluation of Image Quality 

Images were blindly analyzed on a dedicated workstation by an independent radiologist with 3 

years of experience in CTPA by manually placing circular regions of interest (ROI) within the axial 

images. He was different from the one who subjectively assessed the image quality. The ROI size was 

set as large as possible and positioned to avoid artifacts. Measurement of the image noise was 

performed by the standard deviation of the ROI in the descending aorta on soft filter images (Noise 

in the descending Aorta on Soft filter, NAS), in the trachea on soft filter images (Noise in the Trachea 

on Soft filter, NTS), and in the trachea on lung filter images (Noise in the Trachea on Lung filter, 

NTL). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated using the method 

described by Szucs-Farkas et al., based on the following equation [26–29]: 

SNR = 
��������

�����
 (1) 

CNR = 
�����������������

�����
 (2) 
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where SIvessel is the mean signal intensity (SI) of pulmonary vessels. SIvessel was calculated as the 

average of the vascular enhancement measurements (in HU) obtained at five different levels (main 

pulmonary artery, right and left pulmonary arteries, right and left lower lobe arteries) and noise was 

defined as the mean of the standard deviation of these measurements. In the presence of an isolated 

PE, the ROI was placed in an adjacent vessel segment. SImuscle was calculated as the average of the 

attenuation of the central part of the pectoral muscles and the deep paraspinal muscles, on both sides 

avoiding fat. The signal-to-noise ratio per unit dose (SNRD) and contrast-to-noise ratio per unit dose 

(CNRD) were then calculated, respectively, as follows [30]: 

SNRD = 
���

√�������
 (3) 

CNRD = 
���

√�������
 (4) 

2.3.2. Subjective Qualitative Evaluation of Image Quality 

All CTPAs were randomized, anonymized, and independently evaluated on standard LCD 

monitors by two radiologists with 3 and 7 years of experience, respectively, who were blinded to all 

patient data and reconstruction parameters. Readers were asked to subjectively rate the overall image 

quality on 0.5-mm (AiCE) and 1-mm (AIDR 3D) axial slices using a five-point scale ranging from 1 to 

5: 1 = very poor image quality with no diagnostic information, 2 = low image quality that reduces the 

confidence in making diagnosis, 3 = moderate image quality sufficient to make diagnosis, 4 = good 

image quality clearly demonstrating anatomical structures, 5 = excellent image quality enabling 

excellent differentiation of even small anatomical structures. Observers also reported their diagnostic 

confidence to detect or exclude central, segmental, and subsegmental pulmonary embolic defects: 1 

= no confidence; 2 = confident; 3 = very confident. Readers were able to adjust window level and 

width during the evaluation at their own discretion. To improve the interobserver agreement, the 

radiologists were blindly trained on images obtained from patients excluded from the study. In cases 

of disagreement (defined by 2 points or more of discordance), adjudication was performed by a third 

radiologist with 9 years of experience. 

2.4. Radiation Dose Measurements 

To assess radiation exposure, the volume CT dose index (CTDIvol) and the dose-length product 

(DLP) recorded as Digital Imaging and Communications in Medicine (DICOM) data were obtained. 

2.5. Statistical Analysis 

Continuous variables were presented as means ± standard deviation (SD) and dichotomous 

variables as numbers (percentages). The Kolmogorov–Smirnov test was used to test all parameters 

in both groups for normal distribution. As Gaussian distribution was present for all parameters 

except age, a two-sided paired t-test was used to evaluate differences between the hybrid-IR (AIDR 

3D) and DLR (AiCE) groups regarding mean attenuation values of the DLP, CTDIvol, direct noise 

attenuation measurement, SNR, CNR, SNRD, CNRD, and image quality scores. A p value < 0.05 was 

considered as statistically significant. Interobserver agreement for qualitative analysis of image 

quality was evaluated by using Cohens’ kappa (k). Hereby, kappa values < 0 were considered as 

indicating no agreement, 0.00–0.20 as poor, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as 

substantial, and 0.81–1.00 as excellent agreement. Subgroups analyses were also conducted according 

to the BMI (<25 kg/m2, 25–30 kg/m2, >30 kg/m2) in order to evaluate the impact of weight on image 

quality and radiation dose. All statistical tests were performed using the STATA® software (version 

13; StataCorp; College Station, TX, USA) and Excel Software (version 2016; Redmond, WA, USA). 

