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Abstract: The objective of this systematic review was to analyze the current state of the art of 

imaging‐derived biomarkers predictive of genetic alterations and immunotherapy targets in lung 

cancer. We included original research studies reporting the development and validation of imaging 

feature‐based models. The overall quality, the standard of reporting and the advancements towards 

clinical practice were assessed. Eighteen out of the 24 selected articles were classified as “high‐

quality” studies according to the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS‐

2). The 18 “high‐quality papers” adhered to Transparent Reporting of a multivariable prediction 

model for Individual Prognosis or Diagnosis (TRIPOD) with a mean of 62.9%. The majority of “high‐

quality” studies (16/18) were classified as phase II. The most commonly used imaging predictors 

were radiomic features, followed by visual qualitative computed tomography (CT) features, 

convolutional neural network‐based approaches and positron emission tomography (PET) 

parameters, all used alone or combined with clinicopathologic features. The majority (14/18) were 

focused on the prediction of epidermal growth factor receptor (EGFR) mutation. Thirty‐five 

imaging‐based models were built to predict the EGFR status. The model’s performances ranged 

from weak (n = 5) to acceptable (n = 11), to excellent (n = 18) and outstanding (n = 1) in the validation 

set. Positive outcomes were also reported for the prediction of ALK rearrangement, ALK/ROS1/RET 

fusions and programmed cell death ligand 1 (PD‐L1) expression. Despite the promising results in 

terms of predictive performance, image‐based models, suffering from methodological bias, require 

further validation before replacing traditional molecular pathology testing. 

Keywords: radiogenomics; CT; PET/CT; lung cancer; EGFR; ALK; PD‐L1; artificial intelligence; 

radiomics; targeted therapy 

 

1. Introduction 

Primary lung cancer is the most common malignancy worldwide, accounting for 11.6% of all 

cancers and 18.4% of all cancer‐related deaths. In 2018, more than 2 million people were diagnosed 

with lung cancer globally and more than 1.75 million deaths occurred [1]. 

Non‐small cell lung cancer (NSCLC) accounts for 80–90% of all primary lung cancers, and the 

majority of patients have an advanced stage unresectable disease at diagnosis, which carries a dismal 

prognosis. 
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In recent years, unprecedented advancements in the management of lung cancer have been 

made. The increasing understanding of the molecular and genetic alterations at the basis of NSCLC 

and of the mechanisms of immune evasion by cancer cells have paved the way for novel targeted 

drugs and immunotherapeutic agents [2]. Because of this, histological diagnosis nowadays needs to 

be complemented by accurate molecular profiling, which is aimed at detecting biomarkers for 

personalized treatment selection (Table 1). 

Currently, testing for molecular alterations that serve as robust targeted therapy‐predictive 

biomarkers is recommended to guide treatment selection in patients with advanced and metastatic 

adenocarcinoma. In particular, testing for epidermal growth factor receptor (EGFR), tyrosine kinase 

receptor (ALK) as well as ROS1 and BRAF oncogene mutation should be routinely performed, while 

testing for other oncogenes such as RET, HER2, KRAS and MET is indicated only in selected cases 

[3–5]. 

Molecular‐targeted therapy with tyrosine kinase inhibitors (TKIs) specifically directed to these 

alterations has been shown to improve patient outcomes both in terms of survival and drug‐induced 

toxicities compared to standard chemotherapeutic agents [6–21]. 

Immune‐checkpoint inhibitors (ICIs) for the treatment of advanced NSCLC have been recently 

approved. The percentage of tumor cells expressing programmed cell death ligand 1 (PD‐L1) at 

immunohistochemistry is the routinely used biomarker to select candidates for this additional 

therapeutic option [5]. The PD‐1/PD‐L1 inhibitors have indeed been successful in improving survival, 

particularly in patients without targetable molecular alterations [22–27]. This benefit in terms of 

overall survival was especially noticed in patients with ≥50% of tumor cells expressing PD‐L1 at 

immunohistochemical analysis [23]. 

Table 1. Biomarkers in non‐small cell lung cancer. 

Target/Biomarker Frequency [28–33] Targeted Therapy/Immunotherapy Options 

EGFR mutation  

Erlotinib [6], gefitinib [7], afatinib [20],  

osimertinib [21], dacomitinib [8] 

 Overall 10–20% 1, 40–50% 2 

  Exon 19 deletion ≃45% 

  Exon 21 L858R mutation ≃40% 

  Others ≃15% 

ALK rearrangement 3–7% 
Crizotinib [16], alectinib [10], ceritinib [9], brigatinib [13],  

lorlatinib [11] 

ROS1 rearrangement 1–4% Crizotinib [17], entrectinib [19] 

BRAF mutation 1–5% Dabrafenib+ trametinib [12] 

Tumor cells PD‐L1 expression  

Nivolumab 3 [22,27], pembrolizumab 3 [23,25],  

atezolizumab 4 [24], durvalumab 4 [26] 

 <1% 30–40% 

 1–49% 30–40% 

 ≥50% ≃30% 

Evolving target/biomarker 5   

RET rearrangement 1–3%  

ERRB2 (HER2) mutation 2–4%  

KRAS mutation 15–30%  

MET amplification 3–4%  

1 non‐Asians; 2 Asians; 3 PD‐1 inhibitor; 4 PD‐L1 inhibitor; 5 No targeted therapies have been approved 

yet for these known oncogenic driver mutations. 

To sum up, advancements in the field of molecular pathology have allowed the stratification of 

NSCLC patients according to oncogenic driver mutations and PD‐L1 expression, with a huge impact 

on treatment tailoring. However, testing to identify therapy‐predictive biomarkers currently relies 

on the analysis of tumor samples collected from conventional biopsies or cytological specimens, 

which carry some inherent limitations. These indeed are invasive procedures that are not always 

feasible, often result in the collection of inadequate samples and cannot capture intra‐ and inter‐tumor 

heterogeneity, being representative of only a minor portion of the malignancy. Moreover, in the case 

of disease recurrence after first‐line treatment, re‐biopsy is not mandatory and targeted therapies may 
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be offered based on the detection of molecular alterations tested on the surgical specimens, assuming 

that no molecular variations occur between primary tumor and recurrence [34]. 

In this scenario, the need of complementing or replacing traditional testing based on tissue 

biopsy and cytology samples with other methods able to assess actionable biomarkers in NSCLC is 

emerging. 

In this context, imaging, performed for baseline staging and response evaluation in lung cancer, 

is gaining a renewed interest as a potential biomarker for non‐invasive tumor characterization, since 

the introduction of radiomics and artificial intelligence (AI). Radiomics is a process of extraction and 

the analysis of quantitative features (or quantitative imaging biomarkers) from diagnostic images. 

The process of radiomics extracts intrinsic digital features of tissues that are not perceivable by 

human interpretation and in oncologic applications, tumor heterogeneity is of major interest. The 

heterogeneity of tumoral tissue may correlate with aggressiveness and response to treatment. Most 

clinical potential applications of radiomics are in the prediction of the response to treatment. 

