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Abstract: Blood culture is frequently used to detect bacteremia in febrile children. However, a high rate
of negative or false-positive blood culture results is common at the pediatric emergency department
(PED). The aim of this study was to use machine learning to build a model that could predict
bacteremia in febrile children. We conducted a retrospective case-control study of febrile children who
presented to the PED from 2008 to 2015. We adopted machine learning methods and cost-sensitive
learning to establish a predictive model of bacteremia. We enrolled 16,967 febrile children with blood
culture tests during the eight-year study period. Only 146 febrile children had true bacteremia, and
more than 99% of febrile children had a contaminant or negative blood culture result. The maximum
area under the curve of logistic regression and support vector machines to predict bacteremia were
0.768 and 0.832, respectively. Using the predictive model, we can categorize febrile children by risk
value into five classes. Class 5 had the highest probability of having bacteremia, while class 1 had no
risk. Obtaining blood cultures in febrile children at the PED rarely identifies a causative pathogen.
Prediction models can help physicians determine whether patients have bacteremia and may reduce
unnecessary expenses.

Keywords: machine learning; predict; bacteremia; children; emergency department

1. Introduction

Fever is one of the most frequent reasons for visits to the Pediatric Emergency Department
(PED) [1,2], and estimates say that up to 10% to 25% of cases with febrile illness had bacterial
infection [3,4]. Determining the appropriate method for evaluating febrile children remains a challenge,
especially due to fears regarding occult bacteremia in febrile children who appear well without an
obvious infection focus [5]. Bacteremia is a severe bacterial infection that can be detected by a blood
culture, one of the most frequently ordered microbiological tests in the PED [6]. Blood cultures
remain the gold standard test for detecting patients with bacteremia. Isolating the organism from the
blood can confirm a diagnosis, which helps physicians identify the cause of the infection and then
administer the appropriate antimicrobial agents. Upon receiving a blood culture result, physicians
must decide whether the organism represents a clinically significant infection [6–8]. However, seeing
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a high rate of negative, false-positive, or contaminated blood cultures is quite common in children
visiting the PED [9]. All of the above conditions result in the unnecessary use of healthcare resources
and costs, including additional invasive testing, the inappropriate use of antibiotics, prolonged hospital
admission, and parental anxiety [10–13].

Over the past few decades, several algorithms have been developed to identify children at a higher
risk of severe bacterial illness [3,4,14]. In addition to clinical findings, some studies have suggested that
laboratory findings, such as white blood cell count (WBC), absolute neutrophil count (ANC), C-reactive
protein (CRP), and procalcitonin (PCT), may be useful in helping physicians recognize children with
severe bacterial infection [4,14–18]. Although these parameters can help pediatric clinicians identify
febrile children at high risk of severe bacterial infection, are they capable of predicting bacteremia in
febrile children? Many studies also debate the role of appropriate blood cultures in the PED. Obtaining
blood cultures is only recommended for children with extensive infections or immune-compromised
patients or for those with moderately or severely ill children, according to published guidelines and
studies [19,20].

In this study, we tried to build machine learning models to predict bacteremia in children with
fever who visit the PED. Our findings can be clinically important as they may help physicians in the
PED either order the appropriate blood culture or manage treatment depending on whether bacteremia
is predicted.

2. Materials and Methods

2.1. Study Population

Patients younger than 18 years of age who presented to the PED of the Kaohsiung Chang Gung
Memorial Hospital in Taiwan with fever during the period of January 2008 through December 2015
were evaluated. Febrile children from whom a blood test and blood culture were obtained formed our
retrospective cohort. In this cohort, each febrile child with true bacteremia was randomly matched
with 10 febrile children without bacteremia according to gender and age in order to form a case control
study. All the blood cultures were collected by nurses in accordance with our institution’s standard
procedures. Obtaining two sets of blood cultures was quite difficult in pediatric patients, so one set of
blood culture for children with fever was generally practiced in our PED. This study was approved by
the Institutional Review Board of Chang Gung Medical Foundation.

2.2. Blood Culture Criteria

The following organisms that were isolated from the blood sample represent a true pathogen:
Staphylococcus aureus, Streptococcus pneumoniae, Salmonella enterica, group A streptococci, Pseudomonas
aeruginosa, Haemophilus influenzae, Escherichia coli (E. coli), and Candida species, among others [21–24].
Certain organisms isolated from blood samples have been found to represent contamination. These
pathogens include coagulase-negative staphylococci, Staphylococcus epidermidis, Corynebacterium spp.,
Gram-positive Bacillus, Micrococcus, etc. [21–23]. In the case of any doubt related to the potential
pathogenicity of one of the isolated species, the research coordinator reviewed the case to determine
whether the corresponding blood culture was an actual infection.

2.3. Statistical Analysis

Continuous variables were expressed as mean ± standard deviation, and categorical variables
were reported as percentages. To compare clinical characteristics between children with and without
bacteremia, Student t tests and Fisher’s exact test or x2 test were used for continuous variables and
categorical variables, respectively. Univariate and multivariate binary logistic regression analyses
were used to identify the significant risk factors. A P-value less than 0.05 was considered statistically
significant. IBM SPSS statistical software for Windows, version 22.0 (Chicago, IL, USA) was used for
statistical analyses.
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2.4. Experimental Methodology

Age, gender, and laboratory values obtained from medical records were evaluated as predictive
variables by the models. For every laboratory value variable, only values obtained simultaneously with
the blood culture sample were used. In addition to gender and age, 17 laboratory values were included
in our study population. The normal reference of these values may differ in different ages or genders,
so case control study was used to eliminate these confounding factors. Due to the hugely different case
numbers in the bacteremia group and non-bacteremia group, each case with bacteremia was randomly
matched by age and gender with ten cases without bacteremia. To avoid sample selection bias, the
matching procedure was repeated 100 times for the characteristic variable analysis. The features
selected for machine learning were determined according to the 100 times of characteristic variable
analysis. The selected features were further used to establish the predictive model.

