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Abstract: Parkinson’s Disease is a neurodegenerative disease that affects the aging population and 
is caused by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta 
(SNc). With the onset of the disease, the patients suffer from mobility disorders such as tremors, 
bradykinesia, impairment of posture and balance, etc., and it progressively worsens in the due 
course of time. Additionally, as there is an exponential growth of the aging population in the world 
the number of people suffering from Parkinson’s Disease is increasing and it levies a huge economic 
burden on governments. However, until now no therapeutic method has been discovered for 
completely eradicating the disease from a person’s body after it’s onset. Therefore, the early 
detection of Parkinson’s Disease is of paramount importance to tackle the progressive loss of 
dopaminergic neurons in patients to serve them with a better life. In this study, 3T T1-weighted MRI 
scans were acquired from the Parkinson’s Progression Markers Initiative (PPMI) database of 406 
subjects from baseline visit, where 203 were healthy and 203 were suffering from Parkinson’s 
Disease. Following data pre-processing, a 3D convolutional neural network (CNN) architecture was 
developed for learning the intricate patterns in the Magnetic Resonance Imaging (MRI) scans for the 
detection of Parkinson’s Disease. In the end, it was observed that the developed 3D CNN model 
performed superiorly by completely aligning with the hypothesis of the study and plotted an overall 
accuracy of 95.29%, average recall of 0.943, average precision of 0.927, average specificity of 0.9430, 
f1-score of 0.936, and Receiver Operating Characteristic—Area Under Curve (ROC-AUC) score of 
0.98 for both the classes respectively. 

Keywords: Parkinson’s Disease; neurodegeneration; magnetic resonance imaging (MRI); 
convolutional neural network (CNN); deep learning 

 

1. Introduction 

The second most common neurological disorder that prevails among the aging population in 
the world is considered to be Parkinson’s Disease (PD). Parkinson’s Disease primarily affects the 
nerve cells in the brain that are responsible for producing dopamine, which is an organic chemical 
that acts as a neurotransmitter to transmit signals between nerve cells. Therefore, patients having 
Parkinson’s Disease usually suffer from cognitive and movement disorders such as muscle stiffness, 
tremors, and impairment of posture and balance. Moreover, Parkinson’s Disease is progressive in 
nature, therefore, early detection and monitoring of the disease leads to improvement in the life of 
the patients. Also, as the aging population across the globe in increasing exponentially, a requirement 
for the development of suitable methods for the detection of Parkinson’s Disease at a very early stage 
is indeed very important [1–5]. 
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For the early detection of Parkinson’s Disease, the most widely used diagnostic paradigm is the 
analysis of Magnetic Resonance Imaging (MRI) scans of the brain. The MRI scans provide anatomical 
details about the subcortical structures of the brain that are further analyzed to check for any 
aneurysms, which further deems helpful for the early diagnosis of a particular type of disease. 
However, as the MRI is a 3D structure, it becomes really difficult for the human eye to analyze the 
intrinsic details and heterogeneous properties of subcortical structures [6,7]. Therefore, with the 
advancement of intelligent technologies, computer-aided detection systems have proven to be very 
effective in performing analysis and diagnosis of diseases by leveraging multi-dimensional 
healthcare data. 

In the past researchers performed multiple studies and found out that the textural and 
morphological analysis of the tissue and cell imaging scans have provided some very astonishing 
results. The application of textural and morphological analysis was considered to be huge as it was 
able to perform the quantification of grey level patterns and derive the inter-pixel relationship within 
the regions of interest. Moreover, it was also observed that different areas in a scan or an image had 
different textural and morphological patterns which were difficult for human beings to track [8]. 
Therefore, textural and morphological analysis of the imaging scans proved to be very much reliable 
for neurological studies and applications in the detection and diagnosis of diseases. But with the 
advances in the field of computer applications and intelligent systems, the research community is 
now focusing more on data-driven feature representation rather than handcrafted feature 
engineering which requires domain-specific knowledge [9]. Therefore, with the rapid development 
of deep learning architectures and technologies, it is proving to lay down some state-of-art 
methodologies for medical image applications. 

