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Abstract: This research is concerned with malignant pulmonary nodule detection (PND) in low-dose
CT scans. Due to its crucial role in the early diagnosis of lung cancer, PND has considerable
potential in improving the survival rate of patients. We propose a two-stage framework that exploits
the ever-growing advances in deep neural network models, and that is comprised of a semantic
segmentation stage followed by localization and classification. We employ the recently published
DeepLab model for semantic segmentation, and we show that it significantly improves the accuracy
of nodule detection compared to the classical U-Net model and its most recent variants. Using the
widely adopted Lung Nodule Analysis dataset (LUNA16), we evaluate the performance of the
semantic segmentation stage by adopting two network backbones, namely, MobileNet-V2 and
Xception. We present the impact of various model training parameters and the computational time
on the detection accuracy, featuring a 79.1% mean intersection-over-union (mIoU) and an 88.34%
dice coefficient. This represents a mIoU increase of 60% and a dice coefficient increase of 30%
compared to U-Net. The second stage involves feeding the output of the DeepLab-based semantic
segmentation to a localization-then-classification stage. The second stage is realized using Faster
RCNN and SSD, with an Inception-V2 as a backbone. On LUNA16, the two-stage framework attained
a sensitivity of 96.4%, outperforming other recent models in the literature, including deep models.
Finally, we show that adopting a transfer learning approach, particularly, the DeepLab model weights
of the first stage of the framework, to infer binary (malignant-benign) labels on the Kaggle dataset for
pulmonary nodules achieves a classification accuracy of 95.66%, which represents approximately 4%
improvement over the recent literature.

Keywords: CAD system; lung cancer; pulmonary nodules; DeepLab-V3; CNN; transfer learning; tensorflow

1. Introduction

Lung cancer remains the most prevalent cancer in the world. Because early detection can reduce
the mortality rate, high-risk individuals are being screened with low-dose CT scans. Accordingly,
automatic cancer recognition in CT scans has been a scope of high-paced research as it increases the
efficiency of diagnosis, thus saves time, cost, and lives.

Predicting lung cancer from a chest scan has relied on reducing the high-dimensional CT scan
to a few regions of interest. An example of these regions of interest is solitary pulmonary nodules
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(SPN) [1], which are usually an early indication of lung cancer. However, due to a large amount of
information in the entire scan, relying on visual inspection can result in misdiagnosis due to the small
size of the nodules and the diverse sources of human error. Although lung cancer late diagnosis
rates represent 70–80% of the patients, we can increase early diagnosis by improving the quality
of pulmonary nodule detection (PND), which enhances the chance of successful surgical treatment.
This has become attainable with the evolution of artificial intelligence and the ever-growing potential
of deep neural network (DNN) models in computer vision and medical image analysis, which is a
cornerstone for Computer-aided diagnosis (CAD) systems [2].

CAD systems have evolved from the X-ray film, which was used for early research on lung cancer.
X-ray imaging depends on each detection site’s density; therefore, it often misses small nodules and
the nodules hidden behind other body organs and blood vessels, resulting in reduced detection results.
With the continuous development of imaging technologies, low-dose CT scanning has been gradually
showing high potential. It can detect even millimeter-sized tumors, and has become one of the most
reliable techniques for identifying lung nodules in the early stages of lung cancer.

There has been an ever-growing body of research on automated detection of pulmonary nodules
in medical images. Arguably, the literature can be divided into two families of algorithms: feature
engineering-based methods and deep learning-based methods [3]. The literature of the former family
of modules features a wide variety of lung segmentation and nodule detection techniques. The impact
of different image preprocessing and postprocessing (false-positive reduction) methods was also
extensively analyzed and discussed in the literature. On the other hand, deep learning-based methods
have involved different N-D neural network structures, learning procedures, and data augmentation
methods, in addition to others [4]. One of the promising deep network models in the recent literature,
that has been adopted in various medical applications is DeepLab [5,6].