However, of particular interest is the radiogenomic approach, which aims to assess the correlation 

between quantitative imaging features and genomic profiles. The underlying hypothesis of 

radiogenomics is that the quantitative imaging features can capture gene‐expression patterns, 

representing, therefore, the phenotype of the genomic signature. Radiogenomics is particularly 

attractive since it represents a non‐invasive, repeatable, fast and cost‐effective method of extracting 

molecular information from images. Even more recently, AI‐based approaches have been applied to 

medical imaging. These approaches may be used in combination with radiomics or stand‐alone. The 

main advantage of AI‐based approaches is in the identification of relevant features in a data‐driven 

fashion. On the other hand, in the majority of cases, it is impracticable to go backwards from the 

output to the input to interpret final results, being the “black‐box” one of the main issues of these 

approaches [35–45]. 

The objective of this study was to analyze the current state of the art of imaging‐derived 

biomarkers predictive of genetic alterations and immunotherapy targets in NSCLC by using a 

systematic literature review. 

2. Materials and Methods 

2.1. Eligibility Criteria, Search Strategy and Study Selection 

A comprehensive literature search for potentially relevant papers published up until 12 

February 2020, was performed using the PubMed/MEDLINE database. No limitations on the 

publication date were applied. The search strategy combined terms referring to “radiogenomics”, 

“lung cancer”, “molecular alterations/targeted therapy/PD‐1” as well as “PD‐L1/immunotherapy” 

and “imaging” in order to identify the relevant papers for the topic. Details on the search terms are 

reported in the Supplementary Materials. 

Subsequently, additional research studies of possible interest were identified from the reference 

lists of the retrieved articles and reviewed for eligibility. Additional potentially relevant records were 

searched on ClinicalTrials.gov (https://clinicaltrials.gov)[46]. 

Original research studies reporting the creation of imaging features‐based models for the 

prediction of PD‐L1 expression or the presence of targetable mutations in NSCLC were included. 

After the removal of the duplicates, the titles and abstracts of retrieved records were screened 

the following exclusion criteria were applied: (1) full text not available in English; (2) review articles, 

editorials, commentaries, case reports; (3) studies performed on non‐humans; (4) studies involving 

<20 subjects; and (5) the articles not within the field of interest. 

The full text of the remaining articles was then screened with the following exclusion criterion: 

(6) descriptive or exploratory studies with neither internal (e.g., bootstrapping and cross‐validation) 

nor external (e.g., split‐sample, temporal or another institution cohort) validation of the predictive 

model.  



Diagnostics 2020, 10, 359 4 of 23 

 

2.2. Analysis of Quality and Reporting Completeness 

The quality of each included study was assessed using the Quality Assessment of Diagnostic 

Accuracy Studies 2 (QUADAS‐2) criteria [47], which comprises four domains. The QUADAS‐2 

domains “patient selection”, “index test” and “reference standard”, assess both the risk of bias and 

applicability, while the “flow and timing” domain assesses the risk of bias only. 

According to the scope of the present systematic review, studies with adherence to QUADAS‐2 

≤ 4/7 were classified as “high/unclear risk of bias” or as having “high/unclear concerns regarding 

applicability” and consequently, were not considered in the quantitative analysis. 

As for the completeness of the reporting, the Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) checklist [48] was applied to each included 

article. A TRIPOD checklist adapted to radiomic studies proposed by Park et al. [49] was used to assess 

the radiomic and AI studies. 

The analyses of the quality and completeness of the reporting were performed independently 

by two reviewers (G.N. and M.S.). 

2.3. Data Extraction and Analysis 

A summary of the study characteristics (i.e., qualitative analysis) was done, including all the 

selected papers. A quantitative analysis was instead performed only taking into consideration “high‐

quality papers”, defined as those studies neither at significant risk of bias nor with applicability 

problems according to the criteria mentioned above. 

For the quantitative synthesis, the study characteristics, the main results with metrics (area 

under the curve, AUC, or other measures of diagnostic accuracy, including sensitivity, specificity, 

and accuracy) and the TRIPOD overall adherence rate were collected within a database. The 

following study characteristics were recorded: year of publication, type of study (prospective or 

retrospective), number of included subjects and their ethnicity, histological subtype and stage for 

each patient, imaging modality (CT or PET/CT), the molecule of interest (EGFR, ALK, ROS1, BRAF, 

RET, KRAS, HER2, MET, or PD‐L1), the type of imaging features used for predictions, either imaging 

features (visual qualitative CT features, radiomic features, PET parameters or convolutional neural 

network‐based approaches) or clinicopathologic features, and the type of validation (internal or 

external). 

If a study had two or more molecules of interest or investigated the predictive potential of two 

or more types of imaging features, it was considered as two or more separate studies. 

If a study used two or more different types of prediction algorithms (e.g., logistic regression, 

support vector machines, random forest), the main results were reported only for the model with the 

best performance. 

Descriptive statistical metrics were used to summarize the data. 

The studies were gathered according to the molecule of interest and grouped based on the 

TRIPOD adherence rate. Accordingly, we established different levels of adherence to TRIPOD (i.e., 

very low, low, moderate, high, and very high) setting a 10% incremental value from 50% to 100%, 

and each study was ranked from the high‐to‐low level of the quality, based on the assumption that 

the higher the TRIPOD adherence rate, the stronger the investigation. Subsequently, the performance 

of each model was assessed using the metrics mentioned above. The area under the curve (AUC)—

whenever available—was preferred to other metrics (e.g., sensitivity) to summarize the diagnostic 

accuracy of the proposed model. The AUCs were rated as null (0.50–0.60), poor (0.60–0.70), acceptable 

(0.70–0.80), excellent (0.80–0.90) and outstanding (>0.90) [50,51]. A trial phase from I to IV was 

assigned to each study in order to assess how far it is from clinical practice [52,53]. Excel® 2017 

(Microsoft®, Redmond, WA) was used for the analysis. 
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3. Results 

3.1. Study Selection 

The search of the PubMed/MEDLINE database returned a total of 563 studies (methods detailed 

in section 4). By screening the cited articles of the retrieved papers, 10 additional studies that met 

inclusion criteria were identified. None of the 10 articles selected from reference lists passed the 

selection phase, being all without validation. No relevant record pertinent to the review’s topic was 

found in ClinicalTrials.gov (https://clinicaltrials.gov). After the removal of duplicates, 549 records 

were left. After the abstract review, 473 studies were excluded. The screening process is summarized 

in Supplementary Figure S1. Twenty‐four articles were finally included and assessed for quality. 

