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Abstract: Male breast cancer (MBC) is a rare tumor, accounting for less than 1% of all breast cancers.
In MBC, genetic predisposition plays an important role; however, only a few studies have investigated
in depth the role of genes other than BRCA1 and BRCA2. We performed a Next-Generation Sequencing
(NGS) analysis with a panel of 94 cancer predisposition genes on germline DNA from an Italian case
series of 70 patients with MBC. Moreover, we searched for large deletions/duplications of BRCA1/2
genes through the Multiplex Ligation-dependent Probe Amplification (MLPA) technique. Through
the combination of NGS and MLPA, we identified three pathogenic variants in the BRCA1 gene and six
in the BRCA2 gene. Besides these alterations, we found six additional pathogenic/likely-pathogenic
variants in PALB2, CHEK2, ATM, RAD51C, BAP1 and EGFR genes. From our study, BRCA1 and
BRCA2 emerge as the main genes associated with MBC risk, but also other genes seem to be associated
with the disease. Indeed, some of these genes have already been implicated in female breast cancer
predisposition, but others are known to be involved in other types of cancer. Consequently, our
results suggest that novel genes could be involved in MBC susceptibility, shedding new light on their
role in cancer development.

Keywords: male breast cancer; next-generation sequencing; cancer predisposition; BRCA1/2 genes;
hereditary cancer; multigene panel testing; multiplex ligation-dependent probe amplification

1. Introduction

Breast cancer (BC) is the first tumor for incidence and mortality in women [1], but it can also
affect men. Indeed, male breast cancer (MBC) represents less than 1% of all BCs [2]. However, being a
rare and poorly known disease, it is often diagnosed at later stages with the consequence of a poor
prognosis [3].
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Similarly to female breast cancer (FBC), genetic predisposition is an important risk factor in
MBC [4,5]. BRCA1 [6] and BRCA2 [7] are the genes best known for their involvement in BC predisposition
in both females and males [8], with an MBC risk that has been estimated of 1.2% and 6.8% by the age
of 70 for carriers of variants in BRCA1 and BRCA2, respectively [9].

In recent years, thanks to the wide use of Next-Generation Sequencing (NGS), the number of
genes suspected to be involved in cancer predisposition has dramatically increased [10]. This is true
especially for cancers with a strong hereditary component such as FBC, in which several studies have
investigated the role of genes other than BRCA1/2 [11–20]. Some studies have highlighted the role of
genes such as PALB2, ATM, CHEK2, FANCM, PTEN, APC and MUTYH in MBC [21–28], thus excluding
others, such as BRIP1 and RAD51C [29–31].

Within this complex scenario, the aim of our study was the application of multigene panel testing
(MGPT) in a series of patients with MBC, in order to assess the presence of BRCA1/2 variants and
identify new genes involved in the predisposition to MBC.

2. Materials and Methods

2.1. Ethics Statement

The study was conducted in accordance with ethical standards, the Declaration of Helsinki and
national and international guidelines, and was approved by our local ethics committee (CE IRST
IRCCS-AVR, protocol 2207/2012). All the patients enrolled in the study have signed an informed
consent for the genetic analyses and for the use of the results for research purposes.

2.2. Patients’ Selection

The patients have been selected through an appropriate oncologic genetic counseling according
to the Hereditary Breast Cancer Protocol of the Emilia-Romagna region [32]. During the genetic
counseling, the personal and family history of cancer was collected and verified by our medical
geneticists. According to the FONCaM guidelines used in the protocol [33], a diagnosis of MBC at
any age is sufficient to proceed with the BRCA1/2 genetic test, regardless of family history of breast
and ovarian cancers (BC/OC). Through this procedure, we selected 70 Italian patients with a diagnosis
of MBC.

2.3. Sample Collection and DNA Extraction

Peripheral blood samples were collected from the 70 MBC patients and stored at −80 ◦C until the
genetic analyses. Genomic DNA was extracted from blood using QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany) and quantified using Qubit fluorometer and Qubit dsDNA BR Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA).

2.4. Next-Generation Sequencing (NGS)

We used 50 ng of DNA from each sample to create libraries following the Trusight Rapid Capture
protocol (Illumina, San Diego, CA, USA). Libraries were enriched for the regions of interest with the
Trusight Cancer panel (Illumina), which contains probes targeting the coding regions of 94 genes
involved in hereditary cancer (Table 1).