The paper is structured as follows. The related works in the field of the detection of Parkinson’s 
Disease and other Neurodegenerative diseases using deep learning and machine learning algorithms 
are described in Section 2. Section 3 discusses the data used in the study specifically, the data selection 
procedure, imaging modalities, and image registration protocols. Moreover, the section demonstrates 
the complete workflow for the processing of the Parkinson’s Progression Markers Initiative (PPMI) 
data and registering the data with respect to MNIPD25-T1MPRAGE-1 mm atlas. Section 4 underlines 
the methodology of the study concerning the development and optimization of the 3D convolutional 
neural network architecture. Section 5 discusses the performance and generalizing capability of the 
developed 3D convolutional neural network architecture. Section 6 further discusses the whole study 
and discusses the importance of the work for the early detection of Parkinson’s Disease. Finally, the 
paper is concluded in Section 7 and the future work regarding the study is discussed. 

2. Related Work 

In recent years the use of deep learning for image analysis has presented some of the most 
astounding results. More advertently in the field of medical image analysis such as classification, 
segmentation, etc. [10–12], convolutional neural networks (CNN) [13] had been considered to 
demonstrate some state-of-the-art results and also are used in many real-world applications. In the 
field of Alzheimer’s disease (AD) detection, multiple notable works have been performed and 
presented some state-of-the-art results. Payan and Montana [14] performed a study where 2265 
historical MRI scans were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
and further all the MRI scans were subjected to a sparse-autoencoder followed by a 3D CNN network. 
The classification of AD vs. healthy control (HC) vs. mild cognitive impairment (MCI) was plotted at 
an accuracy of 89.47%. Also, Hosseini et al. [15] undertook a study for the classification of AD, HC, 
and MCI by leveraging 3D convolutional autoencoder on normalized T1 weighted MRI scans from 
the ADNI database. Similarly, others have also demonstrated their works where CNN was leveraged 
in MRI and Functional magnetic resonance imaging (fMRI) scans for the detection of AD and the 
classification of MCI and HC [16–20]. 

On the other hand, for the early detection of Parkinson’s Disease, multiple works have been 
performed considering the texture and morphological analysis of the region of interest (ROI) and 
voxels of interest (VOI) of subcortical structures of the brain. Li et al. [21] performed a study regarding 
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the 3D texture analysis of the substantia nigra using the quantitative susceptibility maps (QSM) and 
R2* maps for the detection of Parkinson’s Disease. Further, the study extracted first- and second-
order textural features from QSM and R2* maps and it was found that first- and the second-order 
QSM maps accurately distinguished PD from HC. Similarly, Sikio et al. [22] proposed a technique to 
determine the structural changes of the brain from an MRI baseline using textural features. It was 
observed from the study that the textural features can be considered for discriminating the structural 
changes. Moreover, similar studies were also performed by [4,23] where the textural and 
morphological features were only considered from specific subcortical structures of the brain for the 
prediction of Parkinson’s Disease. But concerning the implementation of CNN and deep learning on 
MRI scans for the detection of Parkinson’s Disease, there are quite a few notable works that have been 
performed. Therefore, following in this section some related studies are discussed that have been 
considered to demonstrate state of the art results. 

Ortiz et al. [24] performed a study for the detection of Parkinson’s Disease using features based 
on the isosurface of 3D brain Single-Photon Emission Computed Tomography (SPECT) scans. For the 
study, the authors acquired the DaTscan SPECT scans from PPMI database. The SPECT scans were 
further subjected to a feature extraction method that extracted only the isosurface or isolines (2D 
version of isosurfaces) from the 3D SPECT scans. Further, the isosurfaces were subjected to a 3D CNN 
model based on the characteristics of AlexNet and it was observed that the model plotted a specificity 
and sensitivity of 95% and receiver operating characteristic (ROC) of 0.97. Similarly, Kollia et al. [25] 
also performed an interesting study where they predicted Parkinson’s Disease from MRI and DaT 
scan data by leveraging latent information from deep convolutional neural networks. In the study, 
the authors implemented two deep neural networks, one with the normal specification of convolution 
layers followed by fully connected layers and the other one where the normal architecture was 
followed by a recurrent layer of gated recurrent unit (GRU) neurons. Further, latent variables were 
extracted from the fully connected layer of the trained CNN models and multiple approaches for the 
detection were performed. The approaches included combinations of transfer learning, clustering 
[26], and nearest neighbors for enhancing the classification performance of the model. 