In this research, we propose a two-stage framework for automated PND in CT scans.
Particularly, we show that feeding the output of an effective semantic segmentation method to a
localization-classification stage would achieve an accuracy that is comparable, and can outperform
the state of the art techniques. In the first stage, we adopt a deep learning approach that employs the
DeepLab-V3 [7] model, which is composed of an encoder–decoder with Atrous Separable Convolution,
for the semantic segmentation of the candidate’s nodules [8]. This is combined with transfer learning [7]
to save the training time and improve efficiency. In stage two, a procedure is developed to localize the
nodules in the input images, then classify whether the localized region is a nodule or not. We compared
the proposed pipeline with the recent literature objectively, and we present very promising results
with regards to accuracy and sensitivity on the widely-adopted LUNA16 dataset. We also used the
weights of the models trained on LUNA16 to infer binary labels (malignant-benign) labels on the
Kaggle dataset for pulmonary nodules. It starts by detecting the nodules in the input images, then
classifying the images to either malignant or benign. We show that this transfer learning approach has
attained a performance that is comparable to, and provides an improvement on the recent literature.
The key contributions of this paper can be summarized as follows.

1. We propose to employ the recently published DeepLab neural network model in the semantic
segmentation of pulmonary nodules in CT scans. We show that it significantly outperforms other
existing models in terms of the attained Jaccard index and the Dice Coefficient.

2. We analyze the performance of the DeepLab model under two network backbones, namely,
Xception [9] and MobileNet-V2 [10], which suit server-side and client-side applications,
respectively. We completed performance analysis by presenting the impact of diverse model
parameters on the quality of the output segmentation. We also study the influence of
preprocessing the CT scans (notably, the initial lung segmentation) on the nodule segmentation.

3. We propose a two-stage approach for automated pulmonary nodule detection in CT scans, which
is comprised of a nodule localization and classification stage after the semantic segmentation
stage. We show that the performance of the proposed system is of comparable performance to
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state of the art, and outperforms several existing techniques. We also show that every stage in the
proposed approach contributes to the collective accuracy of the system.

4. Despite missing nodule-level labels from the kaggle dataset, we introduce a new approach for
generating such labels using transfer learning, based on the model weights that we learned
from the LUNA16 dataset. To the best of our knowledge, this is a new approach for synthesizing
missing labels for that dataset, which further empowers the researchers to compare their proposed
frameworks on datasets of diverse characteristics.

The rest of the paper is organized as follows. Related work that used deep learning methods
on different lung datasets is presented in Section 2. In Section 3, the proposed two-stage framework
for pulmonary nodule detection and malignancy classification is discussed. Experimental results are
given in Section 4, and finally, the work is concluded in Section 5.

2. Related Work

The tremendous evolution of computer hardware, especially graphics processing units (GPUs)
and multi-core processors, has stimulated high-paced advances in deep learning. Deep learning (DL)
is a subset of machine learning (ML), and it involves the construction and training of deep neural
networks (DNNs) that are capable of learning in a supervised or unsupervised manner. The success of
deep learning algorithms in diverse computer vision applications has strongly inspired its adoption in
medical images analysis. The increasing demand of medical records digitization affords many types of
scans/datasets to study.

One of the widely-adopted NNs in medical image analysis is the U-Net model, which is a
convolutional neural network that was proposed by Olaf Ronneberger et al. [11]. Initially, it was
proposed for medical image segmentation using an encoder–decoder structure in electron microscopic
stacks, and it outperformed other methods in the 2015 International Symposium on Biomedical
Imaging (ISBI) competition. Tian Lan et al. [12] proposed a RUN network to complete the detection
of the nodule in a single step by introducing a residual network shortcut to improve the traditional
U-Net. They validated their method on the LUNA16 dataset, and they achieved a sensitivity of 90.90%
at two false positives per scan and 71.9% of the dice coefficient. Mostafa Salem et al. [13] used U-Net to
synthesize lesions in MRI images. His evaluation was based on (1) measuring the similarities between
the real and the synthetic images and (2) lesion detection performance by segmenting both the original
and synthetic images using a state-of-the-art segmentation framework.