Libraries were sequenced on the MiSeq platform (Illumina) with MiSeq Reagent Kit v2 configured
2 × 150 cycles, according to the manufacturer’s instructions.

All deleterious variants (classes 4–5) identified in BRCA1/2 genes were confirmed through Sanger
sequencing following a custom protocol previously described [15]. The same procedure was performed
for the BRCA1/2 coding regions with a coverage < 50×. The deleterious variants identified in other
genes were confirmed through a second NGS analysis with the same kit and protocol.
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Table 1. List of the 94 cancer predisposition genes included in the Trusight Cancer panel.

Genes

AIP ALK APC ATM BAP1 BLM BMPR1A BRCA1 BRCA2 BRIP1
BUB1B CDC73 CDH1 CDK4 CDKN1C CDKN2A CEBPA CEP57 CHEK2 CYLD
DDB2 DICER1 DIS3L2 EGFR EPCAM ERCC2 ERCC3 ERCC4 ERCC5 EXT1
EXT2 EZH2 FANCA FANCB FANCC FANCD2 FANCE FANCF FANCG FANCI

FANCL FANCM FH FLCN GATA2 GPC3 HNF1A HRAS KIT MAX
MEN1 MET MLH1 MSH2 MSH6 MUTYH NBN NF1 NF2 NSD1
PALB2 PHOX2B PMS1 PMS2 PRF1 PRKAR1A PTCH1 PTEN RAD51C RAD51D

RB1 RECQL4 RET RHBDF2 RUNX1 SBDS SDHAF2 SDHB SDHC SDHD
SLX4 SMAD4 SMARCB1 STK11 SUFU TMEM127 TP53 TSC1 TSC2 VHL
WRN WT1 XPA XPC

2.5. Bioinformatics Analysis

The bioinformatics analysis of NGS results was performed with a customized pipeline described in
our previous studies [15,34]. The fastq files have been aligned with BWA software [35] to the reference
genome, version UCSC-Build37/hg19. Reads were remapped against the Trusight Cancer Panel
reference, removed from duplicates and then realigned for germline indels using GATK indelRealigner.
Finally, variants were called using Unified Genotyper of GATK software, version 3.2.2 [36]. Genomic
and functional annotations of detected variants were made by Annovar [37].

2.6. Multiplex Ligation-Dependent Probe Amplification (MLPA)

The presence of large deletions/duplications of BRCA1/2 genes, not detectable with the Trusight
protocol, was assessed by Multiplex Ligation-dependent Probe Amplification (MLPA) technique
with the P002-BRCA1 and P045-BRCA2/CHEK2 kits (MRC Holland, Amsterdam, The Netherlands).
The large BRCA1 deletion identified by MLPA was confirmed through the P087-BRCA1 confirmation
kit (MRC Holland). Coffalyser software (MRC Holland) was used for the quantitative analysis of
the electropherograms.

2.7. Variant Classification

All the genetic variants identified were divided into five classes according to the International
Agency for Research on Cancer (IARC) [38]: Benign Variant (BV-class 1), Likely-Benign Variant
(LBV-class 2), Variant of Uncertain Significance (VUS-class 3), Likely-Pathogenic Variant (LPV-class 4)
and Pathogenic Variant (PV-class 5). The process of variant classification was performed in accordance
with the guidelines of the American College of Medical Genetics (ACMG) [39].

In particular, for BRCA1/2 variants, we used different BRCA-specific databases [40–45]. The variants
of other genes were classified using comprehensive variant databases [46–48].

3. Results

3.1. Patient Characteristics

All 70 patients selected for the study had MBC between 36 and 87 years of age, with an average
age at cancer onset of 63.8 years. Among the patients, 2/70 (2.9%) had a second contralateral MBC and
16/70 (22.9%) had a second non-BC malignancy.

Regarding the histopathological classification [49], 56/70 MBCs (80.0%) were infiltrating ductal
carcinomas (IDC-8500/3), 9/70 (12.9%) were ductal carcinomas in situ (DCIS-8500/2), 3/70 (4.3%)
were infiltrating papillary carcinomas (IPC-8503/3) and 2/70 (2.9%) were papillary carcinomas in situ
(PCIS-8503/2).
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As far as it concerns the family history of cancer, 24/70 patients (34.3%) had I- and/or II-degree
relatives with BC/OC and 17/70 patients (24.3%) had I- and/or II-degree relatives with other cancers.
In particular, 3/70 patients (4.3%) had a family history of MBC among I-degree relatives.

