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Abstract: The relationship between left ventricular ejection fraction (LVEF) and cardiovascular (CV)
outcome is documented in patients with low LVEF. Ventilatory inefficiency is an important prognostic
predictor. We hypothesized that the presence of ventilatory inefficiency influences the prognostic
predictability of LVEF in heart failure (HF) outpatients. In total, 169 HF outpatients underwent the
cardiopulmonary exercise test (CPET) and were followed up for a median of 9.25 years. Subjects
were divided into five groups of similar size according to baseline LVEF (≤39%, 40–58%, 59–68%,
69–74%, and ≥75%). The primary endpoints were CV mortality and first HF hospitalization. The
Cox proportional hazard model was used for simple and multiple regression analyses to evaluate the
interrelationship between LVEF and ventilatory inefficiency (ventilatory equivalent for carbon dioxide
(VE/VCO2) at anaerobic threshold (AT) >34.3, optimized cut-point). Only LVEF and VE/VCO2 at
AT were significant predictors of major CV events. The lower LVEF subgroup (LVEF ≤ 39%) was
associated with an increased risk of CV events, relative to the LVEF ≥75% subgroup, except for
patients with ventilatory inefficiency (p = 0.400). In conclusion, ventilatory inefficiency influenced the
prognostic predictability of LVEF in reduced LVEF outpatients. Ventilatory inefficiency can be used
as a therapeutic target in HF management.

Keywords: heart failure; mortality; ejection fraction; cardiopulmonary exercise test; ventilatory
inefficiency

1. Introduction

Heart failure (HF) is a leading cause of cardiovascular (CV) mortality and hospitalization.
Preventing hospitalization in HF patients, such as using a multidisciplinary treatment strategy, has
become a great priority for clinicians, researchers, and policymakers [1]. In addition to clinical
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demographic risk factors, left ventricular ejection fraction (LVEF) determined by echocardiography
is the most commonly used parameter for the diagnosis and management of stable chronic HF
patients [2,3]. The relationship between LVEF and CV outcome is well documented in patients with
low LVEF HF [4]. However, LVEF is less useful as a prognostic indicator when it is >45% [5,6]. Thus,
reliable assessment of prognosis and risk stratification remain challenges in HF outpatients across the
full spectrum of LVEF.

The cardiopulmonary exercise test (CPET) is a useful tool in all stages of HF patient management,
from diagnosis to risk assessment [7]. In the past several decades, the peak oxygen uptake (peak
VO2/kg) from CPET was considered as the best predictor of 1- to 3-year event-free survival after HF [8].
In some patients, ventilatory inefficiency during exercise may be a superior predictor of prognosis
compared to peak VO2/kg [9,10].

Pulmonary abnormalities, such as impaired lung mechanics and abnormal alveolar-capillary gas
exchange, may be caused by respiratory comorbidities or HF itself [11]. In stable HF outpatients,
whether the relationship between LVEF and CV outcome is affected by ventilatory inefficiency remains
unknown. In this study, we hypothesized that the presence of ventilatory inefficiency influences the
prognostic predictability of LVEF in stable chronic HF patients.

2. Materials and Methods

2.1. Subjects

A retrospective cohort of 169 HF outpatients with exercise intolerance took the CPET at a tertiary
referral center between May, 2007, and July, 2010. Patients with concurrent signs and symptoms
of HF (New York Heart Association functional class II–IV) and evidence of structural heart disease
(increased left atrial size or left ventricle hypertrophy) were recruited consecutively. Diagnosis was
established by the attending physicians with elevated cardiac biomarker (BNP > 100 pg/mL). Ischemic
cardiomyopathy was defined as HF with the presence of severe coronary artery disease or a history of
myocardial infarction. Valvular cardiomyopathy was defined as HF caused by primary disease of one
of the four heart valves. Dilated cardiomyopathy was defined as dilation and impaired left ventricle
contraction, in which primary and secondary causes of heart disease (e.g., coronary artery disease and
myocarditis) were excluded. Patients who had a history of HF hospitalization within 6 months or were
unable to perform an exercise test were excluded from the study. The patients were followed up at a
median of 9.25 years (interquartile range (IQR), 7.48–10.32 years) since the administration of CPET.
LVEF was assessed by quantitative echocardiography using the biplane Simpson method. This study
was approved by the Institutional Review Board of the Kaohsiung Chang Gung Memorial Hospital
(201701459B0, 13th October 2017) and was conducted in accordance with the Helsinki Declaration of
1975 (as revised in 1983). This study was registered at ClinicalTrials.gov (identifier: NCT04141345).
Informed consent was obtained prior to CPET administration in all subjects.