Kaiming He et al. [14] proposed the Residual network framework to ease the training of networks.
They obtained a 28% relative improvement on the COCO object detection dataset, and they won the
ImageNet Large Scale Visual Recognition Competition (ILSVR). Jin et al. [15] used the 3D-AlexNet to
classify the images of the DSB Kaggle lung CT scan. They compared the 3D-AlexNet architecture with
various input sizes and a different number of epochs. Experimental results showed an accuracy rate
of 87.5%. Huseyin et al. [16] proposed two Convolutional Neural Network (CNN)-based models to
diagnose lung cancer on CT images. They are named Straight 3D-CNN, and they adopted conventional
softmax and hybrid 3D-CNN with Radial Basis Function (RBF)-based SVM. The hybrid 3D-CNN
with SVM achieved results (91.81%, 88.53%, and 91.91% for accuracy rate, sensitivity, and precision,
respectively). Nasrullah, N. et al. [17] proposed two deep 3D networks called (CMixNet) Architectures
for lung nodule detection and classification. They used faster RCNN learned on features from CMixNet
and U-Net for Nodule detections. Classification of the nodules was performed through a gradient
boosting machine (GBM) on the learned features from the designed 3D CMixNet structure. They
evaluated their proposed system on LIDC-IDRI datasets achieving a sensitivity of (94%) and specificity
of(91%). Hwejin Jung et al. [18] introduced a method for nodule classification, which uses three
dimensional deep convolutional neural networks (3DCNNs) and checkpoint ensemble method to
discriminate nodules between non-nodules, achieving a CPM score of 0.910.

Liang-Chieh Chen et al. [19] took advantage of deep CNNs performance in image classification
and object detection, combining it with probabilistic graphical models for addressing the problem of
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semantic image segmentation. They named their system Deeplab, reaching 71.6% IOU accuracy at
the PASCAL VOC-2012 semantic image segmentation task. Followed by the authors of[20], which
highlights convolution with Atrous convolution, allowing control of the resolution of feature responses
computation within CNN explicitly. Their improvement allowed them to reach 79.7% mIOU on the
same dataset. Afterwards, they proposed improvement [21] over atrous convolution by adopting
multiple atrous rates to handle the problem of segmenting objects at multiple scales called Deeplab-v3.
Finally, they proposed DeepLab-V3 plus [7], which extends the previous version with a capable
yet simple decoder module; therefore, the experimental results improved to reach 89% without
any postprocessing.

Deeplab ability to reach outstanding results makes it rapidly spread in many applications like
with Kaijian Xia et al. [22] who proposed an improved model based on the basic framework of
DeepLab-V3, and Pix2pix network is introduced as the generation adversarial model for Liver Semantic
Segmentation. Manu Goyal et al. [23] introduced a method for ROI detection for a skin lesion using
FRCNN-Inception-V2 and SSD-Inception-V2 and they compared the performance of skin localization
methods with the state-of-the-art Deeplab segmentation method. Also, Masood, A. et al. [24] proposed
a computer-assisted decision support system based on the DFCNet model for classification of each
detected pulmonary nodule into four lung cancer stages.

3. Methods

This paper presents a two-stage system for nodule segmentation, localization, and classification.
Figure 1 depicts the stages of the proposed system. In the first stage, we employ the DeepLab-V3 plus
model for nodules semantic segmentation. Towards this goal, we examine the performance of the
following approaches. (1) By means of preprocessing, we segment the ROI, i.e., the lungs in our case,
in the slices before feeding them to the DeepLab model. This means that we narrow down the ROI
to the lungs before performing semantic segmentation to detect the nodules. (2) We feed the images
to the DeepLab model without preprocessing, i.e., blind semantic segmentation. Note that in stage 1,
only LUNA16 is used for training.

Figure 1. The block diagram of the proposed method. Stage 1 involves employing DeepLab-V3 plus
for semantic segmentation. Stage 2-a involves the localization and the classification of nodules on
LUNA16. Stage 2-b involves the detection and the classification of nodules on Kaggle’s dataset.

The flow of the second stage, though, differs depending on the adopted dataset. In stage 2-a
(in Figure 1), the segmented slices of LUNA16 are fed to the localization-classification model, which
produces binary (nodule/non-nodule) labels accordingly. However, in stage 2-b, the slices of the
Kaggle dataset are semantically segmented first, using the semantic segmentation weights learned from
LUNA16 (transfer learning), before they get passed to the localization-classification model. In stage
2-a, we applied two object localization and classification architectures, namely, FRCNN and SSD,
with Inception-V2 as the backbone. In stage 2-b, though, we compared two classification architectures,



Diagnostics 2020, 10, 131 5 of 19

namely, inception-V3 and mobileNet-V1. For both stages, 2-a and 2-b, we use data augmentation
techniques to generate a larger number of training examples to avoid overfitting.