  



Diagnostics 2020, 10, 558 6 of 14 

 

3. Results 

3.1. Patient Characteristics 

One hundred and forty consecutive patients were retrospectively recruited. Ninety-three 

patients (49 men and 44 women) were finally included in the analysis, 48 in the AIDR 3D group and 

45 in the AiCE group (Figure 3). The mean age of the patients was 67.9 ± 19.2 years (range, 19–92 

years) at the time of AIDR 3D examinations and 69.0 ± 15.9 years (range, 26–91 years) at the time of 

AiCE examinations (p = 0.77). The mean BMI of the overall population was 24.4 ± 5.1 kg/m2 for the 

AIDR 3D group (range, 13.2–34.0 kg/m2) and 26.5 ± 6.2 kg/m2 (range, 17.0–40.6 kg/m2) for the AiCE 

group (p = 0.08). Patients were divided into three BMI categories for subgroup analysis: normal 

weight < 25 kg/m2 (n = 45), overweight 25–30 kg/m2 (n = 26), and obese > 30 kg/m2 (n = 22). There was 

no significant difference between BMI categories in terms of age. 

 

Figure 3. Flow chart of the study. CTPA, computed tomography pulmonary angiography, IR, iterative 

reconstruction; DLR, deep learning reconstruction; CT, computed tomography; AIDR 3D, adaptive 

iterative dose reduction three dimensional; AiCE, advanced intelligent clear-IQ engine; n, number. 

3.2. CT Image Quality 

3.2.1. Quantitative Image Analysis 

A total of 2.232 measurements were subjected to analysis (1.116 ROIs with mean signal and 

standard deviation). As shown in Table 2, the image noise was lower on DLR images whatever the 

ROI location, the filter used, and the BMI category. DLR-based reconstructions (AiCE) always 

showed a significant image noise decrease compared to the hybrid iterative-based reconstructions 

(AIDR 3D). In the overall population, mean decrease in image noise ranged from 27% to 32% on DLR 

images (Figure 4). Accordingly, SNR, CNR, SNRD, and CNRD were significantly higher on DLR 

images, increasing by 18%, 17%, 26%, and 26%, respectively. Across BMI categories, the image noise 

remained relatively stable on DLR images while steadily increasing on hybrid-IR images (Figure 5a). 

The linear regression analysis of SNRD according to BMI revealed a slower decrease of SNRD on 

DLR images, in particular for overweight and obese patients (Figure 5b). 
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Table 2. Quantitative analysis of CT image quality for hybrid-IR (AIDR 3D) and DLR (AiCE). 

Parameters AIDR AiCE % Change p-Value 

All patients, n 45 48 - - 

 Image noise (HU)     

  NAS 19.2 ± 3.0 14.0 ± 2.0 −27% <0.01 

  NTS 16.7 ± 3.7 11.9 ± 2.3 −29% <0.01 

  NTL 56.9 ± 10.8 38.7 ± 11.3 −32% <0.01 

 SNR 20.7 ± 6.1 24.4 ± 5.9 +18% <0.01 

 CNR 18.6 ± 6.0 21.8 ± 5.8 +17% <0.01 

 SNRD 10.3 ± 4.8 13.0 ± 5.0 +26% <0.01 

 CNRD 9.3 ± 4.6 11.7 ± 4.8 +26% <0.01 

BMI < 25, n 24 21 - - 

 Image noise (HU)     

  NAS 18.5 ± 2.9 13.9 ± 1.7 −25% <0.01 

  NTS 15.5 ± 2.9 11.9 ± 2.3 −23% <0.01 

  NTL 55.0 ± 11.5 39.6 ± 9.3 −28% <0.01 

 SNR 23.4 ± 6.2 27.1 ± 5.3 +16% 0.02 

 CNR 21.3 ± 6.0 24.5 ± 5.4 +15% 0.05 

 SNRD 12.7 ± 5.4 16.2 ± 5.0 +28% <0.01 

 CNRD 11.5 ± 5.1 14.6 ± 4.8 +27% <0.01 

BMI 25–30, n 18 8 - - 

 Image noise (HU)     

  NAS 20.1 ± 3.1 14.6 ± 1.9 −27% <0.01 

  NTS 17.8 ± 3.4 11.5 ± 2.9 −35% <0.01 

  NTL 58.7 ± 10.4 41.5 ± 16.1 −29% 0.02 

 SNR 18.1 ± 4.3 24.6 ± 5.2 +36% <0.01 

 CNR 16.1 ± 4.5 21.9 ± 4.9 +36% <0.01 

 SNRD 7.8 ± 2.0 12.5 ± 3.5 +60% <0.01 

 CNRD 7.0 ± 2.0 11.1 ± 3.4 +59% <0.01 

BMI > 30, n 6 16 - - 

 Image noise (HU)     