3.2. Study Characteristics and Risk of Bias within Studies 

The 24 selected articles were retrospective studies developing multivariable models for the 

prediction of molecular genetic alterations (n = 22) or PD‐L1 expression (n = 2). Seventeen studies 

aimed at predicting EGFR status [54–70], one aimed at predicting ALK status [71], three at predicting 

both EGFR and KRAS status [72–74], one at identifying ALK/ROS1/RET fusion‐positive versus fusion‐

negative adenocarcinomas [75] and two at predicting the PD‐L1 expression level [76,77]. Study 

characteristics are summarized in Table 2. Supplementary Table S1 provides details of the molecular 

genetic alterations or PD‐L1 expression stratified according to the stage (early versus advanced). 

 

Table 2. Summary of the study characteristics of “high‐quality” and all eligible articles. 

Study Characteristic “High-Quality” Papers (n = 18) All Eligible Papers (n = 24) 

Year of publication   

 2014–2017 2 (11%) 4 (17%) 

 2018–2020 16 (89%) 20 (83%) 

Number of patients   

 0–100 2 (11%) 3 (12.5%) 

 100–300 6 (33%) 9 (37.5%) 

 300–500 3 (17%) 4 (17%) 

 >500 7 (39%) 8 (33%) 

Study type   

 Prospective 0 0 

 Retrospective 18 (100%) 24 (100%) 

Imaging modality   

 CT 14 (74%) 18 (75%) 

 18F‐FDG PET/CT 4 (26%) 6 (25%) 

Molecule(s) of interest 1   

 EGFR 15 2 20 

 ALK 2 2 

 ROS1 1 1 

 BRAF 0 0 

 RET 1 1 

 HER2 0 0 

 KRAS 0 3 

 MET 0 0 

 PD‐L1 2 2 

Imaging predictors 3   

 Visual qualitative CT features 8 10 

 Conventional PET parameters 2 3 

 Radiomic features 16 20 

 CNN‐based approaches 4 4 

Type of validation   

 Internal 5 (28%) 7 (29%) 

 Split sample 12 (67%) 15 (63%) 

 Geographic external validation 1 (5%) 2 (8%) 
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1 Some studies had more than one molecule of interest and were considered as separate; 2 Fourteen 

studies focused on the prediction of EGFR mutation, and one on the prediction of EGFR mutation 

subtypes; 3 Some studies investigated the predictive potential of more than one type of imaging 

features and were considered separately; CNN = convolutional neural network; CT = computed 

tomography; 18F‐FDG = fluorine‐18 fluorodeoxyglucose; PD‐L1 = programmed cell death ligand 1; 

PET = positron emission tomography. 

After assessment through the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS‐

2) criteria (Supplementary Figure S2), six out of the 24 (25%) [65–67,72–74] selected studies did not 

reach the score for “high‐quality papers” (QUADAS‐2 > 4/7). In particular, five studies [65,66,72–74] 

had a high/unclear risk of bias, most commonly in the “patient selection” and “index test” categories 

and one study [67] had applicability problems in the “patient selection” category. 

The 18 “high‐quality papers” varied in terms of adherence to Transparent Reporting of a 

multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD), ranging from 53% 

to 73% (mean = 62.9 ± 7.2% standard deviation), as detailed in Figure 1. 

  

Figure 1. Adherence to the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis or Diagnosis (TRIPOD) for the “high‐quality papers”. 
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For all these investigations, the TRIPOD adherence rate did not change in the case of multiple 

molecules of interest or types of imaging features investigated within the same study. In one case 

(i.e., [55]) the calculated TRIPOD adherence rate differed based on the investigated types of imaging 

features, being 70% for the radiomics‐based model (i.e., moderate) and 67% for the qualitative 

features‐based model (i.e., low), respectively. 

Two studies were classified as phase I [60,68], and the remaining 16 investigations as phase II (IIa 

= 2 [64,76], and IIb = 14 [54–59,61–63,69–71,75,77]). 

3.3. Main Results 

3.3.1. Prediction of EGFR Status 

Out of the 18 “high‐quality papers”, 14 focused on the prediction of EGFR mutation [54–64,68–

70]. 

Thirty‐five predictive models were built, considering all 14 studies. The predictive ability of the 

different types of imaging‐based models for EGFR status is summarized in Figure 2. Of these, the 

majority were radiomics‐based models (n = 18), with (n = 6 [55–58,62,64]) or without (n = 12 [54–

60,62,64,68–70]) the addition of clinicopathological features. The area under the curve (AUC) values 

in the validation cohorts ranged from 0.64 to 0.89 (details are provided in Supplementary Table S2). 

When added to radiomic features, the clinical parameters brought an improvement in the 

classification performance in one out of six cases (AUCs of 0.77 and 0.87 for radiomics and radiomics 

+ clinical, respectively [62]). In the remaining five cases, the AUCs of both radiomics and radiomics + 

clinical models fell in the same rank (acceptable = 2 [56,58], and excellent = 3 [55,57,64]). Of note, the 

two radiomics‐based models that adhered the most to TRIPOD reported unsatisfactory AUCs [54,59]. 

Conversely, the great majority of radiomics‐based investigations adherent to TRIPOD at the very‐

low level showed good model performance [58,60,64]. Studies using radiomic models, alone or 

combined with clinical models, to predict EGFR status are summarized in Table 3. 

 

Figure 2. Summary of the performances for the models aiming at predicting EGFR status, divided 

according to the method. 

Four predictive models were instead based on visual qualitative computed tomography (CT) 

features, together (n = 2 [55,69]) or not (n = 2 [59,68]) with clinicopathologic features (Table 4). The 

AUC range in the validation cohorts was 0.62–0.77. The visual qualitative CT features most 

commonly associated with EGFR mutation are reported in Table 5. 

An additional six models were convolutional neural network (CNN)‐based approaches, again 

combined (n = 2 [58,61]) or not (n = 4 [58,59,61,70]) with clinical models. The AUC values in the 

validation groups ranged from 0.75 to 0.84, and all the models benefited from the addition of 
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clinicopathologic features, particularly the model proposed by Xiong et al. [61] (the AUC improved 

from acceptable to excellent). Five out of six models had a very low adherence to TRIPOD (Table 6). 

Finally, seven models based on different combinations of radiomic features, visual qualitative 

CT features, convolutional neural network (CNN)‐based approaches, positron emission tomography 

(PET) parameters and clinicopathologic features were reported. Among these, the lowest AUC in the 

validation cohort was 0.73 [54]. The predictive model with the highest AUC in the validation set (AUC 

= 0.95) resulted from the combination of radiomic and visual qualitative CT features [68]. Two out of 

seven combined models—within the same study [58] and both resulting in an excellent performance—

were rated adherent to TRIPOD at a deficient level. The details of studies using combined models to 

predict EGFR status are reported in Table 7. 