3.1. Datasets

In our experiments, we used the following datasets.

1. Lung Nodule Analysis 2016 challenge (LUNA16) dataset https://luna16.grand-challenge.org/:
The LUNA16 dataset is acquired from the Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) database [25]. This challenge contains 888 CT scans. The data
includes the CT scans and nodules labels (list of nodule center coordinates and diameter) for
each patient. Each radiologist marks the lesions in the lung as non-nodule if the nodule is smaller
than 3 mm and as nodules if greater than or equal to 3 mm. As part of this dataset, we are only
considering nodules that are >= 3 mm and that are accepted by three out of four radiologists.
The dataset contains nodule annotations without the cancer status of patients. LUNA16 data is
used to train the Deeplab-V3 plus model for nodule detection.

2. Lung CT scan dataset from Kaggle’s Data Science Bowl (DSB) 2017 https://www.kaggle.com/
c/data-science-bowl-2017: The dataset contains 1397 labeled patient data. Each patient has CT
scan slices and a label (1 for a malignant case and 0 for benign one). The CT scan data consists
of a various number of axial slices with a size of 512 * 512 (typically from 100 to 400 slice).
Figure 2 shows sample slices for a single patient. Note that the Kaggle dataset does not have the
locations or sizes of labeled pulmonary nodules within the lung, so we are using LUNA dataset
segmentation results to obtain this missing detection information.

We utilize both datasets to train our system. A sample slice difference from one patient for both
datasets is shown in Figure 3.

Figure 2. A sample slices for a single patient of the Kaggle dataset.

(a) A slice sample of the LUNA dataset. (b) A slice sample of the Kaggle dataset.
Figure 3. A sample slice from both Kaggle and LUNA datasets, showing a cross section of a patient
chest cavity. Figure 3a shows a LUNA slice with an annotated nodule. Figure 3b shows that no
annotations are given about nodule positions or sizes for Kaggle dataset.

https://luna16.grand-challenge.org/
https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/c/data-science-bowl-2017
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3.2. Preprocessing and Lung Segmentation

We perform lung region segmentation as a preliminary phase due to the heterogeneity in the
lung region, and due to the homogeneous densities in pulmonary structures such as arteries, veins,
and bronchi as well. Under CT scanning, the lung area primarily includes air, which has a value of
approximately −1000, and that for the lung is approximately −500, in the Hounsfield unit. Table 1
demonstrates the Hounsfield scale, which supports radiologists to analyze CT scans [15,26].

Table 1. Hounsfield scale.

Substance Air Lung Fat Water Blood Soft Tissue Bone

HU −1000 −500 −100 to −50 0 +30 to +45 +100 to +300 +700 to +3000

At this stage, for the LUNA16 dataset, the image is segmented by removing the background.
The lung segmentation is a challenging issue because of the heterogeneity in lung region and
homogeneous densities in pulmonary structures such as arteries, veins, and bronchi. The thresholding
method can be applied to the lung-specific level, followed by morphological operation methods,
including 3D connected component analysis, region erosion, region dilation, and lung volume
thresholding for lung segmentation. Then, an improved image of the lung will be produced [27,28].
After these preprocessing steps, a patient’s lung volume and its associated label are in pair, ready for
training (https://github.com/booz-allen-hamilton/DSB3Tutorial).

3.3. Stage 1: Deeplab-V3 Plus for Lung Nodule Detection and Semantic Segmentation

After image preprocessing, we detect the nodules on this reduced area. The task of detecting
nodules is very challenging because the nodules can be placed either inside the lungs or on the walls,
and they are are very hard to discriminate from shadows, vessels, and ribs. First, we extract the
nodules regions from the LUNA dataset in images as a mask, as shown in Figure 4. The masks and
segmented lung images are fed into a CNN. The input to the model is a single slice, and the output
is the corresponding ground truth binary mask showing nodule locations. We are using Deeplab-V3
plus that is described in Figure 5. Google has extended DeepLab-V3 plus to include a simple decoder
module to enhance the results of segmentation, mainly along the boundaries of the object.