  NAS 20.5 ± 2.6 14.0 ± 2.3 −32% <0.01 

  NTS 19.3 ± 5.3 12.3 ± 2.3 −36% <0.01 

  NTL 58.7 ± 9.9 36.1 ± 11.3 −39% <0.01 

 SNR 14.3 ± 2.0 20.8 ± 5.2 +45% <0.01 

 CNR 12.4 ± 1.8 18.2 ± 4.9 +47% <0.01 

 SNRD 5.8 ± 1.1 9.2 ± 2.5 +59% <0.01 

 CNRD 5.1 ± 1.0 8.1 ± 2.3 +59% <0.01 

Data are presented as mean ± standard deviation. p-values < 0.05 were considered significant. CT, 

computed tomography; Hybrid-IR, hybrid iterative reconstruction; DLR, deep learning 

reconstruction; AIDR 3D, adaptive iterative dose reduction 3-dimensional; AiCE, advanced 

intelligent clear-IQ engine; n, number of patients; %, percentage; BMI, body mass index (kg/m2); HU, 

Hounsfield units; NAS, noise in the descending aorta on soft filter; NTS, noise in the trachea on soft 

filter; NTL, noise in the trachea on lung filter; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; 

SNRD, signal-to-noise ratio per unit dose; CNRD, contrast-to-noise ratio per unit dose. 
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Figure 4. Image noise with hybrid-IR (AIDR 3D) and DLR (AiCE) studies in the overall population. 

Hybrid-IR, hybrid iterative reconstruction (AIDR 3D, adaptive iterative dose reduction 3-

dimensional); DLR, deep learning reconstruction (AiCE, advanced intelligent clear-IQ engine); NAS, 

noise in the descending aorta on soft filter; NTS, noise in the trachea on soft filter; NTL, noise in the 

trachea on lung filter; HU, Hounsfield units. 

 

(a) (b) 

Figure 5. (a) Direct noise measurements based on BMI; (b) Evolution of signal-to-noise ratio per unit 

dose according to BMI. Across BMI categories, the image noise remained relatively stable on DLR 

images while steadily increasing on hybrid-IR images. The linear regression analysis of SNRD 

according to BMI revealed a slower decrease of SNRD on DLR images, in particular for overweight 
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and obese patients. BMI, body mass index (kg/m2); HU, Hounsfield units; SNRD, signal-to-noise ratio 

per unit dose; NAS, noise in the descending aorta on soft filter; NTS, noise in the trachea on soft filter; 

NTL, noise in the trachea on lung filter; LR, linear regression; Hybrid-IR, hybrid iterative 

reconstruction (AIDR 3D, adaptive iterative dose reduction 3-dimensional); DLR, deep learning 

reconstruction (AiCE, advanced intelligent clear-IQ engine). 

3.2.2. Qualitative Image Analysis 

As shown in Table 3, in all patients, DLR yielded the highest overall image quality scores with 

both soft and lung filters (Figure 6). Subjective parameters were significantly improved in the global 

population, with a mean overall image quality score of 4.4 ± 0.7 and 4.1 ± 0.7 on DLR images with soft 

and lung filters, respectively, versus 3.8 ± 0.8 and 3.6 ± 0.9 on hybrid-IR images with soft and lung 

filters, respectively (p < 0.01). Overall image quality was better on DLR images in all BMI categories, 

but not significantly only for BMI >30 kg/m2. There was no significant difference in diagnostic 

confidence level between the hybrid-IR and the DLR images. Inter-observer agreement was moderate 

with respect to the overall image quality (k = 0.59). Overall, 362 (77.8%) of 465 grades were the same 

between the two first observers, 90 (19.4%) differed by one point, and only 13 (2.8%) differed by two 

points, which led to an adjudication by the third radiologist. Ten of these 13 disagreements occurred 

in the DLR group, in obese patients (mean BMI = 30.8 ± 5.7 kg/m2), and the third radiologist chose the 

highest rating in 9 cases. 

Table 3. Qualitative analysis of CT image quality for hybrid-IR (AIDR 3D) and DLR (AiCE). 