Shinde et al. [27] in his work regarding the detection of Parkinson’s Disease leveraged 
neuromelanin sensitive MRI (NMS-MRI), which can identify abnormalities in the substantia nigra 
(SNc) in Parkinson’s Disease patients. Moreover, the author also plotted concerns over the 
handcrafted features based on the contrast ratio, area, and volumes of the subcortical structures [28–
31]. Further, the authors employed a CNN network for the detection of PD from HC and 
demonstrated optimum test accuracy of 80% concerning ratio-based and radiomics feature-based 
classification techniques. In another study, Sivaranjini et al. [32] leveraged AlexNet [33] architecture 
on MRI images obtained from the PPMI database for the detection of Parkinson’s Disease. The model 
provided an optimum accuracy of 88.9% while distinguishing PD from HC. Similar studies were 
further performed by [34–36] by leveraging multiple imaging modalities, multiple imaging cohorts, 
and different types of deep learning architecture. The studies further performed superiorly in 
identifying Parkinson’s Disease from healthy control. 

The aforementioned literature further proves the diligence of the analysis of MRI by leveraging 
deep learning architectures for the detection of Parkinson’s Disease. Moreover, it has also been 
established that deep learning architectures and more specifically convolutional neural networks 
perform superiorly in extracting hierarchical information from imaging modalities. Therefore, the 
findings plotted by the aforementioned research studies motivated us to perform an analysis of the 
MRI scans using a 3D CNN network for the detection of Parkinson’s Disease. 

3. Data Collection and Preprocessing 

3.1. Data Collection 

The data for the study was collected from the PPMI database (www.ppmi-info.org/data). PPMI 
database for neuroimages is considered to be a landmark, international, and multicenter study to 
research the biomarker’s that are responsible for Parkinson’s Disease progression. The MRI scans 



Diagnostics 2020, 10, 402 4 of 17 

 

selected for the study were based on particular imaging protocols described in Table 1 and also 
corresponds to the baseline visit. Further, all the scans that were considered in the study were 
obtained from a single type of scanner, i.e., Siemens, Munich, Germany. Moreover, all the acquired 
scans were based on Magnetization Prepared—Rapid Gradient Echo (MP-RAGE) sequence. All the 
scans used in the study were acquired in a time range of 20–30 min field of view (FoV) of all the scans 
including vertex, cerebellum, and pons. 

Post applying the filter based on the imaging protocol mentioned in Table 1, a total of 406 MRI 
scans were selected from the baseline visit of the patients. Out of 406 patients, 148 were female and 
258 were male. The scans that were considered for the study belonged to the subjects aged 62.64 ± 
9.9. The scans primarily belonged to two research groups that are healthy control (HC) and 
Parkinson’s Disease (PD). The scans were distributed into the respective research groups as 203 for 
healthy control and 203 for Parkinson’s Disease. The subjects who were considered for obtaining the 
scan were selected on certain criteria described in Table 2. 

Table 1. Imaging protocol for choosing the scans from Parkinson’s Progression Markers Initiative 
(PPMI) database. 

Imaging Protocol Values 
Modality Magnetic Resonance Imaging (MRI) 

Research Group Control and Parkinson’s Disease (PD) 
Visit Baseline 

Acquisition Plane Sagittal 
Acquisition Type 3D 

Field Strength 3.0 Tesla 
Flip Angle 9 Degree 

Scanner Manufacturing Siemens Magnetization Prepared— 
Rapid Gradient Echo (MPRAGE) 

Pixel Spacing 0.9–1.5 mm (X &Y) 
Slice Thickness 1.0 mm 

Weighting T1 

Table 2. Eligibility criteria for the subject to be included in a research group. 

Research Group Criteria 

Parkinson’s Disease 

• Patients must have at least two: resting tremor, bradykinesia, 
rigidity, asymmetric resting tremor, asymmetric bradykinesia.  

• Diagnosis of Parkinson’s Disease for two years.  
• Hoehn and Yahr stage I or II.  
• Male or Female age 30 Years or Older. 

Control Subjects • Male or Female age 30 Years or Older.  
• Not First degree relative to Parkinson’s patient. 

Table 3 shows the specifications of the scans that were obtained from the PPMI database. While 
Figure 1 depicted shows the sample of MRI scans belonging to both the research groups that were 
obtained from the PPMI database. 