2.2. CPET Procedures

Patients performed an upright graded bicycle exercise using an individualized protocol. The heart
rate was continuously monitored by electrocardiography at rest and during exercise. Blood pressure
was measured using an electronic sphygmomanometer (SunTech Medical, Morrisville, NC, USA) every
2 min and as needed. The minute ventilation (VE), oxygen consumption (VO2), and carbon dioxide
production (VCO2) were continuously recorded every 1 min using a respiratory mass spectrometer
(Vmax Encore, VIASYS, Yorba Linda, CA, USA). Prior to each respiratory gas analysis study, the mass
spectrometer was calibrated with a standard gas of known concentration. The peak VO2/kg and the
peak respiratory exchange ratio (RER) were defined as the highest 30-s average value obtained during
exercise. The anaerobic threshold (AT) was determined using the V-slope method. The VE/VCO2 at AT
was calculated as the average VE/VCO2 for 1 min during AT and immediately after AT. If the AT could
not be determined, the lowest VE/VCO2 was determined by averaging the three lowest consecutive
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0.5-min data points. Since the variability of VE/VCO2 at AT is slightly lower than the variability of the
slope of VE versus VCO2 below the ventilatory compensatory point [12,13], this study used VE/VCO2
at AT as a marker of ventilatory efficiency. Spirometric measurements included lung vital capacity,
forced vital capacity, forced expiratory volume in 1 s, and maximal voluntary ventilation.

The criteria for discontinuing the test were as follows: request by the subject, threatened arrhythmia,
peak RER >1.1, and ≥2.0 mm of horizontal or downslope ST segment depression during progressive
exercise. The CPET exams were conducted by a qualified physical therapist under the supervision of
a physician.

2.3. Outcome Analysis

Defined time-dependent CV outcomes included CV mortality and first HF hospitalization, which
were the primary endpoints of the analysis. Study subjects were followed until the end of 2018. HF
hospitalization was defined as an unplanned hospitalization due to new or worsening HF requiring
the use of intravenous diuretics, inotropes, or vasodilators.

2.4. Statistical Analyses

Subjects were divided into five groups of similar size according to baseline LVEF (≤39%, 40–58%,
59–68%, 69–74%, and ≥75%) by each 20-percentile sample size to evaluate the relationship between
LVEF and CV outcomes. Comparisons between LVEF groups were analyzed using Pearson’s chi-square
test or Fisher’s exact test for categorical variables. Continuous variables were expressed as median
(IQR). Comparisons between LVEF groups were analyzed using the Kruskal–Wallis test and multiple
comparisons for continuous variables. The Kolmogorov–Smirnov test was used to test for normality.
For the univariate and multivariable analyses, the hazard ratio and 95% confidence interval were
computed using the Cox proportional hazard model. The variables in which p value was <0.1 by
univariate analysis were included on multivariate analysis and stepwise method. The primary endpoint
was defined as CV mortality or the first HF hospitalization. The comparative results of primary
endpoints between patients with LVEF ≥50% (HFpEF–i.e., HF with preserved ejection fraction (EF))
and those with LVEF <50% (non-HFpEF–i.e., mid-range (LVEF 40–49%) and reduced EF (LVEF < 40%))
were analyzed. The various CPET parameters were evaluated as predictors of primary endpoints
by performing time-dependent receiver operating characteristic curve (ROC) analyses. Optimized
threshold values for VE/VCO2 at AT were identified via ROC analysis and the Youden index. The
Cox proportional hazard model was used for simple and multiple regression analyses to evaluate
the interrelationship between LVEF and ventilatory inefficiency (defined as VE/VCO2 at AT >34.3,
optimized cutoff point). The interaction term “ventilatory inefficiency multiplied by LVEF category”
was introduced to the previous model. Kaplan–Meier survival curves were constructed for five groups
of patients according to baseline LVEF. Data were analyzed using R v3.6.1 software using “time ROC”
and “survival” package and SPSS 22.0 (SPSS Inc., Chicago, IL, USA). In all analyses, a p value of less
than 0.05 was considered statistically significant.