The number of variables included in the models significantly varied (range 2–32, mean 9 ± 8 

standard deviation) regardless of the type (i.e., radiomic or visual qualitative). Moreover, the selected 

radiomics features were not listed [57,59,68] or clearly reported [58,70], resulting in an incomplete 

reporting of the model in approximately 40% of cases (7/18 radiomics‐based models and 3/7 

combined models, respectively). Conversely, all the studies evaluating the performance of visual 

qualitative image analysis (alone or combined with other types of imaging features), specified the 

features included in the models. Nonetheless, when radiomic or visual qualitative features were 

detailed, the models resulted as inconsistent among the investigations. No more than two of the 

selected features were the same in more than two models. The number and type of clinicopathological 

features were less variable (range 1–5, mean 2 ± 1 standard deviation) than the imaging features 

among analyzed investigations. Particularly, sex and smoking commonly entered in models, being 

tested for their association with EGFR status in 93% and 68% of cases, respectively. Clinical features 

most commonly associated with EGFR mutation are reported in Table 8.
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Table 3. Studies using radiomic models, alone or combined with clinical models, to predict THE EGFR status. 

Study 
N 

(% EGFR+) 

Study 

Population 

Imaging 

Modality 
Method Validation 

Main Results 

T, V 
TRIPOD 

TRIPOD Adherence Rate 70–79% 

[54] 637 (54%) Stage I–IV AC CT Radiomics Split Sample AUC = 0.71, 0.69 73% 

Selected CT r=Radiomic Features: First‐Order Features (Mean, Skewness), GLCM Features (Homogeneity, Contrast), GLRLM Features (RLNU) 

[59] 844 (56%) Stage I–IV AC CT Radiomics Split Sample AUC = 0.70, 0.64 73% 

Selected CT Radiomic Features: Not Reported 

[55] 104 (62%) Stage I–IV AC CT 
Radiomics 

Radiomics + Clinical 
Split Sample 

AUC = 0.92, 0.84 

AUC = 0.90, 0.89 
70% 

Selected CT Radiomic Features: GLCM Features (Cluster Prominence), GLDM Features (LGE, DNN), GLSZM Features (SZHGE, SZLGE), 

Wavelet Features 

Selected Clinicopathologic Features: Sex, Smoking, Vascular Infiltration, Histological Subtype 

TRIPOD Adherence Rate 60–69% 

[69] 404 (46%) 
Stage I–IV 

NSCLC 
CT Radiomics Split Sample AUC = 0.76, 0.78 67% 

Selected CT Radiomic Features: First‐Order Features (Median, Entropy), GLCM Features (Homogeneity), GLRLM Features (RLNU) 

[62] 180 (48%) 
Stage III–IV 

NSCLC 
CT 

Radiomics 

Radiomics + Clinical 
Split Sample 

AUC = 0.76, 0.77 

AUC = 0.86, 0.87 
67% 

Selected CT Radiomic Features: First‐Order Features (Range, Skewness), GLRLM Features (HGRE), Wavelet Features 

Selected Clinicopathologic Features: Sex, Smoking, Histological subtype 

[68] 80 (38%) 
Stage II–III 

NSCLC 
PET/CT Radiomics 

Cross 

Validation 
AUC = 0.83 63% 

Selected Radiomic Features: Not Reported 

[56] 467 (64%) 
Early‐Stage 

AC 
CT 

Radiomics 

Radiomics + Clinical 
Split Sample 

AUC = 0.83, 0.79 

AUC = 0.83, 0.78 
63% 

Selected CT Radiomic Features: First‐Order Features (Energy, Entropy, Total Energy, Range, Flatness, Maximum 2D Diameter Slice, Surface 

Area), First‐Order Features from LBP2D image (Major Axis, Maximum 2D Diameter Column, Maximum 2D Diameter Row, Maximum 3D 

Diameter, Sphericity), First‐Order Features from LBP3D image (90th Percentile, Variance), GLCM Features (Sum Entropy, Autocorrelation, 

Cluster Prominence), GLSZM Features (HGZE, ZSNU), GLRLM Features (RLNU, GLV, HGRE, RE, SRLGE), GLDM Features (GLNU, DE, LGE), 

Wavelet Features 

Selected Clinicopathologic Features: Age, Histologic Subtype 

[57] 503 (61%) Stage I–IV AC CT 
Radiomics 

Radiomics + Clinical 
Split Sample 

AUC = NR, 0.80 

AUC = NR, 0.83 
63% 

Selected CT Radiomic Features: Not Reported 

Selected Clinicopathologic Features: Sex, Smoking 

TRIPOD Adherence Rate 50–59% 

[64] 115 (56%) 
Stage I–IV 

AC 
PET/CT 

Radiomics 

Radiomics + Clinical 

Cross 

Validation 

AUC = 0.81 

AUC = 0.82 
57% 
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Selected PET Radiomic Features: First‐Order Features (Mean, Concavity), GLCM Features (Homogeneity, Energy, Entropy, Contrast, 

Correlation) 

Selected CT Radiomic Features: First‐Order Features (Range, Mean) 

Selected Clinicopathologic Features: Age, Sex, Smoking, Stage, Lesion Location 

[60] 51 (45%) Stage I–III AC CT Radiomics 
Cross 

Validation 
AUC = 0.83 57% 

Selected CT Radiomic Features: First‐Order Features (Entropy, Energy, Volume, Shape Index), Wavelet Features 

[70] 
579 (53%) 

37 (24%) 1 
Stage I–IV AC CT Radiomics 

Split Sample 

External 

AUC = NR, 0.65 

AUC = 0.69  
53% 

Selected CT Radiomic Features: Not Clear 

[58] 1010 (50%) 
Stage I–IV 

AC 
CT 

Radiomics 

Radiomics + Clinical 
Split Sample 

AUC = NR, 0.74 

AUC = NR, 0.76 
53% 

Selected CT Radiomic Features: Not Clear 

Selected Clinicopathologic Features: Sex, Smoking 

1 The model was developed and trained using a cohort of Asian patients and further validated selecting a cohort of 37 non‐Asian patients from a public dataset.; 

AC = adenocarcinoma; AUC = area under the curve; CT = computed tomography; DE = Dependence Entropy; DNN = Dependence Non‐Uniformity Normalized; 

GLCM = Gray Level Co‐occurrence Matrix; GLDM = Gray Level Dependence Matrix; GLRLM = Gray Level Run Length Matrix; GLSZM = Gray Level Size Zone 

Matrix; GLV = Gray Level Variance; HGRE = High Gray‐level Run Emphasis; LBP3D = three‐dimensional local binary pattern; LGE = low grey level emphasis; N = 

number of patients; NR = not reported; NGLDM = Neighborhood Grey‐Level Different Matrix; NSCLC = non‐small cell lung cancer; PET = positron emission 

tomography; SRLGE = Short‐run low gray‐level emphasis; SZHGE = Short Zone High Gray‐Level Emphasis; SZLGE = Short Zone Low Gray‐Level Emphasis; T = 

training dataset; V = validation dataset; TRIPOD = TRIPOD overall adherence rate; ZSNU = Zone‐Size Non‐Uniformity. 

Table 4. Studies using the visual qualitative CT features‐based models, alone or combined with clinical models, to predict the EGFR status. 