3.2. Pathogenic and Likely-Pathogenic Variants in BRCA1/2 Genes

Since BRCA1 and BRCA2 variants are the most common alterations in BC patients, we initially
focused on these genes.

The NGS analysis allowed us to detect eight pathogenic variants (PVs) in BRCA1/2 genes.
In particular, we identified the c.4964_4982del and the c.5266dupC variants in BRCA1 gene, both
already reported [46] and classified as pathogenic [47]. In BRCA2 gene, we identified five PVs in six
patients, c.1238delT, c.1813delA, c.3195_3198delTAAT, c.5073dupA in single patients and c.6039delA
in two unrelated patients. In addition, these variants were already reported [46] and classified as
pathogenic [47].

The MLPA analysis revealed an additional PV in BRCA1 gene, a large deletion covering exons
1 and 2. However, the MLPA technique does not give information about the exact location of the
breakpoints and, consequently, the variant has been classified as c.-113-?_80+?del. This variant is
not reported in the databases, but the deletion of the transcription start site and the first two exons
certainly has a deleterious effect on the gene transcription. Moreover, large deletions involving these
two exons have been previously described as pathogenic in BC/OC patients [50–57].

Overall, we identified 9/70 patients (12.9%) with BRCA1/2 PVs (Figure 1). All the BRCA1/2
PVs identified in our cohort are reported in Figure 2 and Table 2 with the corresponding patient
characteristics. In particular, 8/9 patients had an IDC and 1/9 had a DCIS. The average age at MBC
onset was 62.5 years. Regarding the family history of cancer, 5/9 patients (55.6%) had I- and/or II-degree
relatives with BC/OC and 3/9 patients (33.3%) had I- and/or II-degree relatives with other cancers.

3.3. Pathogenic and Likely-Pathogenic Variants in other Genes

After the assessment of the BRCA1/2 mutation status of our patients, we searched for PVs and
likely-pathogenic variants (LPVs) in the other 92 genes of the panel. We detected six additional
PVs/LPVs of six different genes in 6/70 patients (8.6%) (Figure 1). In particular, we identified the
c.8319_8323dupTGTCC variant in ATM gene, the c.1110_1116delCATGCAG variant in BAP1 gene,
the c.1100delC variant in CHEK2 gene, the c.3538_3541delGAAG in the EGFR gene, the c.73A>T
variant in PALB2 gene and the c.181_182delCT in RAD51C gene. The variants in ATM, CHEK2, PALB2
and RAD51C genes were already reported [46] and classified as pathogenic [47]. On the opposite,
the variant in EGFR gene was reported only in dbSNP without classification [46] and the variant in
BAP1 gene was novel. According to the guidelines [39], we classified these two alterations as LPVs.

All the PVs/LPVs identified in genes other than BRCA1/2 are reported in Table 3 with the
corresponding patient characteristics. In particular, 5/6 patients had an IDC and 1/6 had a DCIS.
The average age at MBC onset was 55.8 years. Regarding the family history of cancer, 2/6 patients
(33.3%) had I- and/or II-degree relatives with BC/OC and 2/6 patients (33.3%) had I- and/or II-degree
relatives with other cancers.

3.4. Patients without Pathogenic and Likely-Pathogenic Variants

In the remainder of our cohort, i.e., 55 patients (78.6%), we did not find any PV/LPV neither in
BRCA1/2 genes nor in the other 92 genes of the panel (Figure 1).

All these patients had MBC with an average age at cancer onset of 64.9 years. In particular,
43/55 patients had an IDC, 7/55 had a DCIS, 3/55 had an IPC and 2/55 had a PCIS. Regarding the family
history of cancer, 17/55 patients (30.9%) had I- and/or II-degree relatives with BC/OC and 12/55 patients
(21.8%) had I- and/or II-degree relatives with other cancers.
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Figure 2. (a) Schematic representation of the BRCA1 gene (transcript NM_007294) and localization
of the three PVs identified in our cohort; (b) schematic representation of the BRCA2 gene (transcript
NM_000059) and localization of the six PVs identified in our cohort. Exons are represented with grey
boxes for non-coding exons and with blue and orange boxes for coding exons of BRCA1 and BRCA2,
respectively; the exon numbering has been reported above the exons (the traditional exon numbering
of BRCA1 gene lacks exon four that has not been represented).
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Table 2. Carriers of BRCA1/2 pathogenic and likely-pathogenic variants.