3. Results

3.1. Baseline Clinical and Pharmacological Characteristics by LVEF

The mean LVEF in our HF outpatients was 64.0 ± 18.6%. The baseline clinical demographic
and pharmacological characteristics according to LVEF are shown in Table 1. Patients with higher
EF were more often female and were more likely to have a history of hypertension. Patients with
lower EF were more likely to have a history of smoking, ischemic cardiomyopathy, and/or received
percutaneous coronary intervention (PCI). Patients who suffered from dilated cardiomyopathy had
lower EF. The incidence of diabetes, valvular heart disease, and ischemic stroke did not differ across
these LVEF subgroups. The distribution of age also did not differ significantly across the LVEF
subgroups. The proportion of patients who received beta-blockers, angiotensin-converting enzyme
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inhibitors (ACEIs), angiotensin-receptor blockers (ARB), loop diuretics, and mineralocorticoid receptor
antagonists (MRAs) increased in the lower EF patients. In contrast, the proportion of patients who
received dihydropyridine (DHP) calcium (Ca+) channel blockers increased in the higher EF patients.
The CPET parameters including peak VO2/kg, AT, ∆VO2/∆WR and VE/VCO2 at AT had a significant
difference across the spectrum of LVEF (Table 1).

Table 1. Baseline clinical and pharmacological characteristics by LVEF.

Variables
All

Patients
(n = 169)

LVEF
≤39% (37)

LVEF
40–58%

(31)

LVEF
59–68%

(38)

LVEF
69–74%

(32)

LVEF
≥75% (31) p Value

Age 55.7 ± 13.5 50.9 ± 14.7 59.6 ± 12.3 54.3 ± 12.8 57.1 ± 14.6 57.7 ± 11.7 0.097

Male 121
(71.6%) 34 (91.9%) 23 (74.2%) 27 (71.1%) 17 (53.1%) 20 (64.5%) 0.008

Lung disease Both (%) 79 (46.7%) 20 (54.1%) 17 (54.8%) 15 (39.5%) 15 (46.9%) 12 (38.7%) 0.522
Obstructive lung (%) 13 (7.7%) 4 (10.8%) 4 (12.9%) 1 (2.6%) 3 (9.4%) 1 (3.2%) 0.396
Restrictive lung (%) 66 (39.1%) 16 (43.2%) 13 (41.9%) 14 (36.8%) 12 (37.5%) 11 (35.5%) 0.956
Hypertension (%) 99 (58.6%) 13 (35.1%) 23 (74.2%) 23 (60.5%) 19 (65.5%) 21 (72.4%) 0.006

Diabetes (%) 37 (22.7%) 9 (24.3%) 10 (32.3%) 10 (26.3%) 4 (13.8%) 4 (14.3%) 0.355
Smoking (%) 39 (23.5%) 16 (43.2%) 8 (25.8%) 7 (18.4) 5 (16.1%) 3 (10.3%) 0.015

Ischemic stroke (%) 9 (5.6%) 0 (0%) 1(3.2%) 2 (5.3%) 2 (6.9%) 4 (14.3%) 0.158
Ischemic CM (%) 33 (19.5%) 15 (40.5%) 10 (32.3%) 2 (5.3%) 4 (12.5%) 2 (6.5%) <0.0001
Valvular CM (%) 22 (13.0%) 3 (8.1%) 6 (19.4%) 4 (10.5%) 3 (9.4%) 6 (19.4%) 0.497
Dilated CM (%) 24 (14.2%) 15 (40.5%) 7 (22.6%) 2 (5.3%) 0 (0%) 0 (0%) <0.0001

Prior PCI (%) 29 (17.2%) 13 (35.1%) 9 (29.0%) 2 (5.3%) 4 (12.5%) 1 (3.2%) 0.001
Medication

Beta-blocker (%) 97 (58.4%) 30 (81.1%) 25 (80.6%) 19 (50.0%) 12 (38.7%) 11 (37.9%) <0.0001