Table 3. Specification of the acquired scans from PPMI. 

Image Parameters Values 
Dimensions 256 × 256 × 170–200 pixels 

Interslice Gap 1.0 mm 
Slice Thickness 1.0 mm 

Spacing 1.0 × 1.0 × 1.0 mm 
Plane Sagittal 
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Figure 1. Sample of Magnetic Resonance Imaging (MRI) scans obtained from the Parkinson’s 
Progression Markers Initiative (PPMI) database (a) MRI scan of a subject from the control group; (b) 
MRI scan of a subject from to the Parkinson’s Disease group. 

3.2. Data Preprocessing 

The dataset that was used in the study was obtained from the PPMI database; as previously 
mentioned, PPMI is a multicenter study, therefore, the imaging scans acquired in the study contained 
temporal and spatial differences. To solve this particular problem and to maintain a constant 
modality between all the scans it was required that all the scans needed to be in the same space such 
as Montreal Neurological Institute (MNI) [37,38] or individual brain atlases using statistical 
parametric mapping (IBASPM) [39]. Therefore, to transform the PPMI MRI data that has been 
collected from multiple centers across the globe to a fixed coordinate system, an image registration 
procedure was performed. Image registration is a process where traversal is performed on a fixed 
image (atlas) to find the alignment parameters and coordinates so that an unknown or an unseen 
image can be aligned similarly to the fixed image. Trivially, image registration could be understood 
as the process of aligning two images to a particular space where one acts as the source image and 
the other as target image, and the source image is transformed in a method to align with the target 
image. In the specific study, the MRI scans obtained from the PPMI database were considered as the 
source image and the atlas, such as MNI or IBASPM, were considered as the target image. 

The registration of the MRI scans obtained from the PPMI database was performed using 
MNIPD25-T1MPRAGE-1 mm atlas created by [40–42]. The specifications of the MNIPD25-
T1MPRAGE-1 mm atlas is described in Table 4. The registration of the MRI scans was performed 
using one of the most effective normalization tools known as advanced normalization tools python 
(ANTsPy) [43]. ANTsPy is used particularly in the field of imaging research for extracting important 
information from complex imaging datasets to perform preprocessing on MRI, fMRI, and SPECT 
data. The registration of the acquired MRI scans with the MNIPD25-T1MPRAGE-1 mm atlas was 

Coronal Sagittal Axial 

Coronal Sagittal Axial 

(a) 

(b) 
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performed using symmetric normalization. Figure 2 depicts a particular MRI scan before and after 
the registration process. 

Table 4. Specification of MNIPD25-T1MPRAGE-1 mm atlas. 

Image Parameters Values 
Dimensions 193 × 229 × 193 pixels 

Interslice Gap 0.0 mm 
Slice Thickness 1.0 mm 

Spacing 1.0 × 1.0 × 1.0 mm 
Plane Sagittal 

 

Figure 2. Before and after registration of a particular scan, (a) MRI scan before registration and (b) 
MRI scan after registration. 

4. Materials and Methods 

The main premise of the study focusses on the detection of Parkinson’s Disease and the 
classification of MRI scans as healthy control or Parkinson’s Disease using 3D convolutional neural 
networks. The complete flow of process and methodology for the detection of Parkinson’s Disease is 
described in Figure 3. The methodology was primarily divided in to four stages: MRI scan acquisition 
from the PPMI database; data preprocessing, registration, and transformation; 3D convolutional 
neural network architecture; and finally the results and performance evaluation of the CNN 
architecture based on some metrices. The first two stages of the methodology have been thoroughly 
discussed in Section 3 and the third and the fourth stage will be discussed in the following sections. 

Coronal Sagittal Axial 

Coronal Sagittal Axial 

(a) 

(b) 
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Figure 3. Complete process flow of the study. 

4.1. 3D Convolutional Neural Network Architecture 

In recent times, supervised learning techniques for solving problems have evolved massively. 
Moreover, the popularity and effectiveness of deep learning algorithms have also undergone a major 
paradigm shift in terms of architectural designs and optimizer functions [43]. Particularly, in the field 
of health care, deep learning algorithms have shown much predominance over the previous 
techniques that were used for imaging analysis, aneurysms detection in images, biosignal analysis, 
etc. 