Figure 4. Two examples for a training pair: the input images after segmenting the parenchyma and the
ground-truth binary nodule mask.

https://github.com/booz-allen-hamilton/DSB3Tutorial
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Figure 5. Pulmonary nodule detection and segmentation framework. First, segmenting the lung
parenchyma from the raw lung CT images and then using preprocessed images to train the Deeplab-V3
plus network by employing an encoder–decoder structure. This figure was inspired by work in [7].

In this paper, we employ that extended model in a medical application, which is the lung nodule
segmentation. We briefly explain the stages of this model as follows.

1. Atrous convolution: Operates with space inside the filter that can take a large field of view,
it is adaptively modified by varying the rate value [29,30] as in Figure 6. With a case of
two-dimensional signals, atrous convolution is applied over the input feature map x as described
in Equation (1) for each location i on the feature map output y and a convolution filter w:

y[i] = ∑
k
[xi + r.k]w[k] (1)

where the atrous rate r determines the stride with the sampled input signal, standard convolution
is a particular case with r = 1.

2. Depthwise separable convolution: This process consists of two operations, a depthwise
convolution followed by point-wise convolution (i.e., 1 * 1 convolution). It drastically reduces
the computational complexity. The depthwise convolution independently realizes a spatial
convolution for each input channel, then the output from the depthwise convolution is combined
with point-specific convolution [9].

3. Encoder: This stage is important to extract the essential information from the images by
implementing a pre-trained model. The essential information for segmentation tasks is the
objects in the image and their locations. We used the following two models as the primary
feature extractor.

(a) Modified Xception-65: Xception [9] is an expansion of the Inception architecture replacing
conventional Inception modules with separable depth convolutions. We train DeepLab-V3
plus using Aligned Xception as its main feature extractor, where all the maximum pooling
operations are replaced by depthwise separable convolution with striding. After each 3 × 3
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depthwise convolution, extra batch normalization and ReLU activation are joined, and the
depth of the model is increased without changing the entry flow network structure [31,32].

(b) Mobilenet-V2: In MobileNet-V2 [10], the inverted residual structure is implemented
in narrow layers without nonlinearities. It is used as a backbone to extract features
with performance results that are accomplished for semantic segmentation and object
detection. This model is built on the concepts of MobileNet-V1 [33], using depthwise
separable convolution as efficient building blocks. It has two new features introduced
to the network: (1) linear bottlenecks between the layers and (2) shortcut connections
between the bottlenecks.

4. Decoder: The extracted information from the encoding phase is used to generate an output with
the original input image size [7], as shown in Figure 5.

Figure 6. Explanation of the Atrous Convolution with different rates indicating an enlarged field
of view.

3.4. Stage 2-a: ROI (Lung Nodule) Localization and Classification of LUNA16 Dataset

For our ROI detection, we use two models: Faster RCNN-Inception-V2 model [34] and Single
Shot Multibox Detector(SSD)-Inception-V2 model [23,35]. In general, our method consists of three
stages to produce ROIs using FRCNN-Inception-V2:

1. Feature extraction: The input is image fed to CNN to extract feature maps on the last
convolutional layer. We used Inception-V2 [36], which is built to scale up CNN to maintain a
high-performance visionary system with a modest computational cost.

2. Proposals generation: We ran the sliding window on the feature maps from the previous stage,
resulting in several proposals with different aspect ratios and the same center.

3. Classification and bounding box regression: The proposals from the previous stage are
classified by the mean of CNN and refined further to get the final ROI [37]. These stages
are depicted in Figure 7.
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Figure 7. Proposed FastrRCNN model for region-of-interest (ROI) lung nodule localization and
classification using Inception-V2 as a backbone.

The SSD Single Shot Multibox Detector [35] is a recent object localization meta-architecture
based on a bounding box regression principle. In comparison with the Faster R-CNN, it utilizes a
single-stage feedforward for predicting anchor boxes and class scores for the objects in each box.
Therefore, the anchors generated are much faster than other object localization models, making it more
acceptable to mobile platforms with reduced hardware settings than computers. Finally, each region’s
classification scores are calculated based on the score obtained in the previous step. For this model,
we propose using Inception-V2 [36] as a base network to extract features and classify anchor boxes
with all meta-architectures for the detection of ROI nodule as shown in Figure 8.