Python language, R language, and machine learning methods—logistic regression (LR) and support
vector machines (SVM) were used to establish a predictive model for bacteremia. Cost-sensitive
learning was applied to make a trade-off between false negative predictions and cost reduction to
increase the usability of the predictive model. In the dataset, 97.5% of the cases were used for training,
and 2.5% were used as testing data. A risk value of each case was calculated using the SVM or
LR predictive model. Since the dataset is generally imbalanced, cost-sensitive learning is used for
imbalanced classification. The costs of prediction errors (and potentially other costs) are considered
when training a machine learning model. We set bacteremia as positive and non-bacteremia as negative.
The amounts of positive and negative cases were quite different. Considering the confusion matrix of
inference, the costs of true positive and true negative were set to zero. That is, those cases for which
we can correctly predict the result had no cost. In this study, the false negative was more important,
which means it will cost more when we predict bacteremia as non-bacteremia. Therefore, we must
pay more attention to false negatives. If we assign the cost of false positive as 1, then we must carry
out experiments to dynamically adjust the cost of a false negative (an important parameter that can
significantly affect the performance of prediction) and find the optimal one. The optimal value is in the
range of 7~13. The risk is defined as the cost of negative (the cost of predicting a non-bacteremia
result) minus the cost of a positive (the cost of predicting a bacteremia result) (i.e., risk = negative
cost – positive cost). If cost > 0, predict bacteremia, otherwise, predict non-bacteremia. However, this
risk-based binary prediction (i.e., cost > 0 and cost < 0) does not have good performance. Instead of
predicting by plus or minus of risk value, we partition the range of risk value into a couple of segments,
such as the quartile, and we make a prediction for each segment; therefore, the performance can be
obviously improved.

3. Results

3.1. Patient Characteristics

Among a total of 266,679 children that visited the PED during the 8-year period, 16,967 febrile children
with blood culture tests were enrolled for further analysis. The mean age of the total study population was
5.16 ± 3.97 years old. Of these 16,967 children, 55.3% (n = 9388) were male. We observed three kinds of
blood culture results: bacteremia indicating true infection, contamination indicating a false-positive result,
and negative culture (no growth of wither aerobic or anaerobic pathogens). Patients were categorized
into two groups according to the blood culture results: the bacteremia group and the non-bacteremia
group (including contamination and negative results). In this study cohort, 146 (0.86%) febrile children
had true bacteremia, 405 (2.39%) children had a contaminant result, and 16,416 (96.75%) children had a
negative result. The gender, age, and laboratory tests were obtained for further analysis and compared
according to the blood culture results, as shown in Table 1. Age, percentage of neutrophil and band, ANC,
Hb, platelet, and CRP were statistically different between bacteremia and non-bacteremia encounters.
The three most common pathogens in the bacteremia group were Salmonella entericae (28/146, 19.18%),
Escherichia coli (22/146, 15.07%), and Streptococcus pneumoniae (14/146, 9.59%). The three most common
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pathogens isolated from blood culture and considered contamination were Staphylococcus epidermidis
(137/405, 33.83%), coagulase-negative staphylococcus (129/405, 31.85%), and Micrococcus (45/405, 11.11%).
The age distribution of the bacteremia group is shown in Figure 1. More than half (55.7%) of the febrile
children with bacteremia were under the age of 3 years old.

Table 1. Distribution of several variables in febrile children with or without bacteremia.

Variable Bacteremia Non-Bacteremia p-Value

Demographics N = 146 N = 16,821

Age 3.85 ± 4.50 5.17 ± 3.97 <0.001

Gender = Male 80 (54.79%) 9308 (55.34%) 0.896

Gender = Female 66 (45.21%) 7513 (44.66%)

Laboratory Values

WBC (103/µL) 12.14 ± 6.92 11.00 ± 7.33 0.062

Neutrophil (%) 56.35 ± 24.04 62.06 ± 19.67 0.005

Lymphocyte (%) 28.93 ± 19.18 26.64 ± 16.37 0.152

Band (%) 0.76 ± 1.86 0.34 ± 1.54 0.007

Monocyte (%) 7.54 ± 5.38 7.80 ± 3.98 0.561

Eosinophil (%) 0.69 ± 1.28 0.93 ± 1.57 0.067

Basophil (%) 0.22 ± 0.33 0.24 ± 0.36 0.501

ANC (103/µL) 8.57 ± 3.60 9.36 ± 2.95 0.009

Hemoglobin (g/dL) 11.68 ± 1.63 12.27 ± 1.35 <0.001

MCV (fL) 80.51 ± 7.50 79.76 ± 6.66 0.179

MCH (pg) 27.19 ± 3.02 26.95 ± 2.55 0.339

MCHC (g/L) 33.71 ± 1.38 33.75 ± 1.02 0.646

Platelet (103/µL) 279.28 ± 119.06 255.50 ± 93.04 0.017

AST (U/L) 42.88 ± 36.44 37.45 ± 39.94 0.101

ALT (U/L) 27.75 ± 28.15 22.35 ± 34.04 0.056

CRP (mg/L) 53.59 ± 68.24 36.46 ± 52.04 0.003

WBC, white blood cell; ANC, absolute neutrophil count; MCV, mean corpuscular volume; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; ALT, alanine transaminase; AST, aspartate
transaminase; CRP, C-reactive protein.
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3.2. Feature Selection and Risk Classification

After repeating the characteristic variable analysis 100 times, WBC, MCV, MCH, MCHC, Monocyte,
Eosinophil, CRP, Band percentage, Segment + Band percentage, and ANC were all positively or all
negatively correlated with bacteremia (Table 2) and their odds ratio are shown in Table 3. These 10
features were selected to establish the predictive model. Among these 10 features, significant risk
factors were also picked up for multivariate binary logistic regression analysis and their coefficients
are shown in Table 4. We used the cost-sensitive approach in machine learning to tackle the imbalance
dataset which we have collected in this study. The curves of recall (sensitivity), true-negative rate
(specificity) and AUC (area under the ROC curve) for different cost we applied are shown in Figure 2
(each point represents the average result of 100 times analyses). These three performance indexes were
considered in our study. Thus, we can choose the best cost value to balance these performance indexes.
The maximum values of different performance indexes by LR are shown in Table 5. With cost-sensitive
learning, the maximum areas under the curve (AUC) of LR and SVM to predict bacteremia were 0.768
and 0.832, respectively.

Table 2. The maximum value, minimum value, mean value, and standard deviation of logistic
regression coefficients of characteristic variables.