ACEI/ARB (%) 114
(67.5%) 32 (86.5%) 28 (90.3%) 21 (55.3%) 15 (46.9%) 18 (58.1%) <0.0001

DHP Ca+ channel
blocker (%) 36 (21.7%) 1 (2.7%) 10 (32.3%) 5 (13.2%) 11 (35.5%) 9 (31.0%) 0.002

Loop diuretic (%) 43 (25.9%) 22 (59.5%) 13 (41.9%) 3 (7.9%) 4 (12.9%) 1 (3.4%) <0.0001
MRA (%) 21 (12.4%) 13 (35.1%) 5 (16.1%) 2 (5.3%) 1 (3.2%) 0 (0%) <0.0001
Statin (%) 53 (31.9%) 13 (35.1%) 9 (29.0%) 12 (31.6%) 10 (32.3%) 9 (31.0%) 0.989

Parameters of CPET
Peak O2 pulse

(mL/beat)
11.9

(9.64–14.89)
11.04

(9.18–15.99)
10.97

(7.78–13.76)
12.16

(9.93–14.92)
12.11

(9.42–15.1)
12.12

(10.11–14.90) 0.303

Peak VO2/kg
(mL/kg/min)

22.9
(18.2–28.4)

20.0
(15.9–26.0)

21.3
(16.8–25.1)

25.1
(19.1–29.7)

23.4
(19.5–29.0)

25.5
(19.4–31.9) 0.045

Peak VE (L/min) 54.0
(43.0–65.0)

60.0
(44.5–71.0)

52.0
(37.0–63.0)

59.0
(45.8–68.8)

49.0
(41.0–60.5)

49.0
(43.0–65.0) 0.159

AT (% of VO2 max) 54.9
(45.8–66.2)

50.0
(41.2–60.7)

51.0
(45.7–57.8)

58.2
(49.2–66.4)

56.4
(44.6–73.5)

61.7
(52.2–74.2) 0.007

VE/VCO2 at AT 32.3
(29.2–35.8)

33.4
(29.9–38.1)

34.8
(29.8–37.9)

31.7
(28.8–35.8)

32.0
(28.9–34.1)

30.9
(27.7–33.1) 0.036

Peak RER 1.04
(0.98–1.09)

1.05
(1.02–1.12)

1.02
(0.97–1.09)

1.05
(1.0–1.12)

1.03
(0.96–1.07)

1.04
(0.95–1.07) 0.118

∆VO2/∆WR
(mL/min/W)

11.6
(9.9–14.3)

10.4
(8.1–12.6)

11.2
(10.2–13.2)

11.8
(9.9–14.4)

11.4
(10.1–14.3)

14.0
(10.8–16.0) 0.015

Peak VO2 (L/min) 1600
(1233–2074)

1528
(1101–2217)

1461
(980–1676)

1668
(1352–2114)

1609
(1245–1982)

1706
(1339–2117) 0.152

Peak Work (Watts) 119.0
(77.5–161.5)

135.0
(69.0–193.5)

96.0
(74.0–125.0)

125.5
(88.5–162.3)

115.5
(79.8–158.5)

123.0
(69.0–158.0) 0.353

Breathing Reserve (L) 28.9
(15.1–42.0)

34.0
(12.8–44.2)

26.2
(10.6–40.0)

30.9
(22.0–42.9)

20.2
(8.5–35.6)

33.2
(18.2–41.6) 0.221

LVEF: left ventricle ejection fraction; CM: cardiomyopathy; PCI: percutaneous coronary intervention; ACEI:
angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; DHP: dihydropyridine; MRA:
mineralocorticoid receptor antagonist; CPET: cardiopulmonary exercise test; VO2/kg: oxygen consumption per
kilogram; VE: minute ventilation; AT: anaerobic threshold; VE/VCO2 at AT: ventilatory equivalent for carbon
dioxide at anaerobic threshold; RER: respiratory exchange ratio; ∆VO2/∆WR: the ratio of increase in oxygen uptake
to increase in work rate.
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3.2. Outcomes by LVEF

Within a median follow-up period of 9.25 years (IQR, 7.48–10.32 years), 49 patients achieved
our primary endpoints. The relationship between LVEF and the primary endpoints, including CV
mortality, is shown in Table 2A. The risk of primary endpoints and CV mortality was increased in the
lower LVEF subgroups (p = 0.002 and 0.001, respectively). HFpEF patients had better CV outcomes
compared with non-HFpEF patients (primary endpoints and CV mortality: p = <0.0001 and 0.001,
respectively). There were similar CV outcomes of HFpEF who had ventilatory inefficiency and those
with non-HFpEF (primary endpoints and CV mortality: p = 0.792 and 0.358, respectively) (Table 2B).