In this paper, a 3D convolutional neural network model has been developed for the detection of 
Parkinson’s Disease from T1 weighted MRI scans. The primary proposition of the work presents a 
system that can be used to identify Parkinson’s Disease from MRI or brain images. Additionally, the 
second proposition of the study was to determine the plausible regions of interest (ROIs) in the brain 
MRI images that are responsible for Parkinson’s Disease. Therefore, to solve the primary proposition 
of the study a 3D convolutional neural network has been developed as shown in Figure 4 and Table 
5. The CNN network developed in the work consists of 35 layers including the input and the output 
layer. Further, the network architecture consists of 12 3D convolution layers, which allows the model 
to create the feature representations of the input brain MRI scans. Moreover, all the convolution 
layers are supported by activation functions. Further, all the feature representations are subjected to 
max-pooling layers which are responsible for down-sampling the input feature matrix and provides 
an abstract form of the feature representation to avoid overfitting. After the complete process of 
feature learning, all the feature matrices are flattened so that it can be accepted by the dense layer or 
the fully connected layer. The representations from the dense layer are further subjected to the output 
dense layer with two neurons and sigmoid activation which corresponds to the two states that are 
healthy control and Parkinson’s Disease. 
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Figure 4. 3D Convolutional Neural Network (CNN) architecture. 

4.2. Hypothesis and Training Procedure 

For developing the statistical, machine learning, and deep learning model, the first step is 
considered to be the development of the hypothesis of the problem that needs to be solved. Therefore, 
the primary hypothesis that was devised for solving a particular problem is as follows: 

1. The recall of the Parkinson’s Disease class or the true negatives must be more than 0.95 and the 
probability factor of the mispredicted samples or the false negatives must not be more than 60%. 
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2. The recall of the healthy class or the true positives must be more than 85% and the probability 
factor of the mispredicted samples or the false positives must not be more than 65%. 

Therefore, based on the above hypotheses, the performance of the 3D convolutional neural 
network model was evaluated. For the evaluation purpose, five different classification performance 
metrics were considered namely accuracy, precision, recall, f1-score, and confusion matrix. Also, for 
determining the generalizability of the model over unseen data a 5-split cross-validation was 
performed. The details regarding the evaluation of the performance metrics are described in the 
Results section. 

4.3. Model Optimizer Hyperparameters and Loss 

The development of the 3D CNN architecture is indeed the most important aspect of the work. 
However, the component that needs to be considered carefully for creating the learning algorithm is 
choosing the right set of hyperparameters for optimizing the internal set of parameters of the network 
such as weights and biases, and the loss function. 

Table 5. 3D convolutional neural network (CNN) architecture. 

Layer Filters Kernel Size/Pool 
Size 

Stride 
Size 

Output 
Dimension Parameters 

Convolution_3D_1 4 (3, 3, 3) (2, 2, 2) (97, 115, 97, 4) 112 
Activation_RELU_1 - - - (97, 115, 97, 4) 0 
Convolution_3D_2 4 (3, 3, 3) (2, 2, 2) (49, 58, 49, 4) 436 
Activation_RELU_2 - - - (49, 58, 49, 4) 0 

Max_Pool_3D_1 - (2, 2, 2) - (24, 29, 24, 4) 0 
Convolution_3D_3 64 (3, 3, 3) (2, 2, 2) (12, 15, 12, 64) 6976 
Activation_RELU_3 - - - (12, 15, 12, 64) 0 
Convolution_3D_4 64 (3, 3, 3) (2, 2, 2) (6, 8, 6, 64) 110656 
Activation_RELU_4 - - - (6, 8, 6, 64) 0 

Max_Pool_3D_2 - (2, 2, 2) - (3, 4, 3, 64) 0 
Convolution_3D_5 128 (2, 2, 2) (1, 1, 1) (3, 4, 3, 128) 65664 
Activation_RELU_5 - - - (3, 4, 3, 128) 0 
Convolution_3D_6 128 (2, 2, 2) (1, 1, 1) (3, 4, 3, 128) 131200 
Activation_RELU_6 - - - (3, 4, 3, 128) 0 
Convolution_3D_7 256 (2, 2, 2) (1, 1, 1) (3, 4, 3, 256) 262400 
Activation_RELU_7 - - - (3, 4, 3, 256) 0 
Convolution_3D_8 256 (2, 2, 2) (1, 1, 1) (3, 4, 3, 256) 524544 
Activation_RELU_8 - - - (3, 4, 3, 256) 0 