Parameters AIDR AiCE p-Value 

All patients, n 45 48 - 

 Overall image quality    

  Soft 3.8 ± 0.8 4.4 ± 0.7 <0.01 

  Lung 3.6 ± 0.9 4.1 ± 0.7 <0.01 

 Diagnostic confidence level *    

  Proximal 3.0 ± 0.0 3.0 ± 0.0 - 

  Segmental 2.9 ± 0.3 2.9 ± 0.3 0.93 

  Subsegmental 2.6 ± 0.6 2.6 ± 0.7 0.90 

BMI < 25, n 24 21 - 

 Overall image quality    

  Soft 3.7 ± 0.9 4.4 ± 0.7 <0.01 

  Lung 3.7 ± 0.9 4.2 ± 0.6 0.03 

 Diagnostic confidence level *    

  Proximal 3.0 ± 0.0 3.0 ± 0.0 - 

  Segmental 2.9 ± 0.3 3.0 ± 0.0 0.63 

  Subsegmental 2.7 ± 0.5 2.8 ± 0.5 0.85 

BMI 25–30, n 18 8 - 

 Overall image quality    

  Soft 3.9 ± 0.6 4.6 ± 0.7 0.01 

  Lung 3.5 ± 0.8 4.4 ± 0.5 0.01 

 Diagnostic confidence level *    

  Proximal 3.0 ± 0.0 3.0 ± 0.0 - 

  Segmental 2.9 ± 0.2 3.0 0.57 

  Subsegmental 2.5 ± 0.7 2.9 ± 0.4 0.14 

BMI > 30, n 5 16 - 

 Overall image quality    

  Soft 4.0 ± 0.9 4.3 ± 0.9 0.6 

  Lung 3.7 ± 1.0 3.8 ± 0.8 1 

 Diagnostic confidence level *    

  Proximal 3.0 ± 0.0 3.0 ± 0.0 - 
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  Segmental 2.8 ± 0.4 2.8 ± 0.4 0.96 

  Subsegmental 2.5 ± 0.8 2.3 ± 0.9 0.54 

Data are presented as mean ± standard deviation. p-values < 0.05 were considered significant. CT, 

computed tomography; Hybrid-IR, hybrid iterative reconstruction; DLR, deep learning 

reconstruction; AIDR 3D, adaptive iterative dose reduction 3-dimensional; AiCE, advanced 

intelligent clear-IQ engine; n, number of patients; %, percentage; BMI, body mass index (kg/m2); * for 

evaluation of pulmonary embolism. 

 

Figure 6. CTA images of pulmonary embolism in a 54-year-old woman (BMI = 42.5 kg/m2) with 

hybrid-IR (AIDR 3D) and DLR (AiCE) reconstructions. (a,b) Native and zoomed CT images from 

hybrid-IR (AIDR 3D) with 1 mm-thick slices on soft filter. (c,d) Native and zoomed CT images from 

DLR (AiCE) with 0.5 mm-thick slices on soft filter. (e,f) Native and zoomed CT images from DLR 

(AiCE) with 0.5 mm-thick slices on lung filter. On the zoom-in images, the DLR soft image appears as 

a virtually noise-free image (white arrow), whereas the DLR lung image provides the best spatial 

resolution, with excellent SNR/CNR depicting a clear subsegmental thrombus (white arrowhead). 

CTA, computed tomography angiography; Hybrid-IR, hybrid iterative reconstruction (AIDR 3D, 

adaptive iterative dose reduction 3-dimensional); DLR, deep learning reconstruction (AiCE, 

advanced intelligent clear-IQ engine); BMI, body mass index; CNR, contrast-to-noise ratio. 

3.3. Radiation Exposure 

The mean CTDIvol values in the overall population for hybrid-IR (AIDR 3D) and DLR (AiCE) 

CTPA studies were 4.8 ± 1.4 mGy and 4.0 ± 1.2 mGy, respectively, corresponding to a significant 

radiation dose reduction of 17% with DLR compared to hybrid-IR (p < 0.01). Regarding the subgroup 

analysis, mean CTDIvol values were significantly lower in the DLR group than in the hybrid-IR group 

whatever the BMI, <25, 25–30, or >30. The mean DLP values in the overall population for hybrid-IR 
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(AIDR 3D) and DLR (AiCE) CTPA studies were 157.9 ± 44.9 mGy∙cm and 130.8 ± 41.2 mGy∙cm, 

respectively, corresponding to a significant radiation dose reduction of 17% with DLR compared to 

hybrid-IR (p < 0.01). Regarding the subgroup analysis, mean DLP values were significantly lower in 

the DLR group than in the hybrid-IR group for all BMI categories except >30. Data about radiation 

exposure are summarized in Table 4. 

Table 4. Comparison of radiation dose between hybrid-IR (AIDR 3D) and DLR (AiCE). 