Study 
N 

(% EGFR+) 

Study 

Population 

Imaging 

Modality 
Method Validation 

Main Results 

T, V 
TRIPOD 

TRIPOD Adherence Rate 70–79% 

[59] 844 (56%) Stage I–IV AC CT Visual Qualitative Image Analysis Split Sample AUC = 0.76, 0.64 73% 

Selected Visual Qualitative CT Features: Pleural Attachment, Border Definition, Spiculation, Density, Air Bronchogram, Bubblelike Lucency, Enhancement 

Heterogeneity, Vascular Convergence, Thickened Adjacent Bronchovascular Bundles, Pleural Indentation, Emphysema, Peripheral Fibrosis, Lymphadenopathy, 

Size, Long‐Axis Diameter, Short‐Axis Diameter 

TRIPOD Adherence Rate 60–69% 

[55] 104 (62%) Stage I–IV AC CT 
Visual Qualitative Image Analysis + 

Clinical 
Split Sample AUC = 0.78, 0.77 67% 

Selected Visual Qualitative CT Features: Spiculation, Tumor Necrosis 

Selected Clinicopathologic Features: Sex, Age, Visceral Pleural Infiltration, Histological Subtype 

[69] 404 (46%) 
Stage I–IV 

NSCLC 
CT 

Visual Qualitative Image Analysis + 

Clinical 
Split Sample AUC = 0.69, 0.62 67% 

Selected Visual Qualitative CT Features: Density, Location 

Selected Clinicopathologic Features: Sex 
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[68] 80 (38%) 
Stage II–III 

NSCLC 
CT Visual Qualitative Image Analysis 

Cross 

Validation 
AUC = 0.73 63% 

Selected Visual Qualitative CT Features: Lobulation, Spiculation, Emphysema, Pleural Indentation 

AC = adenocarcinoma; AUC = area under the curve; CT = computed tomography; N = number of patients; NSCLC = non‐small cell lung cancer; T = training dataset; 

V = validation dataset; TRIPOD = TRIPOD overall adherence rate. 

Table 5. Visual qualitative CT features most commonly associated with EGFR mutation in the selected studies. 

Clinicopathologic Feature 
% Studies Reporting Statistically Significant 

Association 

Spiculation 75% 

Absence of Emphysema 75% 

Pleural Indentation 50% 

Subsolid Nodule 50% 

Table 6. Studies using convolutional neural network (CNN)‐based approaches, alone or combined with clinical models, to predict the EGFR status. 

Study 
N 

(% EGFR+) 

Study 

Population 

Imaging 

Modality 
Method Validation 

Main Results 

T, V 
TRIPOD 

TRIPOD Adherence Rate 70–79% 

[59] 844 (56%) Stage I–IV AC CT CNN Split Sample AUC = 0.85, 0.81 73% 

TRIPOD Adherence Rate 50–59% 

[70] 
579 (53%) 

37 (24%) 1 
Stage I–IV AC CT CNN 

Split Sample 

External 

AUC = NR, 0.76 

AUC = 0.75 
53% 

[61] 503 (61%) 
Stage I–IV 

AC 
CT 

CNN 

CNN + Clinical 
Split Sample 

AUC = NR, 0.78 

AUC = NR, 0.84 
53% 

Selected Clinicopathologic Features: Sex, Smoking 

[58] 1010 (50%) 
Stage I–IV 

AC 
CT 

CNN 

CNN + Clinical 
Split Sample 

AUC = NR, 0.81 

AUC = NR, 0.83 
53% 

Selected Clinicopathologic Features: Sex, Smoking 

1 The model was developed and trained using a cohort of Asian patients and further validated selecting a cohort of 37 non‐Asian patients from a public dataset.; 

AC = adenocarcinoma; AUC = area under the curve; CNN = convolutional neural networks; CT = computed tomography; N = number of patients; NR = not reported; 

T = training dataset; V = validation dataset; TRIPOD = TRIPOD overall adherence rate. 
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Table 7. Studies using the combined models to predict the EGFR status. 

Study 
N 

(% EGFR+) 

Study 

Population 

Imaging 

Modality 
Method Validation 

Main Results 

T, V 
TRIPOD 

TRIPOD adherence rate 70–79% 

[54] 637 (54%) 
Stage I–IV 

AC 
CT 

Radiomics + Visual Qualitative Image 

Analysis + Clinical 
Split Sample AUC = 0.76, 0.73 73% 

Selected CT Radiomic Features: First‐Order Features (Mean, Skewness), GLCM Features (Homogeneity, Contrast), GLRLM Features (RLNU)  

Selected Visual Qualitative CT Features: Emphysema 

Selected Clinicopathologic Features: Sex 

[63] 248 (54%) Stage I–IV AC PET/CT 

Radiomics + PET Parameters 

Radiomics + PET Parameters + 

Clinical 

Split Sample 
AUC = 0.79, 0.85 AUC 

= 0.86, 0.87 
70% 

Selected PET Radiomic Features: First‐Order Features (Compacity), GLCM Features (Energy), GLSZM Features (SZE, ZP) 

Selected CT Radiomic Features: First‐Order Features (Maximum, Sphericity), GLSZM Features (ZLNU), GLRLM Features (HGRE), NGLDM Features (Busyness) 

Selected PET Parameters: SUVpeak 

Selected Clinicopathologic Features: Sex, Smoking 

TRIPOD adherence rate 60–69% 

[69] 404 (46%) 
Stage I–IV 

NSCLC 
CT 

Radiomics + Visual Qualitative Image 

Analysis + Clinical 
Split Sample AUC = 0.80, 0.82 67% 

Selected CT Radiomic Features: First‐Order Features (Median, Entropy), GLCM Features (Homogeneity), GLRLM Features (RLNU) 

Selected Visual Qualitative CT Features: Long‐Axis Diameter, Location 

Selected Clinicopathologic Features: Sex 

[68] 80 (38%) 
Stage II–III 

NSCLC 
PET/CT 

Radiomics + Visual Qualitative Image 

Analysis 

Cross 

Validation 
AUC = 0.95 63% 

Selected CT Radiomic Features: Not Clear 

Selected Visual Qualitative CT Features: Lobulation, Spiculation, Emphysema, Pleural indentation 

TRIPOD adherence rate 50–59% 

[58] 1010 (50%) 
Stage I–IV 

AC 
CT 

CNN + Radiomics 

CNN + Radiomics + Clinical 
Split Sample 

AUC = NR, 0.81 

AUC = NR, 0.83 
53% 

Selected CT Radiomic Features: Not Clear 

Selected Clinicopathologic Features: Sex, Smoking 

AC = adenocarcinoma; AUC = area under the curve; CNN = convolutional neural networks; CT = computed tomography; GLCM = Gray Level Co‐occurrence Matrix; 

GLRLM = Gray Level Run Length Matrix; N = number of patients; NR = not reported; NSCLC = non‐small cell lung cancer; PET = positron emission tomography; 

SUV = standardized uptake value; SUVpeak = maximum average SUV within a 1‐cm3 spherical volume; SZE = short zone emphasis; T = training dataset; V = 

validation dataset; TRIPOD = TRIPOD overall adherence rate; ZP = zone percentage.
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Table 8. Clinicopathologic features most commonly associated to the EGFR mutation in the selected 

studies. 