Patient ID Cancer Age at Onset Gene Chr cDNA (Transcript) Protein Variant Type IARC Class [38] dbSNP [46] ClinVar [47]

A142 IDC 55y BRCA1 17q21.31 c.-113-?_80+?del (NM_007294) p.? large deletion 5 – –
A774 IDC 69y BRCA1 17q21.31 c.4964_4982del (NM_007294) p.Ser1655Tyrfs*16 frameshift deletion 5 rs80359876 pathogenic

TR140 IDC 57y BRCA1 17q21.31 c.5266dupC (NM_007294) p.Gln1756Profs*74 frameshift duplication 5 rs80357906 pathogenic
A379 IDC 58y BRCA2 13q13.1 c.1238delT (NM_000059) p.Leu413Hisfs*17 frameshift deletion 5 rs80359271 pathogenic
A581 IDC 77y BRCA2 13q13.1 c.1813delA (NM_000059) p.Ile605Tyrfs*9 frameshift deletion 5 rs80359306 pathogenic

T096 DCIS 68y BRCA2 13q13.1 c.3195_3198delTAAT
(NM_000059) p.Asn1066Leufs*10 frameshift deletion 5 rs80359375 pathogenic

B156 IDC 64y BRCA2 13q13.1 c.5073dupA (NM_000059) p.Trp1692Metfs*3 frameshift duplication 5 rs80359479 pathogenic
A933 IDC 59y BRCA2 13q13.1 c.6039delA (NM_000059) p.Val2014Tyrfs*26 frameshift deletion 5 rs876660637 pathogenic
A98 IDC 56y BRCA2 13q13.1 c.6039delA (NM_000059) p.Val2014Tyrfs*26 frameshift deletion 5 rs876660637 pathogenic

IDC: infiltrating ductal carcinoma; DCIS: ductal carcinoma in situ; chr: chromosomal locus.

Table 3. Carriers of pathogenic and likely-pathogenic variants in genes other than BRCA1/2.

Patient ID Cancer Age at Onset Gene Chr cDNA Protein Variant Type IARC Class [38] dbSNP [46] ClinVar [47]

A841 IDC 38y ATM 11q22.3 c.8319_8323dupTGTCC
(NM_000051) p.Pro2775Leufs*33 frameshift duplication 5 rs1555135596 pathogenic

A625 IDC 65y BAP1 3p21.1 c.1110_1116delCATGCAG
(NM_004656) p.Met371Argfs*57 frameshift deletion 4 – –

A512 IDC 36y CHEK2 22q12.1 c.1100delC (NM_007194) p.Thr367Metfs*15 frameshift deletion 5 rs555607708 pathogenic

A225 DCIS 62y EGFR 7p11.2 c.3538_3541delGAAG
(NM_005228) p.Glu1180Profs*18 frameshift deletion 4 rs781064539 –

B887 IDC 75y PALB2 16p12.2 c.73A>T (NM_024675) p.Lys25* nonsense variant 5 rs1248579792 pathogenic
A334 IDC 59y RAD51C 17q22 c.181_182delCT (NM_058216) p.Leu61Alafs*11 frameshift deletion 5 rs786203945 pathogenic

IDC: infiltrating ductal carcinoma; DCIS: ductal carcinoma in situ; chr: chromosomal locus.
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4. Discussion

MBC is a rare disease but deserves attention in terms of diagnosis and treatment as clinicians
tend to follow the guidelines that have been developed for FBC management [58]. In this scenario,
the research on the risk factors associated with MBC, in particular the genetic predisposition, is a key
element in the prevention and early diagnosis of the disease.

In the present study, we performed an NGS analysis on an Italian cohort of 70 patients with MBC
with a panel of 94 genes. At the same time, we conducted an MLPA analysis on BRCA1/2 genes in
order to identify also variants that are not easily detectable by NGS.