Table 2. (A) Outcomes by LVEF (5 groups); (B) outcomes between HFpEF and non-HFpEF without or
with ventilatory inefficiency.

(A)

Variables All Patients (n = 169) LVEF
≤39%

LVEF
40–58%

LVEF
59–68%

LVEF
69–74%

LVEF
≥75% p Value

Primary endpoints 49 (29%) 20 (54.1%) 10 (32.3%) 8 (21.1%) 6 (18.8%) 5 (16.1%) 0.002
Cardiovascular mortality 18 (10.7%) 10 (27.0%) 5 (16.1%) 2 (5.3%) 0 (0%) 1 (3.2%) 0.001

(B)

Variables Non-HFpEF HFpEF p Value
Non-HFpEF

with Ventilatory
Inefficiency

HFpEF with
Ventilatory
Inefficiency

p Value

Primary endpoints 27 (48.2%) 22
(19.5%) <0.0001 17 (58.6%) 15 (51.7%) 0.792

Cardiovascular mortality 12 (21.4%) 6 (5.3%) 0.001 9 (31.0%) 5 (17.2%) 0.358

LVEF: left ventricular ejection fraction; HFpEF: heart failure with preserve ejection fraction (LVEF≥ 50%); non-HFpEF:
heart failure with LVEF <50% (i.e., mid-range (LVEF 40–49%) and reduced ejection fraction (LVEF < 40%); ventilatory
inefficiency: VE/VCO2 at AT (ventilatory equivalent for carbon dioxide at anaerobic threshold) >34.3.

3.3. Univariate and Multivariate Analysis of Predictors of Major Cardiovascular Events

Table 3 shows that, according to the univariate Cox regression analysis, the significant predictors of
major CV events included comorbidities with lung disease, diabetes, LVEF, or dilated cardiomyopathy, a
history of smoking, and treatments with beta-blockers, loop diuretics, or MRAs. The CPET parameters,
including VE/VCO2 at AT, ∆VO2/∆WR, peak O2 pulse, peak VO2, peak VO2/kg, peak work, and AT,
were significant predictors for major CV events, based on the univariate analysis. In the multivariate
Cox regression analyses and stepwise method, which included those variables in which p was <0.1 by
univariate analysis, only LVEF and VE/VCO2 at AT were found to be significant predictors of major CV
events in our cohort study (Table 3). The optimized threshold value of VE/VCO2 at AT was identified
by ROC analysis. For predicting primary endpoints in all patients, the best cutoff point for VE/VCO2
at AT was 34.3 (64.3 sensitivity and 78.0% specificity, Youden index = 0.42) (Figure 1).

3.4. Adjust Hazard Ratio Associated with LVEF for Major Cardiovascular Events by Baseline LVEF Category
Relative to LVEF ≥ 75

As presented in Figure 2, the relationship between LVEF and major CV events was not linear. We
defined ventilatory inefficiency as VE/VCO2 at AT >34.3. To characterize the relationship between
LVEF and the risk of CV mortality or HF hospitalization among patients with ventilatory inefficiency,
subjects were divided into five subgroups according to baseline LVEF. Figure 3 shows the relationship
between LVEF and major CV events in patients with ventilatory inefficiency (VE/VCO2 at AT >34.3) and
in patients without ventilatory inefficiency (VE/VCO2 at AT ≤34.3). After multivariable adjustment, the
Cox proportional hazard model showed that the lower LVEF subgroup (LVEF ≤ 39%) was associated
with a significantly increased risk of CV mortality or HF hospitalization relative to the LVEF ≥75%
subgroup among patients without ventilatory inefficiency (VE/VCO2 at AT ≤34.3) (p = 0.019) and
among all patients (p = 0.002) (Table 4). Conversely, there was no prognostic predictability relative to
low EF (LVEF ≤ 39%) among patients with ventilatory inefficiency (VE/VCO2 at AT >34.3) (p = 0.400).
However, the interaction effect between LVEF and ventilatory inefficiency in predicting CV major
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events was not significant (p = 0.579). Figure 4 showed the results of Kaplan–Meier analysis of five
groups of patients with different LVEF. Among them, only the LVEF ≤39% group showed a significant
survival difference (p = 0.047 vs. LVEF 40–58%, p = 0.002 vs. LVEF 59–68%, p = 0.001 vs. LVEF 69–74%,
and p = 0.001 vs. LVEF ≥75%).