Figure 8. Proposed SSD model for ROI lung nodule localization and classification using IncepttionV2
as a backbone.

3.5. Stage 2-b: Malignancy Classifiers of Kaggle Dataset

Once we trained the Deeplap-V3 plus [7] on the LUNA16 data, we run it on 2D slices of Kaggle
dataset for nodule detection. However, as shown in Figure 9, Deeplab-V3 plus produces a strong
signal for the actual nodule but also produces a lot of false positives, which would cause problems
when training the classifier in the following stage of the pipeline.



Diagnostics 2020, 10, 131 10 of 19

(a) (b)
Figure 9. Output nodule detection: Figure 9a shows the sample input from kaggle test set to the
Deeplab model, and Figure 9b shows the Deeplab predicted output with a lot of false positives nodules.

To avoid this, we use a method that involves keeping nodule detections that were found in
regions where multiple detections were made across all slices for a single patient. We generate a
heatmap to combine the detections of the Deeplab-V3 plus from on all the slices for a single patient,
i.e., high-confidence detections. Figure 10 shows all the nodule regions detected for a patient, such that
the more reddish/bright the regions, the more detections at those pixel locations. We can see that in
various locations of the CT scan, there are false positive detections. However, only a few regions have
multiple detections, i.e., red blobs with higher intensity. The heatmap is then thresholded to keep only
the pixels that have repeated detections. The idea behind this approach is that the regions that have
multiple detections from the nodule segmentation are more likely to be actual nodules. From there,
only the slices that overlap with the thresholded heatmap nodule regions are kept. The data obtained
from these nodule detections will then be used to train a classifier to predict whether or not a person has
cancer, i.e., malignant-benign labeling (https://github.com/olinguyen/kaggle-lung-cancer-detection).
We use two convolution neural networks (CNN): the MobileNet-V1 [33] and Inception-V3 [36] models
which are designed for image recognition tasks [38].

Figure 10. Left: raw CT scan. Middle: a patient’s heatmap generated from all the slices. Right:
thresholded heat map to keep regions with multiple detections.

Inception-V3 [36] network model is a deep neural network, and it is challenging for us to train
it directly with a low configuration computer, as it takes at least a few days to train. Tensorflow [39]
provides a way to use the transfer learning to retrain the final layer of the inception for new categories.
We use the transfer learning method that decreases the time taken to train from scratch by taking
a fully trained model for a set of categories such as ImageNet and retraining for new classes from
existing weights. In our experiment, we retrained the final layer from scratch, while leaving all the rest
untouched. The number of output nodes in the last layer is equal to the number of classes in the data
set. For example, the ImageNet dataset [38] has 1000 classes, so in the original Inception-v3 model,
the last layer has 1000 output nodes. Inception-v3 is comprised of two stages: feature extraction stage

https://github.com/olinguyen/kaggle-lung-cancer-detection
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with a convolutional neural network (CNN) and Classification stage with fully-connected and softmax
layers [40].

MobileNet-V1 [33] use depth-wise separable convolutions [9]. The main difference between the
MobileNet architecture and a standard CNN’s is that instead of a single 3 × 3 convolution layer
followed by the batch norm and ReLU, MobileNets split the convolution into a 3 × 3 depthwise
conv and a 1 × 1 pointwise conv. MobileNets have two parameters that we can tune: width
multiplier and resolution multiplier. The width multiplier helps us to thin the network, whereas the
resolution multiplier adjusts the input dimensions of the image, decreasing the internal representation
at each layer.

4. Results and Discussion

Our experiments were implemented on a machine with a GeForce GTX 1080 Ti GPU (8 GB VRAM).
Tensorflow was used as the backbone in all experiments, and Python was the primary programming
language. With regards to the performance metrics, the most commonly used metrics in the literature
of segmentation and classification of medical images are show in Table 2, where TP, FP, FN, and TN
refer to the number of True Positives, False Positives, False negatives, and True Negatives, respectively.
Our quantitative analysis also employs the mAP@.50IoU and the mAP@.75IoU, which refer to the Mean
Average Precision at 50% IoU and 75% IoU, respectively.

Table 2. Quantitative performance measures.