Among 70 cases of MBC, we detected BRCA1/2 PVs in nine patients. BRCA1 and BRCA2 genes
are known since a long time for their involvement in high risk of BC, also in male variant carriers.
In particular, germline PVs/LPVs in the BRCA1 gene are associated with a 57%–65% and 1.2% risk
of developing BC in females and males, respectively, by the age of 70 [9,59–61]. In addition, BRCA1
alterations have been associated with an increased risk of colon cancer [62], prostate cancer [63] and
pancreatic cancer [64,65]. On the contrary, germline PVs/LPVs in the BRCA2 gene are associated
with a 45%–55% and 6.8% risk of developing BC for females and males, respectively, by the age of
70 [9,59–61]. In addition, BRCA2 alterations have been associated with an increased risk of prostate
cancer [66], pancreatic cancer [65,67], and uveal melanoma [68,69]. For these reasons, men with
BRCA1/2 PVs/LPVs should undergo clinical breast examination every 6–12 months, starting at the
age of 35 [70], and annual prostate cancer screening, starting at the age of 40 (in particular in BRCA2
variant carriers) [71], whereas screening for melanoma and pancreatic cancer should be evaluated on
the basis of family history [70]. Overall, we detected a 12.9% of MBC patients with BRCA1/2 alterations
with an average age at onset of 62.5 years. This result is in accordance with the findings of other
authors [24,72–74] and confirms further the high risk of BC also for male carriers, in particular BRCA2
variant carriers. As expected, the majority of these cases have a positive family history for BC/OC.
Indeed, the genetic test on the consenting relatives allowed us to detect several carriers of BRCA1/2
alterations, that have been addressed to a surveillance protocol according to the guidelines [32,33].

In addition to BRCA1/2 variants, we identified four PVs in PALB2, ATM, CHEK2 and RAD51C,
classified as moderate penetrance genes for the risk of BC and/or OC [5] and two LPVs in unexpected
genes, such as BAP1 and EGFR. The patients in which we detected PVs/LPVs in genes other than
BRCA1/2 have an average age at MBC onset (55.8 years), that is lower than the age of MBC patients
without PVs/LPVs (64.9 years) and also than the age of MBC patients with BRCA1/2 PVs (62.5 years).
This result suggests that, besides BRCA1 and BRCA2, the genetic predisposition to MBC is associated
with a plethora of genes, some of which are known to be linked to BC risk and others are novel in the
field of hereditary BC.

In particular, the PALB2 gene, encoding a protein that interacts with BRCA2 during the
homologous recombination, is the most promising gene that emerges from NGS studies on
BC/OC predisposition [15,75–77]. PALB2 alterations have also been reported recurrently in MBC
patients [23,24,27]. Regarding the penetrance, a recent study, conducted on 524 families with PALB2
variants, reported a BC risk of 53% for females and 1% for males by the age of 80 [21]. The same study
also reported an increased risk for OC and pancreatic cancer, which has been estimated at 5% and
2%–3%, respectively, by the age of 80. Our patient with the PALB2 alteration had an IDC at 75 years old
and reported a family history of cancer, with the mother deceased for BC at 60 years old. The genetic
analysis on the relatives showed that the variant is carried also by his sister, who is healthy and now
under a surveillance program for BC risk. Our result confirms further the important role of PALB2 gene
in MBC predisposition and highlights the importance of developing a surveillance protocol for male
carriers, since the current guidelines give suggestions only for the management of female carriers [70].

The CHEK2 gene encodes a tumor suppressor protein involved in DNA damage repair and its
germline alterations are associated with an increased BC risk for female carriers [78–81], which is
estimated to be 20%–44% during lifetime [82–84]. In addition to BC, CHEK2 PVs/LPVs have also been
associated with other cancers [85], including prostate [86–88], colorectal [89], and gastric cancers [90].
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In particular, the CHEK2 variant c.1100delC, detected in one of our MBC patients, is associated with
a two- to three-fold increase in BC risk in women and a ten-fold increase of risk in men [91–93].
The patient had an IDC at 36 years old and reported a family history of cancer, in particular, the father
with prostate cancer at 70 years and the paternal grandfather with non-Hodgkin lymphoma at 85 years.
Unexpectedly, the genetic test on the relatives showed that the variant was harbored by his mother
and also by his brother, who are both healthy. This result confirms the moderate penetrance of this
CHEK2 variant but, at the same time, suggests further that CHEK2 alterations are associated with BC
risk also in men.

We identified also a PV in the ATM gene, encoding a protein involved in DNA repair and
cell cycle control, whose germline alterations are associated with an increased BC risk for women,
which is estimated to be 15%–60% during lifetime [94–99]. ATM alterations have been previously
reported in MBC [100,101]; however, some studies detected no increased risk of MBC for ATM variant
carriers [24,72]. Our patient who carried the ATM variant had an IDC at 38 years and reported a
family history of cancer, in particular, the father deceased for melanoma at 65 years. The very young
age at cancer onset of our case and the recurrent detection of ATM deleterious alterations in MBC
patients suggest that the involvement of this gene in the predisposition to the disease should be further
investigated in larger case series.