Variable Minimum–Maximum (Mean ± SD)

AGE −0.0092 – 0.0369 ( 0.0155 ± 0.0084 )
WBC −0.1275 – −0.0323 ( −0.0822 ± 0.0176 )
CRP 0.0020 – 0.0059 ( 0.0039 ± 0.0008 )

Hemoglobin −0.4393 – 0.3613 ( 0.0119 ± 0.1562 )
MCV −0.7722 – −0.2038 ( −0.5010 ± 0.1216 )
MCH 0.4870 – 2.1123 ( 1.4471 ± 0.3296 )

MCHC −1.7403 – −0.3591 ( −1.0818 ± 0.2826 )
Platelet −0.0002 – 0.0012 ( 0.0004 ± 0.0003 )

Lymphocyte −0.0116 – 0.0002 ( −0.0053 ± 0.0026 )
AST −0.0048 – 0.0106 ( 0.0008 ± 0.0026 )
ALT −0.0044 – 0.0129 ( 0.0032 ± 0.0033 )
RBC −1.6189 – 0.6399 ( −0.6277 ± 0.4279 )
Band 0.0003 – 0.2040 ( 0.0758 ± 0.0364 )

Monocyte −0.0715 – −0.0263 ( −0.0491 ± 0.0082 )
Eosinophil −0.2581 – −0.1520 ( −0.1999 ± 0.0215 )
Basophil −0.1549 – 0.5387 ( 0.1284 ± 0.1594 )

ANC 0.0731 – 0.2211 ( 0.1424 ± 0.0271 )
Segment+Band −0.0282 – −0.0152 ( −0.0212 ± 0.0032 )

WBC, white blood cell; ANC, absolute neutrophil count; MCV, mean corpuscular volume; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; ALT, alanine transaminase; AST, aspartate
transaminase; CRP, C-reactive protein.
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Table 3. The odds ratio of each variable and its 95%CI after repeating univariate logistic regression
100 times.

Variable. OR OR (95% CI) Number of p-Value < 0.05

AGE 1.0156 ( 0.9632 – 1.0685 ) 0

WBC 0.9212 ( 0.8239 – 1.0184 ) 6

CRP 1.0039 ( 1.0008 – 1.0069 ) 88

Hemoglobin 1.0243 ( 0.4922 – 2.3101 ) 0

MCV 0.6104 ( 0.3573 – 1.0680 ) 33

MCH 4.4778 ( 0.8719 – 21.6080 ) 36

MCHC 0.3528 ( 0.1058 – 1.2778 ) 26

Platelet 1.0004 ( 0.9985 – 1.0024 ) 0

Lymphocyte 0.9947 ( 0.9819 – 1.0080 ) 0

AST 1.0008 ( 0.9933 – 1.0071 ) 2

ALT 1.0032 ( 0.9944 – 1.0112 ) 3

RBC 0.5837 ( 0.0609 – 4.5206 ) 0

Band 1.0795 ( 0.9836 – 1.1761 ) 35

Monocyte 0.9522 ( 0.9110 – 0.9920 ) 82

Eosinophil 0.8190 ( 0.6873 – 0.9530 ) 96

Basophil 1.1514 ( 0.6484 – 1.8965 ) 0

ANC 1.1534 ( 1.0014 – 1.3394 ) 43

Segment+Band 0.9790 ( 0.9615 – 0.9972 ) 82

WBC, white blood cell; ANC, absolute neutrophil count; MCV, mean corpuscular volume; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; ALT, alanine transaminase; AST, aspartate
transaminase; CRP, C-reactive protein.

Table 4. The maximum value, minimum value, mean value, and standard deviation of multivariate
binary logistic regression coefficients of significant risk factors.

Variable minimum – maximum ( Mean ± SD )

CRP 0.0020 – 0.0088 ( 0.0045 ± 0.0010 )
MONOCYTE −0.0689 – −0.0177 ( −0.0434 ± 0.0093 )
EOSINOPHIL −0.2244 – −0.0950 ( −0.1789 ± 0.0263 )

Segment+Band −0.0346 – −0.0112 ( −0.0244 ± 0.0044 )

CRP, C-reactive protein.

Table 5. The maximum value of each performance index in our machine learning model by LR.

Performance Index Max Value

Sensitivity (recall) 0.92 (@cost = 12)
Specificity (TN rate) 0.96 (@cos = 7)
Positive likelihood ratio 1.14 (@cost = 9)
Negative likelihood ratio 1.25 (@cost = 11)
Positive predictive value 0.013(@cost = 8)
Negative predictive value 0.993 (@cost = 9)
AUC 0.768 (@cost = 10)

AUC, area under ROC curve; TN, true negative.



Diagnostics 2020, 10, 307 7 of 14

Considering the bacteremia samples in the dataset, we calculated a risk value of each sample and
their quartile ranges are shown in Figure 3. We did the same for the risk value of non-bacteremia samples
and showed its quartile range. According to the range of the minimum risk value of bacteremia −0.640)
and maximum risk value of non-bacteremia (0.644), it is divided into three categories. Further analyzing
the quartile range, bacteremia data are located between [−0.014, 0.15], while the non-bacteremia data are
located between [−0.061, 0.132]. Using the 1st quartile of bacteremia and 3rd quartile of non-bacteremia,
we can divide the range of risk value to five blocks (as shown in Figure 4). With these five classes, we
can predict class 1 as being non-bacteremia, class 2 as low risk of bacteremia, class 3 as medium risk,
class 4 as high risk, and class 5 as being bacteremia.
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3.3. Subgroup Study

Most febrile children with bacteremia were those under the age of 3 years old. Therefore, we
conducted a subgroup study that included only these younger children. Among this subgroup, 1.58%
(n = 81) febrile children had true bacteremia, 4.7% (n = 238) children had a contaminant result, and
93.8% (n = 4795) children had a negative result. Gender, age, and laboratory tests were obtained
for further analysis and compared according to the blood culture results, as shown in Table 6. Age,
percentage of band and eosinophil, hemoglobin and CRP differed statistically between bacteremia
and non-bacteremia encounters in the subgroup study. Of these young children, the most common
isolated pathogens were Salmonella entericae (26/81, 32.10%), Escherichia coli (19/81, 23.46%), and Group B
Streptococcus (6/81, 7.41%). After repeating the characteristic variable analysis 100 times, the significant
factors and their ORs are shown in Supplemental Table S1. The multivariate binary logistic regression
coefficients of significant risk factors are shown in Supplemental Table S2.

The AUC ranged between 0.616 to 0.750 for predicting bacteremia in children under the age of
3 years old in the model we developed.
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Table 6. Distribution of several variables in febrile children under the age of 3 years old with or
without bacteremia.