Clinicopathologic Feature 
% Studies Reporting Statistically Significant 

Association 

Female Sex 90% 

Non‐Smoking Status 70% 

Notably, 38% of the investigations compared at least two types of imaging features in predicting 

the EGFR status [54,55,58,59,68–70]. As expected, the CNN‐based approaches outperformed 

radiomics‐based models [58,70]. The only study that tested radiomic versus visual qualitative versus 

CNN‐based approaches confirmed that deep learning outperformed both radiomic and CT‐features 

(AUCs of 0.81 versus 0.64 and 0.64, respectively), and it showed that radiomic analysis did not offer 

any advantage over visual qualitative analysis [59]. These data differed from those reported by Lu et 

al. [55], Jiang et al. [68] and Tu et al. [69]. They indeed showed that radiomic models performed better 

than visual qualitative CT feature‐based models [55,68,69] and that the models’ performances were 

further powered when both the approaches were combined [68,69]. 

3.3.2. Prediction of EGFR Mutation Subtypes 

One study by Zhao et al. [54] aimed at predicting the subtype of EGFR mutation, in particular 

the two most common ones (exon 19 deletion and exon 21 L858R mutation), using both a radiomics‐

based model and a combined radiomic and clinical model. The respective AUC values in the 

validation cohort were 0.71 and 0.76. The details of these models are reported in Table 9. 

Table 9. Studies using radiomic models, alone or combined with clinical models, to predict the two 

most common EGFR mutation subtypes (exon 19 deletion and exon 21 L858R mutation). 

Study 
N (exon19del: 

L858R) 

Study 

Population 

Imaging 

Modality 
Method Validation 

Main Results 

T, V 
TRIPOD 

[54] 320 (130:190) 
Stage I–IV 

AC 
CT 

Radiomics 

Radiomics + 

Clinical 

Split Sample 
AUC = 0.68, 0.71 

AUC = 0.69, 0.76 
73% 

Selected CT Radiomic Features: First‐Order Features (Mean, Skewness, Standard Deviation), GLCM Features (Homogeneity, 

Correlation, Entropy, Contrast), GLSZM Features (GLNU), GLRLM Features (LRE, SRE, RLNU) 

Selected Clinicopathologic Features: Age 

AC = adenocarcinoma; AUC = area under the curve; CT = computed tomography; exon19del = Exon 

19 deletion; L858R = Exon 21 L858R mutation; N = number of patients; T = training dataset; V = 

validation dataset; TRIPOD = TRIPOD overall adherence rate. 

3.3.3. Prediction of ALK Status and ALK/ROS1/RET Fusions 

Yamamoto et al. [71] aimed instead at predicting the ALK status using visual qualitative CT 

features combined with clinical parameters. Their predictive model had a good performance in both 

the training and the validation set (Table 10 and Supplementary Table S2). 

Another study by Yoon et al. [75] investigated the potential of the combined radiomic features, 

the PET parameters, the visual qualitative CT features, and the clinical data to differentiate the 

ALK/ROS1/RET fusion‐positive and fusion‐negative adenocarcinomas, building a model that 

resulted in 73% sensitivity and 70% specificity in the 10‐fold cross validation (Table 11). 

3.3.4. Prediction of PD‐L1 Expression Levels 

The two remaining investigations out of the 18 included studies, by contrast, focused on the PD‐

L1 expression levels prediction, as detailed in Table 12. 

Jiang et al. [77] aimed to predict both PD‐L1 expression level ≥1% and ≥50% using radiomics 

features exclusively and built a model with the highest AUC = 0.97 and 0.91, respectively, for the two 

tasks (Supplementary Table S2). Interestingly, the same combination of radiomic features was 

revealed to be able to predict both the PD‐L1 expression level ≥1% and ≥50%. 
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On the other hand, Yoon et al. [76] aimed to predict only the PD‐L1 expression level ≥50% using 

a radiomics‐ and clinical features‐based model with an AUC = 0.67, applying the bootstrapping 

approach (Supplementary Table S2). 

Table 10. Studies that aim at predicting the ALK status. 

Study 
N 

(% ALK+) 

Study 

Population 

Imaging 

Modality 
Method Validation 

Main Results 

(T) (V) 
TRIPOD 

[71] 172 (27%) 
Stage I–IV 

NSCLC 
CT 

Visual Qualitative 

Image Analysis + 

Clinical 

Split Sample 

SE, SP, ACC = 

86%, 77%, 81% (T) 

83%, 78%, 79% (V) 

60% 

Selected Visual Qualitative CT Features: Location, Pleural Effusion, Pleural Tail Sign 

Selected Clinicopathologic Features: Age 

ACC = accuracy; CT = computed tomography; N = number of patients; NSCLC = non‐small cell lung 

cancer; SE = sensitivity; SP = specificity; T = training dataset; V = validation dataset; TRIPOD = TRIPOD 

overall adherence rate. 

Table 11. Studies that aim at identifying the ALK/ROS1/RET fusion‐positive tumors versus the 

ALK/ROS1/RET fusion‐negative tumors. 

Study 
N (% Fusion-

Positive 

Study 

Population 
Imaging Modality Method Validation 

Main Results 

(T) (V) 
TRIPOD 

[75] 537 (16%) 
Stage I–IV 

AC 
PET/CT 

Radiomics + PET 

Parameters + Visual 

Qualitative Image 

Analysis + Clinical 

Cross Validation 
SE, SP, = NR (T) 

73%, 70% (V) 
60% 

Selected CT Radiomic Features: First‐Order Features (Kurtosis), GLCM Features (Inverse Variance) 

Selected PET parameters: SUVmax 

Selected Visual Qualitative CT Features: Density, Mass 

Selected Clinicopathologic Features: Age, Stage 

AC = adenocarcinoma; CT = computed tomography; N = number of patients; PET = positron emission 

tomography; SE = sensitivity; SP = specificity; SUV = standardized uptake value; T = training dataset; 

V = validation dataset; TRIPOD = TRIPOD overall adherence rate.Table 12. Studies using radiomic 

models, alone or combined with clinical models, to predict the PD‐L1 expression levels. 