Table 3. Univariate and multivariate analysis of predictors of major cardiovascular events.

Independent Variable
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Age at CPET 1.0 (0.99–1.02) 0.966
Male 1.66 (0.83–3.33) 0.152
Lung Disease

Obstructive 1.45 (0.57–3.65) 0.433
Restrictive 1.73 (0.99–3.02) 0.057
Both 1.92 (1.09–3.40) 0.025

Ischemic stroke 1.56 (0.56–4.44) 0.392
Myocardial infarction 1.31 (0.66–2.63) 0.442
Hypertension 0.66 (0.37–1.15) 0.139
Prior PCI 1.74 (0.91–3.34) 0.096
Diabetes 2.06 (1.14–3.71) 0.016
Smoking 1.97 (1.10–3.56) 0.024
LVEF 0.97 (0.96–0.98) <0.001 0.98 (0.96–0.99) 0.002
Ischemic cardiomyopathy 1.65 (0.88–3.11) 0.122
Dilated cardiomyopathy 2.03 (1.04–3.98) 0.039
Valvular cardiomyopathy 1.37 (0.64–2.92) 0.416
Beta-blocker 2.24 (1.19–4.22) 0.013
ACEI/ARB 1.88 (0.96–3.69) 0.064
DHP Ca+ channel blocker 0.88 (0.44–1.76) 0.718
Loop diuretic 3.39 (1.93–5.96) <0.001
MRA 4.10 (2.17–7.77) <0.001
Statin 1.57 (0.89–2.78) 0.121
VE/VCO2 at AT 1.19 (1.14–1.25) <0.001 1.17 (1.12–1.23) <0.001
∆VO2/∆WR (mL/min/W) 1.04 (1.01–1.07) 0.008
Peak O2 pulse (mL/beat) 0.90 (0.83–0.97) 0.009
Peak VO2 (L/min) 1.0 (0.99–1.0) 0.001
Peak RER 0.27 (0.01–5.60) 0.395
Breathing reserve (mL) 1.00 (0.99–1.01) 0.934
Peak VE (L/mins) 1.0 (0.98–1.01) 0.731
Peak VO2/kg (mL/kg/mins) 0.90 (0.85–0.95) <0.001
Peak work (Watts) 0.99 (0.99–1.0) 0.009
Anaerobic threshold 0.95 (0.93–0.97) <0.001

Method = forward stepwise selection. HR: hazard ratio; CI: confidence interval; CPET: cardiac pulmonary exercise
test; PCI: percutaneous coronary intervention; ACEI: angiotensin-converting enzyme inhibitor; ARB: angiotensin
receptor blocker; DHP: dihydropyridine; MRA: mineralocorticoid receptor antagonist; VE/VCO2 at AT: ventilatory
equivalent for carbon dioxide at anaerobic threshold; ∆VO2/∆WR: the ratio of increase in oxygen uptake to increase
in work rate; peak VO2: peak oxygen consumption; RER: respiratory exchange ratio; VE: minute ventilation; VO2/kg:
oxygen consumption per kilogram; AT: anaerobic threshold.
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Figure 1. In ROC analyses of different CPET parameters, the only significant predictor of heart failure
hospitalization was the VE/VCO2 at AT. Best cut-off point: 34.3, AUROC: 0.756. VE/VCO2 at AT:
ventilatory equivalent for carbon dioxide at anaerobic threshold, RER: respiratory exchange ratio;
∆VO2/∆WR: the ratio of increase in oxygen uptake to increase in work rate; fR rest: resting breathing
rate; fR breath peak: peak exercise breathing rate; AUROC: area under receiver operating characteristic
curve; CPET: cardiopulmonary exercise test.
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Figure 2. The relationship between LVEF and CV outcomes in all patients. This relationship was not
linear. The lower LVEF subgroup (LVEF ≤ 39%) was associated with a significantly increased risk of CV
mortality or HF hospitalization relative to the LVEF ≥75% subgroup. (p = 0.002). LVEF: left ventricular
ejection fraction; CV: cardiovascular; HF: heart failure.
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Figure 3. The relationship between LVEF and CV outcomes in patients with ventilatory inefficiency
(VE/VCO2 at AT >34.3) and in patients without ventilatory inefficiency (VE/VCO2 at AT ≤34.3). The
lower LVEF subgroup (LVEF≤ 39%) was associated with a significantly increased risk of CV mortality or
HF hospitalization relative to the LVEF ≥75% subgroup among patients without ventilatory inefficiency
(p = 0.019). There was no prognostic predictability relative to low EF (LVEF ≤ 39%) among patients
with ventilatory inefficiency (p = 0.400). LVEF: left ventricular ejection fraction, CV: cardiovascular,
VE/VCO2 at AT: ventilatory equivalent for carbon dioxide at anaerobic threshold, HF: heart failure.