Variable Bacteremia Non-Bacteremia p-Value

Demographics N = 81 N = 5033

Age 0.81 ± 0.78 1.12 ± 0.73 <0.001

Gender = Male 43 (53.09%) 2812 (55.87%) 0.617

Gender = Female 38 (46.91%) 2221 (44.13%)

Laboratory Values

WBC (103/µL) 12.76 ± 6.40 11.40 ± 5.98 0.590

Neutrophil (%) 45.63 ± 21.57 48.65 ± 18.75 0.151

Lymphocyte (%) 34.58 ± 17.99 37.43 ± 17.19 0.140

Band (%) 0.87 ± 1.88 0.39 ±1.64 0.026

Monocyte (%) 8.72 ± 6.38 8.91 ± 4.36 0.797

Eosinophil (%) 0.71 ± 1.09 1.07 ± 1.53 0.004

Basophil (%) 0.24 ± 0.40 0.27 ± 0.35 0.591

ANC (103/µL) 6.98 ± 3.20 7.36 ± 2.82 0.228

Hemoglobin (g/dL) 11.20 ± 1.49 11.73 ± 1.31 <0.001

MCV (fL) 80.43 ± 8.84 79.07 ± 7.39 0.171

MCH (pg) 27.09 ± 3.25 26.63 ± 2.79 0.207

MCHC (g/L) 33.64 ± 1.05 33.64 ± 0.98 0.983

Platelet (103/µL) 296.43 ± 124.97 286.64 ± 112.58 0.438

AST (U/L) 46.43 ± 39.59 42.80 ± 38.53 0.400

ALT (U/L) 28.43 ± 25.84 25.26 ± 30.02 0.345

CRP (mg/L) 60.24 ± 71.39 31.47 ± 48.95 0.001

WBC, white blood cell; ANC, absolute neutrophil count; MCV, mean corpuscular volume; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; ALT, alanine transaminase; AST, aspartate
transaminase; CRP, C-reactive protein.

4. Discussion

The main findings of this study were as follows: (1) the bacteremia rate in febrile children that
presented to the PED was low, (2) CRP was significantly higher and hemoglobin was significantly lower
in children with bacteremia, (3) younger children (<3 years of age) with fever are more likely to have
bacteremia than older children, and (4) machine learning can help us classify the risk of bacteremia in
febrile children.

As many as 3–10% of well-appearing children under the age of 3 years old with fever without a
source were found to have an occult bacteremia in the prevaccine era. Due to the concern of bacteremia
becoming an invasive illness, many practitioners recommended routine blood tests, including blood
culture, and then antibiotic therapy based on WBC results, as part of the management strategy for
these children [3,14]. However, since the introduction of the Haemophilus influenzae type b (Hib) vaccine
in the late 1980s and the pneumococcal conjugate vaccine (PCV) in the 2000s, a dramatic decline in
bacteremia was observed as low as 0.25% to 1.43% in children [25–28]. Irwin et al. also reported an
annual reduction of 10.6% in vaccine-preventable bacteremia and found that PCV was associated
with a 49% reduction in pneumococcal bacteremia between 2001 and 2011 [29]. The Hib vaccine and
PCV were first introduced to Taiwan in 1996 and 2005 respectively. In our current study, the overall
bacteremia rate was about 0.86% in all febrile children and about 1.58% in younger febrile children
(less than 3 years) that presented to the PED. Furthermore, only <0.1% (n = 14) febrile children were
identified to have bacteremia with Streptococcus pneumoniae, and none of the blood culture results
yielded Hib. This result is in agreement with the low bacteremia rate in the post-Hib vaccine and
post-pneumococcal vaccine eras. Although adequate aseptic techniques can substantially reduce
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the risk of contaminating blood culture specimens, contamination rates of 2% to 3% are considered
acceptable [30]. The overall contamination rate was 2.39% in our study, and the isolation of contaminant
organisms from a blood culture has a significant negative impact on patient management, including
misdiagnosis, unnecessary antibiotics, performance of additional and unnecessary diagnostic tests,
additional costs, and prolonged hospital stays [11–13]. A low positive blood culture result with a high
rate of contaminant results has made physicians doubt the usefulness of blood cultures in children
with fever that visit the PED. How to reduce unnecessary blood cultures will become an important
issue for healthcare systems in the postvaccine era.

CRP is an acute-phase reactant protein synthesized by the liver in response to elevated cytokine
levels and has been studied as a sensitive marker of bacterial infection [31,32]. Many studies have
proposed that high CRP concentration may be associated with severe bacterial infection in febrile infants
and children [15,18,33–35]. In both the complete study population and the younger age subgroup (<3
years) in our study, elevated CRP concentration was significantly higher in patients with bacteremia.
Our results support the finding of high CRP levels in children with bacterial infection. Using CRP
to properly manage children with fever may help identify true bacteremia and reduce unnecessary
antibiotic therapy. Some studies have used CRP together with other parameters to predict children with
severe bacterial infection. In two recent studies, CRP with extreme leukocytosis was proposed to be
useful in predicting severe bacterial infection in children [33,34]. Buendia et al. showed that Rochester
criteria plus CRP testing was the most cost-effective strategy for detecting serious bacterial infections
in children one to three months old with fever without a source [36]. However, the Rochester criteria
is especially applied to young infants, not older infants and children. To the best of our knowledge,
no study used more than two clinical parameters together with CRP to predict bacteremia in febrile
children. We proposed a useful model for predicting bacteremia in febrile children, not only those with
CRP but also other common laboratory parameters in the PED setting.

Anemia due to disease is often seen in various inflammatory states, including acute or chronic
infections, autoimmune problems, chronic kidney disease and inflammation, and certain cancers [37].
Anemia has commonly been associated with infections that are typically seen in a pediatric primary
care setting [38]. In 2009, Ballin et al. also reported that bacteremia and pyelonephritis are
accompanied by a significant drop in hemoglobin levels without evidence of hemolytic anemia [39].
When infection occurred, the inflammatory cytokine could induce hepcidin production in the liver,
increase macrophage activation and red blood cell (RBC) destruction, and suppress erythropoiesis.
Therefore, inflammation-related anemia may result from hepcidin-induced hypoferremia combined
with the cytokine-mediated suppression of erythropoiesis and decreased lifespan of erythrocytes [40].
This phenomenon can explain the findings of lower Hb in children with bacteremia in our cohort.

Significant differences in the percentage of neutrophil, ANC, platelet and eosinophils were also
observed in our study. However, most reference intervals of pediatric hematology analytes are
age-dependent, especially WBC and its differential count [41,42]. The changes in either absolute count
or percentage of neutrophils are dynamic, particularly in the young infants and during the first years
of life. The mean percentage of neutrophils may as low as 31–33% and the mean count of neutrophils
also achieves its nadir at an age of 6 months to 2 years old [42]. Both lower percentage of neutrophils
and ANC in children with bacteremia may due to the younger age (81 of 146 cases are younger than
3 years of age) in our study population. Reactive thrombocytosis has diverse etiologies, including
inflammatory, neoplastic and infectious diseases [43]. In most patient series, acute infections represent
the most common cause of reactive thrombocytosis [44,45]. In addition to CRP induction, interleukin-6
also plays a pivotal role in thrombocytosis of inflammation [46]. In children with bacteremia, the
inflammation-associated cytokines produced primarily by WBC at inflammatory sites may further
cause the elevation of CRP level and induce reactive thrombocytosis. This can explain the finding of
higher platelet count in our bacteremia group. The pathophysiology of eosinopenia is related to the
migration of eosinophils to the inflammatory site, presumably as a result of chemotactic substances
secreted during the acute phase of inflammation [47]. A decreased number of circulating eosinophils
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is regarded as a consequence of acute bacterial infection and several studies have used eosinophil
count as an indicator of bacteremia [48–51]. Our finding supports the view of low eosinophil count in
patients with bacteremia.