Study 
N (% PD-L1 ≥1% 

/≥50%) 

Study 

Population 

Imaging 

Modality 
Method 

Validatio

n 

Main Results 

T, V 
TRIPOD 

Prediction of PD-L1 expression level ≥1% 

[77] 1 399 (66%) 
Stage I–IV 

NSCLC 
PET/CT Radiomics 

Split 
Sample 

AUC = NR, 0.86  

AUC = NR, 0.97 
53% 

Selected PET Radiomic Features: First‐Order Features (Maximum 2D Diameter Slice, Interquartile Range), Wavelet Features 

Selected CT Radiomic Features: First‐Order Features (Maximum), First‐Order Features from LBP3D Image (10th Percentile), 

GLRLM Features (RLNU), Wavelet Features 

Prediction of PD-L1 expression level ≥50% 

[76] 153 (35%) 
Stage IIIb–IV 

AC 
CT 

Radiomics + 

Clinical 

Bootstrap

ping 

Validation 

AUC = 0.67, 0.67 73% 

Selected CT Radiomic Features: GLCM Features (Energy), GLRLM Features (RV, RE, SRHGE) 

Selected Clinicopathologic Features: Age, Sex, Smoking, EGFR status 

[77] 1 399 (21%) 
Stage I‐IV 

NSCLC 
PET/CT Radiomics 

Split 
Sample 

AUC = NR, 

0.910 

AUC = NR, 

0.770 

53% 

Selected PET Radiomic Features: First‐Order Features (Maximum 2D Diameter Slice, Interquartile Range), Wavelet Features 

Selected CT Radiomic Features: First‐Order Features (Maximum), First‐Order Features from LBP3D Image (10th Percentile), 

GLRLM Features (RLNU), Wavelet Features 

1 Two different PD‐L1 test kits were used to measure the PD‐L1 expression level in this study and the 

patients were divided into two groups taking into account this aspect; a common model was created 

and validated on the two cohorts separately. AC = adenocarcinoma; CT = computed tomography; N 

= number of patients; NR = not reported; NSCLC = non‐small cell lung cancer; PET = positron emission 

tomography; RE = run entropy; RV =  run variance; SRHGE = short‐run high gray‐level emphasis; T = 

training dataset; V = validation dataset; TRIPOD = TRIPOD overall adherence rate. 
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4. Discussion 

The present systematic review evaluated the results, the overall quality, the standard of 

reporting, and advancement towards the clinical practice of the investigations aimed at evaluating 

imaging‐derived biomarkers to predict genetic alterations and immunotherapy targets in NSCLC. 

Other systematic reviews have been published on radiogenomics in lung tumors [78–80]. However, 

to the best of our knowledge, this is the first that includes radiogenomics, conventional analysis 

(visual qualitative CT analysis and PET parameters), and AI‐based approaches, assessing the 

predictive ability of imaging‐derived biomarkers in terms of their reliability, robustness and clinical 

implementability. 

CT and PET imaging‐derived radiomic features, CNN‐based approaches, PET parameters, and 

visual qualitative CT features were tested for the prediction of actionable mutations. Most of the 

published studies were focused on EGFR alterations, which are the most commonly encountered 

actionable mutations in clinical practice, being present in 40–50% and 10–20% of NSCLC patients of 

Asian and non‐Asian ethnicity, respectively [33,81,82]. The imaging‐based predictive models were 

able to predict EGFR status, with performances ranging from poor (AUC = 0.6 to 0.7, n = 5) to 

acceptable (AUC = 0.7 to 0.8, n = 11), excellent (AUC = 0.8 to 0.9, n = 18), and outstanding (AUC > 0.90, 

n = 1) in the validation set. However, as mentioned previously, the AUC of a model is not itself 

informative, since many other significant items, each contributing for a predetermined rate, account 

for the reliability of a study. Positive outcomes were also reported for the prediction of other 

molecular alterations, including ALK rearrangement and ALK/ROS1/RET fusions. However, very 

few studies have been published with this aim, and more advanced image analyses are thus needed 

to confirm these preliminary results. The majority of models (67%) were validated using an 

independent set of patients through the split‐sample approach. The geographic validation was done 

in only one case (5%). However, the latter should be preferred. Benefitting from technical variability 

aspects, it measures better the model’s performance and provides a proof of generalizability [52,83]. 

Cross‐validation was the most frequent method used in the case of internal validation (4/5 models). 

Given the models’ performance, it is evident that advanced image analysis techniques as 

radiomics and AI are the most promising methods in the field of tumor phenotyping. 

Targeted therapies are offered to patients with advanced/metastatic NSCLC. All the included 

papers but the one by Yamamoto et al. [71] reported results of molecular alterations regardless of the 

stage of the disease (i.e., including patients with early disease stage and/or without stratification 

according to stage). This is to some extent consistent with the common practice. Indeed, targeted 

therapy indication can be based on the detection of molecular alterations tested on the surgical 

specimens obtained at primary surgery or diagnostic biopsy. This practice relies on the assumption 

that no or minor molecular variations occur between primary tumor and recurrence, and therefore 

between early and advanced stages. Nonetheless, future investigations should take into account the 

molecular alteration landscape at different stages of the disease. 

The predictive potential of PET parameters and visual qualitative features was investigated. 

Zhang et al. [63] found that a lower peak standardized uptake value (SUVpeak) was associated with 

EGFR mutations, while spiculation, the absence of emphysema, pleural indentation and the subsolid 

nodule were the semantic CT features most commonly associated with EGFR mutations. However, 

there are no standardized definitions for visual qualitative features, and this may affect the 

reproducibility of results. Radiomics provides objective, repeatable and quantitative assessments. On 

the other hand, the possibility of analyzing images with “intelligent” methods (e.g., unsupervised), 

and the development of strategies to address the “black‐box” and accountability issues [35] make 

CNN‐based approaches even more attractive in the field of medical imaging. 

Reported results suggest that combining different methods for image biomarker extraction may 

help to improve the predictive performances of the models and be a winning strategy towards their 

implementation into clinical practice. Particularly useful were the combinations of (1) CT and PET 

radiomic features and PET parameters; (2) CT radiomic features and visual qualitative CT features; 

and (3) CT radiomic features and CNN‐based approaches. The potential of combined models, 

therefore, needs to be investigated further with future studies. Moreover, the importance of adding 
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clinical features to improve the performance of imaging‐based predictive models must be underlined. 

For example, most of the included studies reported a statistically significant association of the female 

sex and non‐smoking status with EGFR mutation. These findings were consistent with large‐scale 

molecular epidemiological investigations that were done in patients affected by NSCLC [82,84]. 

Nonetheless, we did not find common, reliable radiomic features among the studies. This finding 

may be related to the different tools applied for feature calculation and different approaches to data 

analysis. 

Coming to biomarkers of immunotherapy response, two studies among the selected ones 

successfully predicted PD‐L1 expression level using radiomic features, alone or together with 

clinicopathologic characteristics [76,77]. However, the reliability of PD‐L1 expression as a biomarker 

is a matter of current debate [85] and this will have to be taken into account for future imaging studies. 