Parameters AIDR AiCE % Change p-Value 

All patients, n 45 48 - - 

 CTDIvol 4.8 ± 1.4 4.0 ± 1.2 −17% <0.01 

 DLP 157.9 ± 44.9 130.8 ± 41.2 −17% <0.01 

BMI < 25, n 24 21 - - 

 CTDIvol 3.9 ± 1.2 3.0 ± 0.8 −23% 0.02 

 DLP 130.8 ± 37.9 100.7 ± 30.0 −23% <0.001 

BMI 25–30, n 18 8 - - 

 CTDIvol 5.4 ± 0.6 4.1 ± 0.8 −24% <0.01 

 DLP 179.6 ± 28.0 139.0 ± 34.4 −23% <0.01 

BMI > 30, n 5 16 - - 

 CTDIvol 6.2 ± 1.4 5.2 ± 0.6 −16% 0.04 

 DLP 200.8 ± 47.2 166.3 ± 23.9 −17% 0.08 

Data are presented as mean ± standard deviation. p-values < 0.05 were considered significant. Hybrid-

IR, hybrid iterative reconstruction; DLR, deep learning reconstruction; AIDR 3D, adaptive iterative 

dose reduction 3-dimensional; AiCE, advanced intelligent clear-IQ engine; n, number of patients; %, 

percentage; CTDIvol, volume computed tomography dose index (mGy); DLP, dose-length product 

(mGy∙cm); BMI, body mass index (kg/m2). 

4. Discussion 

The present study is the first to evaluate the effect of DLR on the image quality and radiation 

dose of CTPA in the emergency setting. DLR yielded a significantly lower image noise and higher 

SNRs and CNRs than hybrid-IR on both soft and lung images, whatever the BMI category. The 

subjective overall image quality score was significantly better with DLR than hybrid-IR for the 

evaluation of PE on both soft and lung images, even for overweight patients. We did not report any 

negative impact on our workflow using DLR images in the clinical routine as the AiCE reconstruction 

server allows parallel reconstruction during the acquisition. Currently, DLR reconstruction time is 

up to 40 images/s versus 3.5 image/s with MBIR technique (FIRST) and 80 images/s with hybrid-IR 

(AIDR 3D). 

Interestingly, although the current version of AiCE requires thinner native slices than AIDR 3D 

(0.5 mm vs. 1 mm) and while the radiation dose was reduced by 17%, both quantitative and 

qualitative image quality were significantly improved. Indeed, image noise was reduced by 

approximately 25% on DLR images and SNR and CNR were increased by approximately 20%. Based 

on our findings, we suggest that as DLR allows thinner slices in CTPA images while improving image 

quality and reducing radiation exposure, DLR appears as an essential reconstruction method for 

CTPA scanning. These results are concordant with previous studies in other areas, which concluded 

that despite a radiation dose reduction of 30%, CT images reconstructed with DLR are still superior 

to the reference dose images reconstructed with hybrid-IR [18]. 

With the improvement of CT techniques, CTPA is now recognized as the technique of choice for 

diagnosis of suspected PE. However, the radiation dose has increased over time to compensate for 

the increasing image noise in thin-section imaging. Keeping the radiation exposure at minimum 

levels has become a major concern in the radiology community. Several dose-saving strategies have 

been proposed for reducing the radiation dose of CTPA, such as tube current modulation, lower kV, 

use of high-pitch protocol, application of shielding, and hybrid-IR technique [28–30]. DLR is currently 

the latest one, allowing one to reduce the radiation dose while improving overall image quality of 
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CTPA, and could be considered as the new gold standard in the near future [31,32]. Indeed, some 

recent studies showed higher image quality of coronary CT with DLR versus hybrid-IR and higher 

image quality of abdominal ultra-high resolution CT with DLR versus MBIR [22,23]. The strength of 

the present study was that our sample of 93 patients was larger than prior studies using DLR. To our 

knowledge, this is the only and largest comparative study to date evaluating DLR versus hybrid-IR 

for CTPA. 

Another important finding from the present study is the increased efficacy in image noise 

management reported for large and heavy patients with DLR. Indeed, even though SNRD and CNRD 

inevitably decrease in heavier patients due to the photo starvation, our study suggested a slower 

decrease with DLR than with hybrid-IR [33,34]. We hypothesize that the artificially decreased tube 

current in the training dataset mimics the photon starvation in large patients, thus helping to explain 

our findings. Additionally, our increasing experience with DLR (AiCE) has changed our approach to 

CTPA as most of the radiologists in our institution now use lung reconstructions for assessment of 

acute distal PE. Although soft filter images used to be ideal on hybrid-IRs for PE evaluation, the 

significant improvement in image noise reduction allowed by DLR combined with the greater spatial 

resolution offered by the lung filter seems to provide optimal results in terms of interpretation, 

without any significant trade-off as shown in Figure 6. Nonetheless, the potential benefits of 0.5 mm-

thick slices in routine CTPA did not offset the fact that approximately 2000 images are produced for 

each CT exam, critically slowing down our Picture Archiving and Communication System (PACS). 