Zeretzke et al. reported that the children most at risk for occult bacteremia are those younger
than 36 months of age with a fever of 39 ◦C or higher [52] due to the high probability of developing
serious bacterial infections, such as meningitis, sepsis, pneumonia, septic arthritis, osteomyelitis, and
pyelonephritis [5,14,53]. Therefore, obtaining blood cultures for febrile children with a young age is
reasonable. However, febrile children with bacteremia are mostly seen in children under the age of
3 years old with a bacteremia rate of 1.58% versus 0.55% in children more than 3 years old in our
study. In other words, these older febrile children with lower probability of bacteremia may have more
unnecessary blood cultures, which may waste medical resources. How to reduce the frequency of
blood culture in febrile children without misdiagnosis of bacteremia becomes an important issue.

The quality and cost of the healthcare being provided has become an increasing issue worldwide.
This concern has led to a focus on how we can achieve equal or better quality outcomes with fewer
health resources or less money. Segal et al. described contaminant blood cultures in 85 children
that added more than $78,000 in unnecessary charges [13]. A recent study also demonstrated a
yearly savings of ∼$250,000 in hospital charges when the blood culture contamination rate was
reduced from 3.9% to 1.6% [11]. Some guidelines for inpatient community-acquired pneumonia (CAP)
management recommend considering blood culture testing for inpatients with moderate to severe
bacterial pneumonia [19,20]. However, obtaining blood cultures in children hospitalized with CAP
rarely identifies a causative pathogen, which makes blood cultures less useful [54,55]. The high rates
of negative culture results can also represent overuse. In our current study, we have also found a high
negative culture rate and a low bacteremia rate, which indicates an overuse of blood culture and a
waste of healthcare resource in febrile children. Therefore, how to reduce the over-use of blood culture
without missing patients with dangerous bacteremia is important. With the “cost-sensitive learning”
model that we proposed with machine learning, we can identify those febrile children with no risk of
bacteremia (class 1 risk value) and avoid unnecessary blood cultures to save healthcare resources.

Blood culture remains the gold standard to diagnose bacteremia, but it is a time-consuming
diagnostic tool. After the blood sample being collected, it may take couple days to have the initially
result of Gram stain, such as Gram-positive cocci, Gram-negative bacilli, etc. Physicians may be
informed the final result of blood culture further few days later. Those features used in our prediction
model are laboratory data which can be available within one hour after blood sample being collected.
In clinical practice, we can implement a decision-making application program running over personal
computer as a decision support tool. Those variables of laboratory findings are input data, and this
tool can give a report to illustrate a risk probability of bacteremia for clinical reference. In addition, the
report will also come out with the distribution of each variable of patients in the database in a way of
data visualization for comparison. Therefore, our prediction model can be a part of clinical decision
support system to help physicians determine whether patients have risk of bacteremia and thereafter
arrange adequate medical treatment.

The results of this study should be interpreted with respect to certain limitations. First, procalcitonin
(PCT), a useful biomarker proposed for predicting bacterial infection [56], was not commonly used
in our hospital during the study periods. Therefore, PCT use was noted as a variable in our models.
Second, those febrile patients who visited out-patient departments and were hospitalized were not
included. These patients may also have bacteremia. Third, the models that we used mostly relied
on laboratory tests, and the information contained within medical notes were not used. Fourth,
some information recorded in medical notes, such as clinical symptoms, location of infection, vital
sign (heart rate, respiratory rate, blood pressure, and oxygen saturation), respiratory pattern, and
general appearance of the patient, etc. are important to help physician to determine the severity of
a febrile patient. However, these data were not available in our database to improve our prediction
model. These might have limited our model’s performance. Natural language processing techniques
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to get bacteremia-relevant information from unstructured medical notes are expected to improve the
predictive models.

5. Conclusions

Obtaining blood cultures in febrile children at the PED are definite diagnosis of bacteremia but
they rarely identify a causative pathogen. Moreover, overuse or waiting the result of blood culture has
been described in relation to a financial burden to healthcare system. Our machine learning prediction
model can be a part of clinical decision support system and help physicians determine whether patients
have risk of bacteremia and may reduce unnecessary expenses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/5/307/s1,
Table S1: The odds ratio of each variable and its 95%CI after repeating 100 times univariate logistic regression
in subgroup study, Table S2: The maximum value, minimum value, mean value, and standard deviation of
multivariate binary logistic regression coefficients of significant risk factors in subgroup study.

Author Contributions: Conceptualization, C.-M.T., C.-H.R.L. and Y.-H.H.; data curation, I.-M.C. and C.-Y.C.;
formal analysis, I.-M.C. and C.-Y.C.; funding acquisition, C.-M.T.; investigation, H.R.Y.; methodology, C.-M.T.,
C.-H.R.L; resources, C.-M.T.; software, C.-H.R.L. and H.Z.; supervision, Y.-H.H.; validation, H.Z. and I.-M.C.;
visualization, H.Z., I.-M.C. and C.-Y.C.; writing—original draft, C.-M.T., and C.-H.R.L.; writing—review & editing,
H.-R.Y. and Y.-H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the grant CMRPG8H0041 from Chang Gung Memorial Hospital,
Kaohsiung, Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nelson, D.S.; Walsh, K.; Fleisher, G.R. Spectrum and frequency of pediatric illness presenting to a general
community hospital emergency department. Pediatrics 1992, 90, 5–10. [PubMed]

2. Massin, M.M.; Montesanti, J.; Gerard, P.; Lepage, P. Spectrum and frequency of illness presenting to a
pediatric emergency department. Acta Clin. Belg. 2006, 61, 161–165. [CrossRef] [PubMed]

3. Baraff, L.J. Management of fever without source in infants and children. Ann. Emerg. Med. 2000, 36, 602–614.
[CrossRef] [PubMed]

4. Bleeker, S.E.; Moons, K.G.; Derksen-Lubsen, G.; Grobbee, D.E.; Moll, H.A. Predicting serious bacterial
infection in young children with fever without apparent source. Acta Paediatr. 2001, 90, 1226–1232. [CrossRef]