Max_Pool_3D_3 - (1, 1, 1) - (3, 4, 3, 256) 0 
Convolution_3D_9 512 (1, 1, 1) (1, 1, 1) (3, 4, 3, 512) 131584 
Activation_RELU_9 - - - (3, 4, 3, 512) 0 
Convolution_3D_10 512 (1, 1, 1) (1, 1, 1) (3, 4, 3, 512) 262656 
Activation_RELU_10 - - - (3, 4, 3, 512) 0 
Convolution_3D_11 1024 (1, 1, 1) (1, 1, 1) (3, 4, 3, 1024) 525312 
Activation_RELU_11 - - - (3, 4, 3, 1024) 0 
Convolution_3D_12 2048 (1, 1, 1) (1, 1, 1) (3, 4, 3, 2048) 2099200 
Activation_RELU_12 - - - (3, 4, 3, 2048) 0 

Max_Pool_3D_4 - (1, 1, 1) - (3, 4, 3, 2048) 0 
Dropout_0.2_1 - - - (3, 4, 3, 2048) 0 

Flatten - - - (73728) 0 
Dense 512 - - 512 37749248 

Activation_Sigmoid_13 - - - 512 0 
Dropout_0.5_2 - - - 512 0 

Dense_Output_Softmax 2 - - 2 1026 
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The process of controlling the training process is considered very important while creating a 
deep learning model. The process is undertaken by the hyperparameters of the optimizer function 
that is responsible for tuning the optimizer algorithms. For the present study, the primary aspect that 
lies in the optimization algorithm is to minimize the validation and the testing error of the model. For 
performing the specific task, the hyperparameters that reside outside the primary deep learning 
model must be tuned in such a way we generate the perfect internal parameters of the model that are 
the weights and biases. However, the challenge that is faced in the process is that the 
hyperparameters much be chosen in a particular way that it should be model-specific rather than a 
training set to increase the generalizability of the model over unseen data. Therefore, for choosing 
the perfect set of hyperparameters to maintain the overall model generalizability and optimum 
objective score, Bayesian sequential model-based optimization (SMBO) is used. 

Bayesian SMBO is an algorithm used for hyperparameter optimization the works to minimize 
an objective function by creating a surrogate model (probability function) based on the evaluation 
results of the previous objective function. The basic objective function of the Bayesian SMBO is given 
as: 

𝑃(𝑠𝑐𝑜𝑟𝑒|ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) =  𝑃(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 |𝑠𝑐𝑜𝑟𝑒)𝑃(𝑠𝑐𝑜𝑟𝑒)𝑃(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)  (1) 

The surrogate model that is developed by the Bayesian SMBO is considered to be less expensive 
than the main optimizer function [44]. Further, the next set of evaluation results are selected by using 
the expected improvement criterion [45]. The criterion is defined as: 𝐸𝐼(𝑥) = 𝐸(𝑚𝑎𝑥(𝑓(𝑥) − 𝑓∗, 0)) (2) 

where x belongs to the hyperparameter values and is considered to be an improvement in the 
objective sore of f(x), and f* is the maximum value of the objective score found in the process. 

Further, in the process, AdaDelta [46] is chosen as the optimizer algorithm for optimizing the 
weights and biases of the network. AdaDelta is considered to be a very robust algorithm relating to 
the gradient descent algorithm. The algorithm dynamically adapts over the course of the training 
process by leveraging only first-order information. Moreover, the algorithm does not require any 
manual tuning of the learning rate and is very robust towards noisy gradient information. Therefore, 
Bayesian SMBO was applied to the algorithm to generate the optimum hyperparameters and is 
mentioned below. 

Learning rate: 0.08423; rho: 0.625; epsilon: 1.0  

Another very integral part of the deep learning models is the loss functions. These functions are 
typically used to determine the variability between the prediction (𝑦) and the true value (𝑦). The 
output of the loss functions is a non-negative value that increases the generalizability of the model 
by decreasing the loss [47]. The loss function of a model is given by: 

𝐿(𝜃) =  1𝑛 𝐿(𝑦( ), 𝑓(𝑥( ), 𝜃) (3) 

where 𝜃 represents the parameters of the model, x represents the feature matrix, and y represents 
the true values for a particular set of features. 