Fortunately, future improvements in AiCE should support thicker slice reconstructions that should 

be more appropriate in emergency settings, allowing a smoother workflow. 

Our study has some limitations. First, the study population was relatively small and our 

investigation was retrospective and carried out at a single institution with two different but matched 

cohorts. Therefore, we consider our findings preliminary. Further studies on larger cohorts are 

underway to confirm our preliminary results. Second, diagnostic confidence levels were only 

evaluated on CT images with a soft filter for both AIDR 3D (hybrid-IR) and AiCE (DLR) 

reconstructions, which could have been less optimal for distal PE assessment. Third, we did not 

consider it relevant to assess the potential superiority of DLR over hybrid-IR to detect more PE, 

especially in subsegmental vessels, because of the low prevalence of PE in both groups. Instead, the 

goal of our study was to only evaluate the diagnostic confidence level of DLR, in addition to its impact 

on image quality and radiation dose. No difference was found for diagnostic confidence level 

between hybrid-IR and DLR. Lastly, our comparative study was performed between two 

reconstruction algorithms (AIDR 3D and AiCE) of the same manufacturer. Comparing different 

vendor-specific iterative reconstruction algorithms to DLR could be of interest. Additional 

investigations are needed. 

5. Conclusions 

In conclusion, DLR significantly improved image noise and the overall image quality of CTPA 

examinations in the emergency setting and offered an additional significant radiation dose reduction 

while allowing slices to be twice as thin as compared to hybrid-IR. Thus, DLR can yield better image 

quality than hybrid-IR while reducing radiation dose. 

Author Contributions: Conceptualization, M.L. and R.L.; methodology, M.L., O.C. and P.-O.C.; software, G.S. 

and K.H.; validation, F.R., B.L. and R.L.; formal analysis, M.L. and P.-O.C.; investigation, M.L., O.C., P.-O.C. and 

R.L.; resources, G.S. and K.H.; data curation, G.S.; writing—original draft preparation, M.L., O.C., P.-O.C. and 

R.L.; writing—review and editing, M.L., O.C., P.-O.C., K.H., B.L. and R.L.; visualization, F.R. and R.L.; 

supervision, R.L.; project administration, F.R.; funding acquisition, M.L. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: Special thanks to the Canon Medical France staff for their support. 

Conflicts of Interest: The authors declare no conflict of interest. 



Diagnostics 2020, 10, 558 13 of 14 

 

References 

1. Giuntini, C.; Di Ricco, G.; Marini, C.; Melillo, E.; Palla, A. Epidemiology. Chest 1995, 107, 3S–9S, 

doi:10.1378/chest.107.1_Supplement.3S. 

2. Doğan, H.; de Roos, A.; Geleijins, J.; Huisman, M.V.; Kroft, L.J.M. The role of computed tomography in the 

diagnosis of acute and chronic pulmonary embolism. Diagn. Interv. Radiol. 2015, 21, 307–316, 

doi:10.5152/dir.2015.14403. 

3. Van Rossum, A.B.; Pattynama, P.M.; Ton, E.R.; Treurniet, F.E.; Arndt, J.W.; van Eck, B.; Kieft, G.J. 

Pulmonary embolism: Validation of spiral CT angiography in 149 patients. Radiology 1996, 201, 467–470, 

doi:10.1148/radiology.201.2.8888242. 

4. Moore, A.J.E.; Wachsmann, J.; Chamarthy, M.R.; Panjikaran, L.; Tanabe, Y.; Rajiah, P. Imaging of acute 

pulmonary embolism: An update. Cardiovasc. Diagn. Ther. 2018, 8, 225–243, doi:10.21037/cdt.2017.12.01. 

5. Kabrhel, C.; Matts, C.; McNamara, M.; Katz, J.; Ptak, T. A highly sensitive ELISA D-dimer increases testing 

but not diagnosis of pulmonary embolism. Acad. Emerg. Med. 2006, 13, 519–524, 

doi:10.1197/j.aem.2005.12.012. 

6. Brenner, D.J.; Hall, E.J. Computed tomography - An increasing source of radiation exposure. N. Engl. J. Med. 

2007, 357, 2277–2284, doi:10.1056/NEJMra072149. 