5. Bass, J.W.; Steele, R.W.; Wittler, R.R.; Weisse, M.E.; Bell, V.; Heisser, A.H.; Brien, J.H.; Fajardo, J.E.;
Wasserman, G.M.; Vincent, J.M.; et al. Antimicrobial treatment of occult bacteremia: A multicenter
cooperative study. Pediatr. Infect. Dis. J. 1993, 12, 466–473. [CrossRef]

6. Woods-Hill, C.Z.; Fackler, J.; Nelson McMillan, K.; Ascenzi, J.; Martinez, D.A.; Toerper, M.F.; Voskertchian, A.;
Colantuoni, E.; Klaus, S.A.; Levin, S.; et al. Association of a Clinical Practice Guideline with Blood Culture
Use in Critically Ill Children. JAMA Pediatr. 2017, 171, 157–164. [CrossRef]

7. Parikh, K.; Davis, A.B.; Pavuluri, P. Do we need this blood culture? Hosp. Pediatr. 2014, 4, 78–84. [CrossRef]
8. Thuler, L.C.; Jenicek, M.; Turgeon, J.P.; Rivard, M.; Lebel, P.; Lebel, M.H. Impact of a false positive blood

culture result on the management of febrile children. Pediatr. Infect. Dis. J. 1997, 16, 846–851. [CrossRef]
9. Min, H.; Park, C.S.; Kim, D.S.; Kim, K.H. Blood culture contamination in hospitalized pediatric patients: A

single institution experience. Korean J. Pediatr. 2014, 57, 178–185. [CrossRef]
10. Self, W.H.; Mickanin, J.; Grijalva, C.G.; Grant, F.H.; Henderson, M.C.; Corley, G.; Blaschke Ii, D.G.;

McNaughton, C.D.; Barrett, T.W.; Talbot, T.R.; et al. Reducing blood culture contamination in community
hospital emergency departments: A multicenter evaluation of a quality improvement intervention. Acad.
Emerg. Med. 2014, 21, 274–282. [CrossRef]

11. Hall, R.T.; Domenico, H.J.; Self, W.H.; Hain, P.D. Reducing the blood culture contamination rate in a pediatric
emergency department and subsequent cost savings. Pediatric 2013, 131, e292–e297. [CrossRef] [PubMed]

12. Gilligan, P.H. Blood culture contamination: A clinical and financial burden. Infect. Control. Hosp. Epidemiol.
2013, 34, 22–23. [CrossRef] [PubMed]

13. Segal, G.S.; Chamberlain, J.M. Resource utilization and contaminated blood cultures in children at risk for
occult bacteremia. Arch. Pediatr. Adolesc. Med. 2000, 154, 469–473. [CrossRef] [PubMed]

http://www.mdpi.com/2075-4418/10/5/307/s1
http://www.ncbi.nlm.nih.gov/pubmed/1614779
http://dx.doi.org/10.1179/acb.2006.027
http://www.ncbi.nlm.nih.gov/pubmed/17091911
http://dx.doi.org/10.1067/mem.2000.110820
http://www.ncbi.nlm.nih.gov/pubmed/11097701
http://dx.doi.org/10.1111/j.1651-2227.2001.tb01566.x
http://dx.doi.org/10.1097/00006454-199306000-00003
http://dx.doi.org/10.1001/jamapediatrics.2016.3153
http://dx.doi.org/10.1542/hpeds.2013-0053
http://dx.doi.org/10.1097/00006454-199709000-00006
http://dx.doi.org/10.3345/kjp.2014.57.4.178
http://dx.doi.org/10.1111/acem.12337
http://dx.doi.org/10.1542/peds.2012-1030
http://www.ncbi.nlm.nih.gov/pubmed/23209105
http://dx.doi.org/10.1086/668771
http://www.ncbi.nlm.nih.gov/pubmed/23221188
http://dx.doi.org/10.1001/archpedi.154.5.469
http://www.ncbi.nlm.nih.gov/pubmed/10807297


Diagnostics 2020, 10, 307 12 of 14

14. Baraff, L.J.; Bass, J.W.; Fleisher, G.R.; Klein, J.O.; McCracken, G.H., Jr.; Powell, K.R.; Schriger, D.L. Practice
guideline for the management of infants and children 0 to 36 months of age with fever without source.
Agency for Health Care Policy and Research. Ann. Emerg. Med. 1993, 22, 1198–1210. [CrossRef]

15. Pulliam, P.N.; Attia, M.W.; Cronan, K.M. C-reactive protein in febrile children 1 to 36 months of age with
clinically undetectable serious bacterial infection. Pediatric 2001, 108, 1275–1279. [CrossRef]

16. van Rossum, A.M.; Wulkan, R.W.; Oudesluys-Murphy, A.M. Procalcitonin as an early marker of infection in
neonates and children. Lancet Infect. Dis. 2004, 4, 620–630. [CrossRef]

17. Rey, C.; Los Arcos, M.; Concha, A.; Medina, A.; Prieto, S.; Martinez, P.; Prieto, B. Procalcitonin and C-reactive
protein as markers of systemic inflammatory response syndrome severity in critically ill children. Intensive
Care Med. 2007, 33, 477–484. [CrossRef]

18. Andreola, B.; Bressan, S.; Callegaro, S.; Liverani, A.; Plebani, M.; Da Dalt, L. Procalcitonin and C-reactive
protein as diagnostic markers of severe bacterial infections in febrile infants and children in the emergency
department. Pediatr. Infect. Dis. J. 2007, 26, 672–677. [CrossRef]

19. Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.;
McCracken, G.H., Jr.; Moore, M.R.; et al. The management of community-acquired pneumonia in infants
and children older than 3 months of age: Clinical practice guidelines by the Pediatric Infectious Diseases
Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [CrossRef]

20. Shah, S.S.; Dugan, M.H.; Bell, L.M.; Grundmeier, R.W.; Florin, T.A.; Hines, E.M.; Metlay, J.P. Blood cultures in
the emergency department evaluation of childhood pneumonia. Pediatr. Infect. Dis. J. 2011, 30, 475–479.
[CrossRef]

21. Weinstein, M.P.; Towns, M.L.; Quartey, S.M.; Mirrett, S.; Reimer, L.G.; Parmigiani, G.; Reller, L.B. The
clinical significance of positive blood cultures in the 1990s: A prospective comprehensive evaluation of the
microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin. Infect. Dis. Off. Publ.
Infect. Dis. Soc. Am. 1997, 24, 584–602. [CrossRef] [PubMed]

22. Weinstein, M.P. Blood culture contamination: Persisting problems and partial progress. J. Clin. Microbiol.
2003, 41, 2275–2278. [CrossRef]