The loss function used in the present study was binary cross-entropy, which is also known as 
the cross-entropy or the log loss. In the binary cross-entropy loss, each prediction outcome is 
compared to the true value and a loss score is calculated. The loss score in the process is used to 
penalize the probability of the prediction. The loss score is logarithmic which means a small penalty 
is allotted to tiny differences between prediction outcome and true value and a large penalty is 
applied to bigger differences [48]. The equation of binary cross-entropy is given where y is the true 
value and p(y) is the predicted probability of y being true. 
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𝐻 (𝑞) =  − 1𝑁 𝑦 𝑙𝑜𝑔 𝑝(𝑦 ) (1 − 𝑦 ) 𝑙𝑜𝑔 (1 − 𝑝(𝑦 )) (4) 

5. Results 

The 3D convolutional neural network model presented decent results in terms of detecting 
Parkinson’s Disease from brain MRI scans. The model quantitatively presented effective results by 
prompting an average recall and precision of 0.9421 and 0.9280 for both the classes, respectively. Also, 
for the training procedure, a 5-split cross-validation with the ratio of 80:20 was performed over the 
complete dataset, and it was observed that the model demonstrated optimum generalizability in 
terms of predicting the data according to multiple cross-validation test sets. Table 6 shows the results 
of the 5-split cross-validation that was used to determine the generalizability of the 3D convolutional 
neural network model over unseen data. 

Table 6. Performance evaluation of the 3D CNN model. 

Metrics Split 1 Split 2 Split 3 Split 4 Split 5 
Accuracy 93.24% 90.21% 92.68% 95.29% 92.33% 
Precision 0.9270 0.9340 0.9520 0.9270 0.9100 
Specificity 0.9112 0.8843 0.9100 0.90 0.9263 
Recall 0.9140 0.9157 0.9310 0.9430 0.9240 
F1-Score 0.9366 0.9290 0.9428 0.9360 0.9160 
ROC-AUC 0.94 0.92 0.95 0.98 0.94 

Figure 5 depicts the confusion matrix that was generated based upon the results received from 
the best performing cross-validation set. Also, it can be observed that the confusion matrix completely 
aligns with the prior hypothesis which states that there must not be any misprediction of the MRI 
scans belonging to the PD class into any other class and the recall of prediction in the healthy class 
must be more than 85%. However, analyzing just the predictive performance of the deep learning 
models are not sufficient to determine the credibility of the model. Therefore, in Figure 6 and Figure 
7 quantile–quantile plots (QQ) have been depicted to understand the uncertainty of the model and 
the confidence of predictions. 

 

Figure 5. Confusion matrix of the 4th cross-validation split, where PD stands for Parkinson’s Disease. 
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Figure 6. Quantile–quantile plot between the true probability and the prediction probability of the 
samples belonging to the Parkinson’s Disease class. Probabilistic confidence was 0.932. 

 
Figure 7. Quantile–quantile plot between the true probability and the prediction probability of the 
samples belonging to the healthy control class. Probabilistic confidence was 0.843. 

Another very important factor that needs to be measured for evaluating the performance of the 
deep learning model is the interpretability of the models. The field of healthcare is considered to be 
a critical field when it comes to the implementation of automated intelligent systems. Therefore, the 
prime requirement that needs to be provided out of the model is the interpretation behind a particular 
prediction or cause–effect information that led to a particular prediction. Therefore, to interpret the 
predictions of the developed 3D CNN model, a class activation map was used [49–51]. Figure 8 shows 
the class activation map on the sample MRI slices that has been predicted as Parkinson’s Disease. The 
class activation map shows that the model paid much attention to the region of substantia nigra pars 
compacta (SNc), which is most affected due to the loss of dopaminergic neurons. 
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Figure 8. Class activation maps for sample slices of MRI scan that has been predicted as Parkinson’s 
Disease. (a) Axial view, (b) coronal view, and (c) sagittal view. 