Metric Equation

Intersection over Union (IoU) TP/(TP + FP + FN)
Dice coefficient (DCS) 2TP/(2TP + FP + FN)
Accuracy (TP + TN)/(TP + FP + TN + FN)
Specificity TN/(TN + FP)
Precision TP/(TP + FP)
Recall = Senstivity TP/(TP + FN)

To avoid overfitting, we use data augmentation techniques to generate a large number of training
scans. Typically, the training stage of convolutional neural networks requires a large number of positive
and negative samples to increase the training data and reduce the class imbalance. Accordingly, we use
the rotation and flipping both horizontally and vertically to generate more lung nodules for model
training. After augmentation, we got 3258 detected nodules from the DeepLab model and 10,000
thresholded nodules from the Kaggle dataset. Results on LUNA16 and Kaggle’s datasets are presented
in Sections 4.1 and 4.2, respectively.

4.1. Results on LUNA16

First, the images were resized to 512 × 512, and then converted to TFRecord to make the dataset
compatible with the DeepLab code. Various options regarding network models were available,
including MobileNet-V2 and Xception. Also, different hyperparameters are tunable, including the
learning rate, the weighting of foreground and background, and the weight decay. In our experiments,
the weights of the checkpoint used to segment the Pascal dataset were used as initial weights,
with 0.0001 learning rate and foreground loss weight 100 for 50 K steps. In Figure 11, we visualize the
output results on the LUNA16 validation set with segmented images (preprocessing step) in Figure 11a,
and without preprocessing in Figure 11b. The 4th row in the figure shows some examples of false
positive nodules.
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(a) (b)
Figure 11. Output results on Luna16 Val set with segmented images. Figure 11a original images without
preprocessing step, and Figure 11b preprocessed images(segmented lung input). A sample of the
segmentation prediction results and its overlay (right of image) are compared to ground truth masks.

Afterwards, to deal with the false positive nodules, we trained a Faster-RCNN Inception-V2 to
detect and classify the nodules. We used a batch size of 24 with 10,000 steps, a Momentum optimizer
value of 0.9 with step learning rate manually set to 0.0002 of the initial rate. We also trained a SSD
Inception-V2 model with a batch size of 24, 10,000 steps, a RMS optimizer with 0.95 decay factor, and a
learning rate of 0.004. We used a network that is pre-trained on the MS-COCO dataset—a 90-object
class dataset that consists of more than 80,000 images. In Figure 12, we report some examples of the
inference generated by the Faster-RCNN Inception-V2 nodule localization model.

In Table 3, we compare the performance of each trained model (Xception-65 and MobileNet-V2)
on LUNA16, combined with DeepLab-V3 plus, for the semantic segmentation stage with different
variants of the U-Net model. On the validation set, we achieved a 79.1% mIOU on the preprocessed
(parenchyma segmented) images, which represents 60% increase compared to U-Net. We have also
achieved a 88.34% Dice Coefficient, which represents a 30% increase compared to U-Net. Note that
we also experimented the performance without preprocessing the LUNA16 slices, and we attained
a 78.02% mIOU—a result that may motivate computational savings by dropping the segmentation
preprocessing step, as the gain is only 1% increase in the mIoU.
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Figure 12. Examples of the inference produced by the Faster-RCNN Inception-V2. The first column
shows TP detection as a nodule with IOU = 99%. The second column shows TP detection as a nodule
with IOU = 99% and a FP with IOU = 99%. Finally, the third column shows a FN where the model
failed to detect the nodule lesion.

Table 3. Comparing the attained Dice Coefficient and the mIoU by different variants of U-Net vs. the
proposed methods.

Network Structure Dice Coefficient mIoU

Dual-Path Residual U-Net 63.05% 46.03%
Traditional U-Net 66% 49.25%
RUN: Residual U-Net 71.9% 56.13%
Ours: DeepLab-V3+ with X-65 encoder 88.34% 79.1%
Ours: DeepLab-V3+ with MobileNet-V2 encoder 84.2% 72.7%

As mentioned in Section 3.3, Xception-65 and MobileNet-V2 [9,33] encoders are used as backbones
with DeepLab-V3 plus. As shown in Table 4, significant runtime savings and, simultaneously, significant
mIoU gains can be achieved using DeepLab-V3 plus (with Xception-65 and MobileNet-V2 encoders)
compared to U-Net. MobileNet-V2, which is a fast network structure designed for mobile phones,
takes 2.45 h per 50k steps with 72.73% mIoU, whereas the Xception model, which is a robust network
framework designed for server-side deployment, takes 3.45 h for 20k steps with 78.77% mIoU. On the
other hand, U-Net model takes 8.88 h for training only 20 epochs achieving only 49.25%. Additionally,
in Table 5, we report different output stride with the corresponding mIoU results, where the output
stride is the ratio of the size of the original image to the final encoded features size—a parameter that
strongly influences the adopted encoder.