7. Einstein, A.J.; Henzlova, M.J.; Rajagopalan, S. Estimating risk of cancer associated with radiation exposure 

from 64-slice computed tomography coronary angiography. JAMA 2007, 298, 317, 

doi:10.1001/jama.298.3.317. 

8. Hall, E.J.; Brenner, D.J. Cancer risks from diagnostic radiology. Br. J. Radiol. 2008, 81, 362–378, 

doi:10.1259/bjr/01948454. 

9. Berrington de González, A.; Mahesh, M.; Kim, K.P.; Bhargavan, M.; Lewis, R.; Mettler, F.; Land, C. Projected 

cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 

2009, 169, 2071, doi:10.1001/archinternmed.2009.440. 

10. Sulagaesuan, C.; Saksobhavivat, N.; Asavaphatiboon, S.; Kaewlai, R. Reducing emergency CT radiation 

doses with simple techniques: A quality initiative project., J. Med. Imaging Radiat. Oncol. 2016, 60, 23–34, 

doi:10.1111/1754-9485.12410. 

11. Grupp, U.; Schäfer, M.L.; Meyer, H.; Lembcke, A.; Pöllinger, A.; Wieners, G.; Renz, D.; Schwabe, P.; 

Streitparth, F. Reducing radiation dose in emergency CT scans while maintaining equal image quality: Just 

a promise or reality for severely injured patients? Emerg. Med. Int. 2013, 2013, 984645, 

doi:10.1155/2013/984645. 

12. McCollough, C.H.; Primak, A.N.; Braun., N.; Kofler, J.; Yu, L.; Christner, J. Strategies for reducing radiation 

dose in CT. Radiol. Clin. North Am. 2009, 47, 27–40, doi:10.1016/j.rcl.2008.10.006. 

13. Fleischmann, D.; Boas, F.E. Computed tomography-old ideas and new technology. Eur. Radiol. 2011, 21, 

510–517, doi:10.1007/s00330-011-2056-z. 

14. Willemink, M.J.; de Jong, P.A.; Leiner, T.; de Heer, L.M.; Nievelstein, R.A.J.; Budde, R.P.J.; Schilham, A.M.R. 

Iterative reconstruction techniques for computed tomography Part 1: Technical principles. Eur. Radiol. 2013, 

23, 1623–1631, doi:10.1007/s00330-012-2765-y. 

15. Stiller, W. Basics of iterative reconstruction methods in computed tomography: A vendor-independent 

overview. Eur. J. Radiol. 2018, 109, 147–154, doi:10.1016/J.EJRAD.2018.10.025. 

16. Beister, M.; Kolditz, D.; Kalender, W.A. Iterative reconstruction methods in X-ray CT. Phys. Med. 2012, 28, 

94–108, doi:10.1016/j.ejmp.2012.01.003. 

17. Löve, A.; Olsson, M.L.; Siemund, R.; Stålhammar, F.; Björkman-Burtscher, I.M.; Söderberg, M. Six iterative 

reconstruction algorithms in brain CT: A phantom study on image quality at different radiation dose levels. 

Br. J. Radiol. 2013, 86, 20130388, doi:10.1259/bjr.20130388. 

18. Nichols, J.A.; Herbert Chan, H.W.; Baker, M.A.B. Machine learning: Applications of artificial intelligence to 

imaging and diagnosis. Biophys. Rev. 2019, 11, 111–118, doi:10.1007/s12551-018-0449-9. 

19. Chen, Y.; Liu, J.; Xie, L.; Hu, Y.; Shu, H.; Luo, L.; Zhang, L.; Gui, Z.; Coatrieux, G. Discriminative prior - 

prior image constrained compressed sensing reconstruction for low-dose CT imaging. Sci. Rep. 2017, 7, 

13868, doi:10.1038/s41598-017-13520-y. 

20. Wu, D.; Kim, K.; El Fakhri, G.; Li, Q. Iterative low-dose CT reconstruction with priors trained by artificial 

neural network. IEEE Trans. Med. Imaging 2017, 36, 2479–2486, doi:10.1109/TMI.2017.2753138. 

21. Higaki, T.; Nakamura, Y.; Zhou, J.; Yu, Z.; Nemoto, T.; Tatsugami, F.; Awai, K. Deep learning reconstruction 

at CT: Phantom study of the image characteristics. Acad. Radiol. 2020, 27, 82–87, 

doi:10.1016/j.acra.2019.09.008. 