PD‐L1 expression is indeed dynamic and variable, and this depends on many different factors, 

both tumor‐dependent (heterogeneity of PD‐L1 expression within and between tumor lesions, PD‐

L1 expression by various cell types in the tumor microenvironment) and immunohistochemistry 

assays‐dependent (different antibodies used to detect PD‐L1, variable cut‐offs to define a PD‐L1 test 

result as positive) [86,87]. Even if PD‐L1 expression is associated with an increased likelihood of 

response to immunotherapy, there are cases of non‐responsive PD‐L1 positive tumors and responsive 

PD‐L1 negative tumors [87]. Accordingly, the potential of other biomarkers is being explored and 

imaging studies will have to adapt to possible future changes in biomarker testing for 

immunotherapy in NSCLC. 

According to our assessment, the quality of the studies resulted unsatisfactory and the reporting 

was incomplete. Therefore, the proposed models are to be considered immature for clinical 

implementation. 

QUADAS is a tool developed to assess the quality of diagnostic accuracy investigations [88]. We 

found that 25% of the selected studies did not reach the score for “high‐quality papers” (QUADAS‐2 

> 4/7), being affected by high/unclear risk of bias, most commonly in the “patient selection” and 

“index test” categories. 

We further assessed the quality of the studies evaluating the TRIPOD adherence rate for each 

model built to predict genetic alterations and immunotherapy targets. The exhaustive and careful 

reporting of model development is mandatory to evaluate their effectiveness and strength critically, 

to allow the independent replication of the results, to appreciate the clinical relevance and finally to 

implement these models in daily practice [49,89]. Overall, as emerged from the adherence rates to the 

TRIPOD, the quality of the reporting of radiomics and AI studies is still not optimal for their 

introduction into clinical practice. The mean TRIPOD adherence rate was 62.9%, being higher than 

50% in just over half (n = 10) of the 18 “high‐quality papers”. Our findings largely confirmed those 

reported by Park et al. [49] in assessing the quality of the reporting of radiomics studies in oncology. 

We found a lower overall variability in the adherence rate to TRIPOD than the one they reported 

(range 53–73% versus 33–78%), but the means are comparable (62.9% versus 57.8%). The 

discrepancies between our findings and those previously reported are most likely related to the 

selection in our analysis of “high‐quality papers” focused on such a specific topic. Moreover, the 

application of a radiomics‐adapted TRIPOD statement to CNN‐based approaches could influence the 

final results. Nonetheless, the proper use of artificial intelligence approaches in healthcare is 

mandatory. Similarly, to “classical” approaches, the high standards for model development, training, 

and testing are recommended, being essential requirements for the reliability and interpretability of 

the results. Accordingly, the quality assessment of AI studies should be ensured [90]. It should be 

acknowledged that some items of the TRIPOD checklist are unfit for AI investigations (as for 

radiomics [49]), and they should be somehow adapted or ignored. Indeed, an initiative to develop an 

“ad hoc” TRIPOD statement has been proposed [91]. However, we experienced that the majority of 

the TRIPOD’s domains already adapted for radiomics might be easily and successfully addressed, 

making AI studies more interpretable, transparent, reproducible and informative. 

Many efforts have been made to standardize methodologies in advanced image analysis studies 

and to increase the reproducibility and generalizability of the obtained results [92]. Strict adherence 



Diagnostics 2020, 10, 359 17 of 23 

 

to existing guidelines and prospective studies with the multicenter validation of predictive models are 

believed to be the prerequisites towards their clinical acceptance [37,52]. 

Additionally, to prove the reproducibility, robustness and reusability of the research results, 

data sharing should be embraced by the authors according to the four foundational principles—

findability, accessibility, interoperability and reusability (FAIR). All components of the research 

process must be made FAIR, which is nowadays possible thanks to the emergence of numerous data 

repositories [93]. Data and methods sharing will contribute to extracting maximum benefits from 

research investments and help the radiomic, radiogenomic and AI fields to gain reputation. 

Moreover, the trial phase assignment, which was done by applying a transfer learning strategy 

from the drug development process to imaging‐derived biomarkers studies [52], failed in identifying 

the most promising models. Overall, the “high‐quality papers” were rated as phases I or II, proving 

an immaturity of the investigations and suggesting that no preferred model can be recommended for 

future investigations. 

Another strategy towards the non‐invasive detection of predictive biomarkers in NSCLC is 

represented by liquid biopsy, which is a diagnostic tool that uses body fluids for biological testing. 

In the case of advanced NSCLC, the most promising type of liquid biopsy method is based on the 

isolation of circulating tumor DNA (ctDNA) from plasma samples [94]. Liquid biopsy has multiple 

advantages over traditional pathological testing, including relatively low costs, the potential to assess 

tumor heterogeneity, non‐invasiveness and repeatability [95]. It is successfully used to guide treatment 

decisions in patients with actionable mutations [96–98]. The analysis of ctDNA is currently 

recommended at the time of diagnosis, particularly when cytological or tissue biopsy specimens are 

not adequate or cannot be obtained. However, liquid biopsy is still far from replacing tissue sampling. 

This consideration is mainly due to the risk of false‐negative results. Indeed, the improvement of the 

analytic methods is necessary to increase sensitivity [99]. At present, there is no indication suggesting 

to perform liquid biopsy on select patients for immunotherapy, even if it is expected to be a promising 

method in this setting [100]. 

Our systematic review presents some limitations that should be acknowledged. Firstly, it was not 

registered in PROSPERO as recommended in the PRISMA statement; nonetheless, PROSPERO has 

recently changed rules for registration, accepting only reviews provided that data extraction has not 

started yet. Secondly, we did not search for potentially relevant papers in the EMBASE and in the 

CENTRAL database, as instead recommended by the Cochrane Handbook for Systematic Reviews of 

Interventions [101]. However, both EMABSE and CENTRAL are focused on drug development 

research, being designed to support information managers/pharmacovigilance and to register 

controlled trials, respectively. Conversely, papers focused on imaging are expected to be included in 

PubMed/MEDLINE. The other mandatory sources for additional paper searching according to the 

Cochrane Handbook for Systematic Reviews of Interventions (i.e., reference lists and 

ClinicalTrials.gov) were checked. 

5. Conclusions 

Image‐based prediction models are not expected to replace traditional molecular pathology 

testing shortly. Further prospective studies with strict adherence to existing guidelines and 

multicenter validation need to be performed. The role of image‐derived biomarkers could be relevant 

when invasive procedures are contraindicated, or in case biological samples are inadequate for 

molecular testing. The complementary and possibly synergistic combination of imaging and liquid 

biopsy could be the key to providing an attractive diagnostic alternative to traditional molecular 

pathology profiling in the landscape of personalized NSCLC treatment. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Search strategy; Figure 

S1: Flow chart of the literature selection process; Figure S2: QUADAS‐2 tool for quality assessment of each 

included study; Table S1: Details of molecular genetic alterations or PD‐L1 expression stratified according to the 

stage (early versus advanced) in the “high‐quality” papers; Table S2: Summary of the study reporting AUC and 

95% confidence interval to predict genetic alterations and immunotherapy targets. 
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