23. Pavlovsky, M.; Press, J.; Peled, N.; Yagupsky, P. Blood culture contamination in pediatric patients: Young
children and young doctors. Pediatr. Infect. Dis. J. 2006, 25, 611–614. [CrossRef] [PubMed]

24. Pien, B.C.; Sundaram, P.; Raoof, N.; Costa, S.F.; Mirrett, S.; Woods, C.W.; Reller, L.B.; Weinstein, M.P. The
clinical and prognostic importance of positive blood cultures in adults. Am. J. Med. 2010, 123, 819–828.
[CrossRef] [PubMed]

25. Wilkinson, M.; Bulloch, B.; Smith, M. Prevalence of occult bacteremia in children aged 3 to 36 months
presenting to the emergency department with fever in the postpneumococcal conjugate vaccine era. Acad.
Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 2009, 16, 220–225. [CrossRef] [PubMed]

26. Gomez, B.; Hernandez-Bou, S.; Garcia-Garcia, J.J.; Mintegi, S. Bacteraemia Study Working Group from the
Infectious Diseases Working Group, S.S.O.P.E. Bacteremia in previously healthy children in emergency
departments: Clinical and microbiological characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis.
Off. Publ. Eur. Soc. Clin. Microbiol. 2015, 34, 453–460. [CrossRef]

27. Sard, B.; Bailey, M.C.; Vinci, R. An analysis of pediatric blood cultures in the postpneumococcal conjugate
vaccine era in a community hospital emergency department. Pediatr. Emerg. Care 2006, 22, 295–300.
[CrossRef]

28. Mintegi, S.; Benito, J.; Sanchez, J.; Azkunaga, B.; Iturralde, I.; Garcia, S. Predictors of occult bacteremia in
young febrile children in the era of heptavalent pneumococcal conjugated vaccine. Eur. J. Emerg. Med. Off. J.
Eur. Soc. Emerg. Med. 2009, 16, 199–205. [CrossRef]

29. Irwin, A.D.; Drew, R.J.; Marshall, P.; Nguyen, K.; Hoyle, E.; Macfarlane, K.A.; Wong, H.F.; Mekonnen, E.;
Hicks, M.; Steele, T.; et al. Etiology of childhood bacteremia and timely antibiotics administration in the
emergency department. Pediatrics 2015, 135, 635–642. [CrossRef]

30. Strand, C.L.; Wajsbort, R.R.; Sturmann, K. Effect of iodophor vs iodine tincture skin preparation on blood
culture contamination rate. JAMA 1993, 269, 1004–1006. [CrossRef]

31. Jaye, D.L.; Waites, K.B. Clinical applications of C-reactive protein in pediatrics. Pediatr. Infect. Dis. J. 1997, 16,
735–746. [CrossRef] [PubMed]

32. Du Clos, T.W. Function of C-reactive protein. Ann. Med. 2000, 32, 274–278. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0196-0644(05)80991-6
http://dx.doi.org/10.1542/peds.108.6.1275
http://dx.doi.org/10.1016/S1473-3099(04)01146-6
http://dx.doi.org/10.1007/s00134-006-0509-7
http://dx.doi.org/10.1097/INF.0b013e31806215e3
http://dx.doi.org/10.1093/cid/cir531
http://dx.doi.org/10.1097/INF.0b013e31820a5adb
http://dx.doi.org/10.1093/clind/24.4.584
http://www.ncbi.nlm.nih.gov/pubmed/9145732
http://dx.doi.org/10.1128/JCM.41.6.2275-2278.2003
http://dx.doi.org/10.1097/01.inf.0000220228.01382.88
http://www.ncbi.nlm.nih.gov/pubmed/16804431
http://dx.doi.org/10.1016/j.amjmed.2010.03.021
http://www.ncbi.nlm.nih.gov/pubmed/20800151
http://dx.doi.org/10.1111/j.1553-2712.2008.00328.x
http://www.ncbi.nlm.nih.gov/pubmed/19133844
http://dx.doi.org/10.1007/s10096-014-2247-z
http://dx.doi.org/10.1097/01.pec.0000215137.51909.16
http://dx.doi.org/10.1097/MEJ.0b013e32831cefc9
http://dx.doi.org/10.1542/peds.2014-2061
http://dx.doi.org/10.1001/jama.1993.03500080052031
http://dx.doi.org/10.1097/00006454-199708000-00003
http://www.ncbi.nlm.nih.gov/pubmed/9271034
http://dx.doi.org/10.3109/07853890009011772
http://www.ncbi.nlm.nih.gov/pubmed/10852144


Diagnostics 2020, 10, 307 13 of 14

33. Danino, D.; Rimon, A.; Scolnik, D.; Grisaru-Soen, G.; Glatstein, M. Does extreme leukocytosis predict serious
bacterial infections in infants in the post-pneumococcal vaccine era? The experience of a large, tertiary care
pediatric hospital. Pediatr. Emerg. Care 2015, 31, 391–394. [CrossRef] [PubMed]

34. Kim, J.H.; Lee, J.Y.; Cho, H.R.; Lee, J.S.; Ryu, J.M.; Lee, J. High Concentration of C-Reactive Protein Is
Associated With Serious Bacterial Infection in Previously Healthy Children Aged 3 to 36 Months With Fever
and Extreme Leukocytosis. Pediatr. Emerg. Care 2017. [CrossRef]

35. Shaoul, R.; Lahad, A.; Tamir, A.; Lanir, A.; Srugo, I. C reactive protein (CRP) as a predictor for true bacteremia
in children. Med. Sci. Monit. 2008, 14, CR255–CR261.

36. Buendia, J.A.; Sanchez-Villamil, J.P.; Urman, G. Cost-effectiveness of diagnostic strategies of severe bacterial
infection in infants with fever without a source. Biomed. Rev. Del. Inst. Nac. De Salud 2016, 36, 406–414.
[CrossRef]

37. Weiss, G.; Goodnough, L.T. Anemia of chronic disease. New Engl. J. Med. 2005, 352, 1011–1023. [CrossRef]
38. Jansson, L.T.; Kling, S.; Dallman, P.R. Anemia in children with acute infections seen in a primary care

pediatric outpatient clinic. Pediatr. Infect. Dis. 1986, 5, 424–427. [CrossRef]
39. Ballin, A.; Lotan, A.; Serour, F.; Ovental, A.; Boaz, M.; Senecky, Y.; Rief, S. Anemia of acute infection in

hospitalized children-no evidence of hemolysis. J. Pediatr. Hematol. /Oncol. 2009, 31, 750–752. [CrossRef]
40. Nemeth, E.; Ganz, T. Anemia of inflammation. Hematol. Oncol. Clin. N. Am. 2014, 28, 671–681. [CrossRef]
41. Zierk, J.; Arzideh, F.; Rechenauer, T.; Haeckel, R.; Rascher, W.; Metzler, M.; Rauh, M. Age- and sex-specific

dynamics in 22 hematologic and biochemical analytes from birth to adolescence. Clin. Chem. 2015, 61,
964–973. [CrossRef] [PubMed]