22. Tatsugami, F.; Higaki, T.; Nakamura, Y.; Yu, Z.; Zhou, J.; Lu, Y.; Fujioka, C.; Kitagawa, T.; Kihara, Y.; Lida, 

M.; Awai, K. Deep learning-based image restoration algorithm for coronary CT angiography. Eur. Radiol. 

2019, 29, 5322–5329, doi:10.1007/s00330-019-06183-y. 



Diagnostics 2020, 10, 558 14 of 14 

 

23. Akagi, M.; Nakamura, Y.; Higaki, T.; Narita, K.; Honda, Y.; Zhou, J.; Awai, K. Deep learning reconstruction 

improves image quality of abdominal ultra-high-resolution CT. Eur. Radiol. 2019, 29, 6163–7171, 

doi:10.1007/s00330-019-06170-3. 

24. Jung, J.I.; Kim, K.J.; Ahn, M.I.; Kim, H.R.; Park, H.J.; Jung, S.; Lim, H.W.; Park, S.H. Detection of pulmonary 

embolism using 64-slice multidetector-row computed tomography: Accuracy and reproducibility on 

different image reconstruction parameters. Acta Radiol. 2011, 52, 417–421, doi:10.1258/ar.2011.100217. 

25. Manson, E.N.; Fletcher, J.J.; Atuwo-Ampoh, V.D.; Addison, E.K.; Schandorf, C.; Bambara, L. Assessment of 

some image quality tests on a 128-slice computed tomography scanner using a Catphan700 phantom. J. 

Med. Phys. 2016, 41, 153–156, doi:10.4103/0971-6203.181637. 

26. Szucs-Farkas, Z.; Kurmann, L.; Strautz, T.; Patak, M.A.; Vock, P.; Schindera, S.T. Patient exposure and image 

quality of low-dose pulmonary computed tomography angiography. Investig. Radiol. 2008, 43, 871–876, 

doi:10.1097/RLI.0b013e3181875e86. 

27. Yuan, R.; Shuman, W.P.; Earls, J.P.; Hague, C.J.; Mumtaz, H.A.; Scott-Moncrieff, A.; Ellis, J.D.; Mayo, J.R.; 

Leipsic, J.A. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic 

imaging: Comparison with standard CT pulmonary angiography-A prospective randomized trial. 

Radiology 2012, 262, 290–297, doi:10.1148/radiol.11110648. 

28. Pontana, F.; Pagniez, J.; Duhamel, A.; Flohr, T.; Faivre, J.B.; Murphy, C.; Remy, J.; Remy-Jardin, M. Reduced-

dose low-voltage chest CT angiography with sinogram-affirmed iterative reconstruction versus standard-

dose filtered back projection. Radiology 2013, 267, 609–618, doi:10.1148/radiol.12120414. 

29. Pontana, F.; Moureau, D.; Schmidt, B.; Duhamel, A.; Faivre, J.B.; Yasunaga, K.; Remy, J.; Remy-Jardin, M. 

CT pulmonary angiogram with 60% dose reduction: Influence of iterative reconstructions on image quality. 

Diagn. Interv. Imaging 2015, 96, 487–493, doi:10.1016/j.diii.2014.08.006. 

30. Gill, M.K.; Vijayananthan, A.; Kumar, G.; Jayarani, K.; Ng, K.H.; Sun, Z. Use of 100 kV versus 120 kV in 

computed tomography pulmonary angiography in the detection of pulmonary embolism: Effect on 

radiation dose and image quality. Quant. Imaging Med. Surg. 2015, 5, 524–533, doi:10.3978/j.issn.2223-

4292.2015.04.04. 

31. Narita, K.; Nakamura, Y.; Higaki, T.; Akagi, M.; Honda, Y.; Awai, K. Deep learning reconstruction of drip-

infusion cholangiography acquired with ultra-high-resolution computed tomography. Abdom. Radiol. 2020, 

doi:10.1007/s00261-020-02508-4. 

32. Higaki, T.; Nakamura, Y.; Fukumoto, W.; Honda, Y.; Tatsugami, F.; Awai, K. Clinical application of 

radiation dose reduction at abdominal CT. Eur. J. Radiol. 2019, 111, 68–75, doi:10.1016/j.ejrad.2018.12.018. 

33. McNitt-Gray, M.F. AAPM/RSNA physics tutorial for residents: Topics in CT. Radiation dose in CT. 

Radiographics 2002, 22, 1541–1553, doi:10.1148/rg.226025128. 

34. Modica, M.J.; Kanal, K.M.; Gunn, M.L.; The obese emergency patient: Imaging challenges and solutions. 

Radiographics 2011, 31, 811–823, doi:10.1148/rg.313105138. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