6. Discussion 

The study concerns the development of a 3D convolutional neural network architecture for the 
detection of Parkinson’s Disease from 3T-T1 weighted MRI scans. MRI scans were collected from the 
PPMI database from two different research groups namely, healthy control and Parkinson’s Disease. 
As discussed, the PPMI is a multicenter study, therefore, the acquired MRI scans had spatial and 
temporal differences. Therefore, to bring all the MRI scans to the same space, an image registration 
routine was performed over all the MRI scans. The registration of images was performed using 
MNIPD2-T1MPRAGE-1 mm atlas. Following registration of the brain MRI scans, a 3D convolutional 
neural network was developed for the learning intricate patterns in the MRI scans for the detection 
of Parkinson’s Disease and classifying MRI scans into healthy control and Parkinson’s Disease 
categories, respectively. 

Before the development of the model, a hypothesis was designed to evaluate the performance 
metrics of the model. The hypothesis stated that the recall of the Parkinson’s Disease class or the true 
negatives must be more than 0.95 and the probability factor of the mispredicted samples or the false 
negatives must not be more than 60%, and the recall of the healthy class or the true positives must be 

(a) 

(b) 

(c) 
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more than 85% and the probability factor of the mispredicted samples or the false positives must not 
be more than 65%. Therefore, to satisfy the prior hypothesis five performance metrics namely, 
confusion matrix, accuracy, precision, recall, and f1-score, were evaluated. From the results, it can be 
observed that the model predicted superiorly by plotting a maximum accuracy of 95.29%, recall of 
0.943, the precision of 0.927, and an f1-score of 0.936 for both the classes. Additionally, for 
understanding the generalizing capability of the model, 5-split cross-validation was performed and 
it was observed that the model performed constantly over all the cross-validation splits. 

Further to prove the prior hypothesis of the work, a confusion matrix and quantile–quantile 
plots were depicted in the work, which completely aligned with the hypothesis. In the confusion 
matrix, it can be observed that there was no misprediction for MRI scans belonging to Parkinson’s 
Disease class. Moreover, from the quantile–quantile plot, it can be observed that all the correctly 
predicted samples had the prediction confidence of more than 85% for the MRI scans belonging to 
the Parkinson’s Disease class. Therefore, it can be observed from the results that the developed 3D 
CNN model performed robustly by plotting superior performance results by completely aligning 
with the prior hypothesis of the work, and also the model demonstrated a high generalizing 
capability based on the cross-validation results. 

Presently, as the research area in artificial intelligence, machine learning, and deep learning are 
focused on the interpretability of the black box models. Therefore, to determine and understand 
whether the model is choosing the correct areas or the regions that are responsible for the detection 
of Parkinson’s Disease, a 3D class activation map (3D CAM) was developed. From the 3D CAM plot 
depicted in Figure 8, it can be observed that the model has predicted a particular MRI scans as 
Parkinson’s Disease by paying much attention to the substantia nigra region (SNc). Therefore, it can 
be considered that the model understood the particular areas in the MRI scans which are responsible 
for Parkinson’s Disease. 

7. Conclusions 

In the proposed study, a 3D MRI analysis was performed for the detection of Parkinson’s Disease 
using 3D convolutional neural network. The study leveraged full brain 3D MRI scans to understand 
intricate patterns in all the subcortical structures of the brain for the detection of Parkinson’s Disease. 
For the evaluation of the CNN model, certain performance metrics were considered, and to validate 
the values of the performance metrics a prior hypothesis was designed. After, the training of the 3D 
CNN model it was observed that the model performed superiorly by closely aligning with the prior 
hypothesis of the study and also demonstrated pretty astounding results. The model developed in 
the study plotted an overall accuracy of 95.29%, average recall of 0.943, average precision of 0.927, 
and f1-score of 0.936 for both the classes. Moreover, the interpretation of the model over the MRI 
scans was also evaluated using 3D class activation maps, and it was found that the model paid 
maximum attention to the substantia nigra region (SNc) for predicting a particular MRI scan as 
Parkinson’s Disease. 

To conclude, the outcome of the proposed study is very motivating. However, there remains a 
huge scope of untouched study concerning the development of innovative architectures that can be 
leveraged for the detection of Parkinson’s Disease using 3D CNN. Moreover, presently the study 
focused on whole-brain MRI scans, but in the future, it is highly recommended to perform such 
research by considering specific subcortical structures and the development of more efficient 
architectures for the detection of Parkinson’s Disease. 
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