We also found a PV in RAD51C gene, encoding a protein involved in homologous recombination.
Germline alterations of the RAD51C gene have been associated with an increased OC risk, whereas the
BC risk for variant carriers is controversial [102–105]. Regarding MBC, RAD51C variants were initially
excluded for the BC risk for males [31] but, more recently, a study on a large cohort of MBC patients
detected PVs in RAD51C and RAD51D genes, encoding proteins of the same complex [24]. Our patient
carrying the RAD51C alteration had an IDC at 59 years old and had a sister deceased for BC at 55 years.
Our finding reinforces a possible role of RAD51C gene alterations in BC predisposition, even in male
carriers, and confirms the rationale of including this gene in a panel for the assessment of BC risk.

Moreover, we identified the c.1110_1116delCATGCAG in the BAP1 gene, encoding a nuclear
ubiquitin carboxy-terminal hydrolase that contains binding domains for BRCA1, BARD1 and HCFC1
proteins [106]. Germline deleterious variants in the BAP1 gene are associated with the BAP1 tumor
predisposition syndrome, an autosomal dominant condition characterized by an increased risk for
atypical Spitz tumors and other types of cancer, such as uveal melanoma, malignant mesothelioma,
cutaneous melanoma, clear cell renal cell carcinoma, and basal cell carcinoma [107]. However, BAP1
germline alterations have also been reported in patients with BC and seem to be associated with an
increased risk of BC [108–112], even if further studies are needed to confirm this link. Besides this,
BAP1 somatic mutations have been identified in sporadic BCs [106,113] and the involvement of BAP1
protein in the BRCA pathway supports the role of this protein in BC development. Indeed, the variant
identified in our MBC patient is a frameshift deletion that generates a premature stop codon in the
middle of the transcript, destroying completely the BRCA1 binding domain. The patient had an IDC at
65 years, he had no family history of cancer in I- and II-degree relatives but reported a female cousin
deceased for BC before the age of 40. Although we were not able to verify the segregation of the
disease with the genetic alteration, taking into account all the above considerations, we can conclude
that BAP1 is an emerging gene in the predisposition to BC and that also male carriers seem to have an
increased BC risk.

The most unexpected result we obtained was the identification of a germline frameshift deletion in
EGFR gene, encoding the Epidermal Growth Factor Receptor. It is well known that, in cancer, somatic
mutations in EGFR lead to its constant activation with the result of an uncontrolled cell division [114].
On the opposite, germline EGFR missense variants, such as T790M, V834L and V843I, have been
associated with rare cases of familial lung adenocarcinoma [115–121]. Additionally, a germline loss of
function variant, affecting the extracellular domain of EGFR, has been described, but it was associated
with a severe and lethal form of epithelial inflammation [122,123]. The c.3538_3541delGAAG variant
in the EGFR gene, identified in one of our MBC patients, is located in the last exon, encoding the
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cytoplasmic domain with autophosphorylation function, but almost immediately after the last tyrosine
(Y1173) subjected to phosphorylation [124]. The alteration determines the incorporation of 17 wrong
amino acids, starting from position 1180, and a premature stop codon at position 1197. With the
available information, it is not easy to predict the effect of this variant on the structure and function of
the EGFR protein, but the variant has been already reported (rs781064539) [46] and is predicted to be
deleterious according to the guidelines [39,48]. Of note, the variant carrier had a DCIS at 62 years old
and also a non-Hodgkin lymphoma at 67 years old. The patient had no family history of cancer, so it
was impossible to verify the segregation of the variant with the disease in his relatives. Consequently,
further studies are needed to assess the real effect of the variant on the protein function and if it can
have a role in cancer predisposition.

Finally, we did not identify any PV/LPV in 78.6% of the MBC patients subjected to the genetic test.
This finding is compatible with the results obtained by other studies on MBC and, more in general, on
genetic predisposition to cancer. We cannot exclude the presence of genetic alterations in regulatory
regions or in other genes not analyzed in our panel. MBC, like other tumors, is a multifactorial disease
and environmental/behavioral factors play a pivotal role in cancer development. Consequently, many
of the MBC cases in which we did not find any genetic alteration could be the result of risk factors not
linked to genetic predisposition.

5. Conclusions

Overall, our results confirmed the high risk of BC also for male carriers of BRCA1/2 germline
alterations, reinforced the emerging link between MBC and other genes involved in the predisposition
to BC, and highlighted the association of novel genes with MBC.
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