Table 4. Adjust hazard ratio associated with LVEF for major cardiovascular events by baseline LVEF
category relative to LVEF ≥75.

LVEF Group
VE/VCO2 at AT ≤34.3

p Value
VE/VCO2 at AT >34.3

p Value
All

p Value
HR (95% CI) HR (95% CI) HR (95% CI)

≤39 12.00 (1.50–96.01) 0.019 1.63 (0.52–5.08) 0.400 4.63 (1.74–12.35) 0.002
40–58 3.49 (0.32–38.48) 0.308 0.70 (0.21–2.33) 0.561 2.12 (0.73–6.22) 0.169
59–68 2.78 (0.29–26.74) 0.376 0.63 (0.17–2.35) 0.492 1.30 (0.42–3.97) 0.647
69–74 2.92 (0.30–28.11) 0.353 0.56 (0.12–2.50) 0.445 1.12 (0.34–3.66) 0.854
≥75 1 1 1

Interaction term: p value = 0.579. LVEF: left ventricular ejection fraction; HR: hazard ratio; VE/VCO2 at AT:
ventilatory equivalent for carbon dioxide at anaerobic threshold.
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Figure 4. The Kaplan–Meier analysis of five groups of patients with different LVEF. Only patients with
LVEF ≤39 had significant survival difference when compared with other groups. LVEF: left ventricular
ejection fraction.
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4. Discussion

In chronic HF outpatients followed for a median of 9.25 years, LVEF and VE/VCO2 at AT were both
found to be significant independent predictors of increased risk of CV mortality or HF hospitalization.
LVEF was a poor predictor in patients with ventilatory inefficiency and in those with LVEF >40%.
Although our study showed that the interaction effect between LVEF and VE/VCO2 at AT was not
significant, the prognostic predictability of LVEF was decreased in the HF with reduced LVEF (HFrEF,
LVEF ≤39%) population in the ventilatory inefficiency group. As demonstrated in the CHARM
Program [5], the relationship between LVEF and CV outcomes was not linear. We also demonstrated a
similar finding in chronic HF outpatients. This relationship was further diminished in the ventilatory
inefficiency group. This phenomenon revealed that HFpEF patients who had ventilatory inefficiency
had similar CV outcomes as that of their HFrEF counterparts.

This study showed that the ventilation efficiency variable, in addition to LVEF, was a significant
prognostic predictor in HF outpatients. Ventilatory inefficiency reflects the adverse effects of HF on
lung mechanics and diffusion capacity [14], as HF also augments ventilatory drive and increases
hemodynamic demand associated with breathing work [15]. Ergoreceptors stimulate ventilation
and activate sympathetic hormones in response to work. The ergoreflex in the muscle also affects
ventilatory effort. In response to carbon dioxide and pulmonary J receptors (which likely respond to
congestion and alveolar stiffness), central and pulmonary chemoreceptors contribute to the ergoreflex
and result in excess ventilation [16]. In HF patients, a high ventilatory drive can reduce the partial
pressure of CO2 (PaCO2) [17]. Consequently, a reduced PaCO2 and increased fractional dead space
cause abnormally high VE/VCO2 at AT, i.e., ventilatory inefficiency [18,19].