42. Lanzkowsky, P. Lanzkowsky’s Manual of Pediatric Hematology and Oncology; Elsevier: Boston, MA, USA, 2016.
43. Bleeker, J.S.; Hogan, W.J. Thrombocytosis: Diagnostic evaluation, thrombotic risk stratification, and risk-based

management strategies. Thrombosis 2011, 2011, 536062. [CrossRef] [PubMed]
44. Rose, S.R.; Petersen, N.J.; Gardner, T.J.; Hamill, R.J.; Trautner, B.W. Etiology of thrombocytosis in a general

medicine population: Analysis of 801 cases with emphasis on infectious causes. J. Clin. Med. Res. 2012, 4,
415–423. [CrossRef] [PubMed]

45. Schattner, A.; Kadi, J.; Dubin, I. Reactive thrombocytosis in acute infectious diseases: Prevalence,
characteristics and timing. Eur. J. Intern. Med. 2019, 63, 42–45. [CrossRef]

46. Zeidler, C.; Kanz, L.; Hurkuck, F.; Rittmann, K.L.; Wildfang, I.; Kadoya, T.; Mikayama, T.; Souza, L.;
Welte, K. In vivo effects of interleukin-6 on thrombopoiesis in healthy and irradiated primates. Blood 1992,
80, 2740–2745. [CrossRef]

47. Bass, D.A.; Gonwa, T.A.; Szejda, P.; Cousart, M.S.; DeChatelet, L.R.; McCall, C.E. Eosinopenia of acute
infection: Production of eosinopenia by chemotactic factors of acute inflammation. J. Clin. Invest. 1980, 65,
1265–1271. [CrossRef]

48. Lipkin, W.I. Eosinophil counts in bacteremia. Arch. Intern. Med. 1979, 139, 490–491. [CrossRef]
49. Weinberg, A.G.; Rosenfeld, C.R.; Manroe, B.L.; Browne, R. Neonatal blood cell count in health and disease. II.

Values for lymphocytes, monocytes, and eosinophils. J. Pediatr. 1985, 106, 462–466. [CrossRef]
50. Setterberg, M.J.; Newman, W.; Potti, A.; Smego, R.A., Jr. Utility of eosinophil count as predictor of bacteremia.

Clin. Infect. Dis. 2004, 38, 460–461. [CrossRef]
51. Terradas, R.; Grau, S.; Blanch, J.; Riu, M.; Saballs, P.; Castells, X.; Horcajada, J.P.; Knobel, H. Eosinophil count

and neutrophil-lymphocyte count ratio as prognostic markers in patients with bacteremia: A retrospective
cohort study. PLoS ONE 2012, 7, e42860. [CrossRef] [PubMed]

52. Zeretzke, C.M.; McIntosh, M.S.; Kalynych, C.J.; Wylie, T.; Lott, M.; Wood, D. Reduced use of occult bacteremia
blood screens by emergency medicine physicians using immunization registry for children presenting with
fever without a source. Pediatr. Emerg. Care 2012, 28, 640–645. [CrossRef] [PubMed]

53. Klein-Kremer, A.; Goldman, R.D. Return visits to the emergency department among febrile children 3 to 36
months of age. Pediatr. Emerg. Care 2011, 27, 1126–1129. [CrossRef] [PubMed]

54. Kwon, J.H.; Kim, J.H.; Lee, J.Y.; Kim, Y.J.; Sohn, C.H.; Lim, K.S.; Kim, W.Y. Low utility of blood culture
in pediatric community-acquired pneumonia: An observational study on 2705 patients admitted to the
emergency department. Medicine 2017, 96, e7028. [CrossRef] [PubMed]

http://dx.doi.org/10.1097/PEC.0000000000000454
http://www.ncbi.nlm.nih.gov/pubmed/25996230
http://dx.doi.org/10.1097/PEC.0000000000001080
http://dx.doi.org/10.7705/biomedica.v36i3.2718
http://dx.doi.org/10.1056/NEJMra041809
http://dx.doi.org/10.1097/00006454-198607000-00009
http://dx.doi.org/10.1097/MPH.0b013e3181b79696
http://dx.doi.org/10.1016/j.hoc.2014.04.005
http://dx.doi.org/10.1373/clinchem.2015.239731
http://www.ncbi.nlm.nih.gov/pubmed/25967371
http://dx.doi.org/10.1155/2011/536062
http://www.ncbi.nlm.nih.gov/pubmed/22084665
http://dx.doi.org/10.4021/jocmr1125w
http://www.ncbi.nlm.nih.gov/pubmed/23226175
http://dx.doi.org/10.1016/j.ejim.2019.02.010
http://dx.doi.org/10.1182/blood.V80.11.2740.2740
http://dx.doi.org/10.1172/JCI109789
http://dx.doi.org/10.1001/archinte.1979.03630410094035
http://dx.doi.org/10.1016/S0022-3476(85)80681-8
http://dx.doi.org/10.1086/380846
http://dx.doi.org/10.1371/journal.pone.0042860
http://www.ncbi.nlm.nih.gov/pubmed/22912753
http://dx.doi.org/10.1097/PEC.0b013e31825cfd3e
http://www.ncbi.nlm.nih.gov/pubmed/22743750
http://dx.doi.org/10.1097/PEC.0b013e31823a3e86
http://www.ncbi.nlm.nih.gov/pubmed/22134230
http://dx.doi.org/10.1097/MD.0000000000007028
http://www.ncbi.nlm.nih.gov/pubmed/28562556


Diagnostics 2020, 10, 307 14 of 14

55. McCulloh, R.J.; Koster, M.P.; Yin, D.E.; Milner, T.L.; Ralston, S.L.; Hill, V.L.; Alverson, B.K.; Biondi, E.A.
Evaluating the use of blood cultures in the management of children hospitalized for community-acquired
pneumonia. PLoS ONE 2015, 10, e0117462. [CrossRef]

56. Gendrel, D.; Bohuon, C. Procalcitonin as a marker of bacterial infection. Pediatr. Infect. Dis. J. 2000, 19,
679–687. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0117462
http://dx.doi.org/10.1097/00006454-200008000-00001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Population 
	Blood Culture Criteria 
	Statistical Analysis 
	Experimental Methodology 

	Results 
	Patient Characteristics 
	Feature Selection and Risk Classification 
	Subgroup Study 

	Discussion 
	Conclusions 
	References