The mechanism of ventilatory inefficiency influences the outcomes of HF patients differently
between the HFrEF and HFpEF patients. A study analyzed the ventilatory inefficiency between
24 HFrEF patients and 33 HFpEF patients [20]. It demonstrated the loss of cardiac output
augmentation related to ventilatory inefficiency regardless of LVEF; however, lung congestion
parameters (echocardiographic parameter: e′ and E/e′) correlated with ventilatory inefficiency only in
HFpEF. In another study, ventilatory inefficiency appeared to be influenced by mechanisms regulating
PaCO2 in HFrEF. In contrast, dead space to tidal volume ratio (VD/VT) played a more important role
in developing ventilatory inefficiency in HFpEF [21]. HFpEF and HFrEF may be two distinct entities in
terms of ventilatory response to exercise; this study provides evidence that ventilatory inefficiency
plays a critical role in HFpEF.

CPET-based measurements of ventilatory inefficiency provide unique physiologic information
clinically relevant to contemporary treatment for HF. Several therapeutic interventions for HF affect
ventilatory abnormalities both at rest and during exercise. For example, ACEI improves pulmonary
diffusion, removes interstitial fluid, and improves pulmonary hemodynamic status [22]. Carvedilol,
but not bisoprolol, improves ventilatory efficiency during exercise (reduction of VE/VCO2 slope
and increase in maximum end-tidal CO2 pressure) [23]. Carvedilol may have direct effects on
respiratory chemoreceptor activity based on the CARNEBI (CARvedilol vs. NEbivolol vs. BIsoprolol
in moderate heart failure) trial [24]. Carvedilol and bisoprolol are both beta-blockers in this study.
CPET can be served as a practical guide for the best selection of different beta-blockers. As ventilatory
inefficiency is a significant prognostic predictor across the spectrum of LVEF, we should consider
ventilatory abnormalities during exercise as therapeutic targets and treat them accordingly. Therapeutic
interventions, such as rehabilitation training (isolated quadriceps training) [25], device-guided
paced breathing [26], yoga mantras [27], and reduction of afferent stimuli from ergopulmonary and
cardiopulmonary receptors [28,29], might all alleviate ventilatory inefficiency. The use of CPET-derived
variables to guide therapy and improve outcomes deserves further investigation.

LVEF has proven largely inadequate in correlating HF patients’ mortality in heart transplant
candidate [30]. However, LVEF is still a good predictor of incident HF in outpatient setting. In the
CARE trial, LVEF was the significant predictor of HF attack in 3860 long-term survivors of myocardial
infarction [31]. In chronic stable condition, LVEF is a prognostic indicator, as shown in our study.
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However, this discriminatory effect of LVEF in predicting morbidity and mortality was limited in
HFpEF and patients with ventilatory inefficiency.

This study has some limitations. First, the sample size was relatively small compared to those
in other epidemiological studies. However, our study had a longer follow-up period than those of
previous works. Second, patients were only recruited from outpatient clinics, which may have caused
selection bias. The findings of this study may need further validation in other populations of patients
with HF. Third, this study did not analyze other CPET variables that have been used to predict HF
outcomes, e.g., oscillatory ventilation, end-tidal CO2 pressure, VO2 kinetics during exercise, oxygen
uptake efficiency slope, and heart rate recovery. Therefore, whether the predictive accuracy of these
variables can be increased by combining them with VE/VCO2 at AT requires further investigation.
The subgroup of HF patients who had improved LVEF had a more favorable prognosis compared
with patients whose LVEF had not changed [32]. However, this study focused on clinically assessed
LVEF at baseline, which is the actual measurement used to guide patient care and its relationship with
outcomes. The change of LVEF was not used as a variable in our analysis.

5. Conclusions

Ventilatory inefficiency influenced the prognostic predictability of LVEF in HFrEF patients when
compared to patients with LVEF ≥75%. The CPET-derived variable (VE/VCO2 at AT) can be used as a
therapeutic target in HF management. However, the interaction effect between LVEF and ventilatory
inefficiency in predicting CV outcomes was not significant.
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