Table 4. Comparison of runtime and mIOU attained by U-Net and the models adopted in this research.

Backbone mIOU Runtime Number of Steps/Epochs

Xception-65 78.77% 3.45 h 20k steps
Mobilenet-V2 72.73% 2.45 h 50k steps
U-Net 49.25% 8.88 h 20 epochs
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Table 5. Different output stride at Val set with Xception-65.

Output Stride 8 16 32

mIOU 76.9% 79.1% 67.9%

Following the semantic segmentation stage, we report the results obtained from the
localization-classification stage. First, the performance comparison of our adopted model (DeepLab-V3
plus(ex_65) + FRCNN-Inception-V2) with other models is shown in Table 6. It features the highest
sensitivity in nodule classification with 96.4%, and lowest false positive per scan (FP/Scan) of
0.6 compared to other models. We also report the TN and FN performance of the Faster RCNN
model by the confusion matrix in Table 7. Finally, Table 8 shows a comparison between the
FasterRCNN-Inception-V2 and SSD Inception-V2 models, and it indicates the superiority of the
FRCNN Inception-V2 with regards to the average recall (AR), the classification loss, and the localization
loss. However, SSD shows significantly faster (almost 100 times faster) inference than FRCNN.

Table 6. Performance comparison for DeepLab-V3 plus(ex_65) + FRCNN Inception-V2 and other
models on the LUNA16 dataset.

Model Senstivity FPs/Scan Accuracy Specificity

CNN [24] 70.23% 4.7 74.01% 79.47%
DFCNet [24] 73.14% 4.2 80.12% 81.95
RUN:Resdiual-U-Net [12] 90.9% 2 – –
D48 [18] 91.3% 1.6 94.8% 98.4%
3D CMixNet Faster-RCNN [17] 90% 1.1 – –
DeepNet [41] 84.8% 1 – –
ResNet [41] 86.7% 1 – –
ResNet+HL [41] 90.5% 1 – –
ESB-ALL [18] 93.3% 0.7 96.3% 99.3%
Ours Deeplab-V3 plus(ex_65) + FRCNN-Inception-V2 96.4% 0.6 97% 99.4%

Table 7. The confusion matrix of the Deeplab-V3 plus(ex_65) + FRCNN-Inception-V2 model.

Predicted

Nodule Non-Nodule

Actual Nodule 0.964 0.036

Non-Nodule 0.006 0.994

Table 8. Performance comparison between Faster RCNN and SSD models using InceptionV2 as a
feature extractor.

Model FRCNN SSD

Backbone Inception-V2 Inception-V2
# scans 3258 3258
MAP(0.5) 1.0000 0.812202
MAP(0.75) 0.93995 –
AP(0.5) 1.0000 Nodule = 0.914, Non Nodule = 0.7096
AP(0.75) 0.940 –
AR(0.5:0.95) 0.964 0.72
Classification loss 0.011148 1.582611
Localization loss 0.009361 0.602215
Test image(sec/image) 5.05 0.05
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4.2. Results on Kaggle’s Dataset

As mentioned in Section 3.5, we generate a heatmap to combine the detections from all slices of
a single patient on Kaggle’s dataset. In this operation, we evaluated several values for thresholding
the heatmap, in order to keep only the pixels that represent repeated detections, i.e., high-confidence
detections, as shown in Figure 10. Table 9 shows the different threshold values with the corresponding
validation accuracy results using the Inception-V3 model.

Table 9. Different heatmap threshold values with validation accuracy results using the Inception-V3 model.

Heatmap Threshold 180 190 200 210

Validation accuracy 93.9% 95.66% 95.1% 91.5%

Training was carried out using nearly 10K augmented images with a batch size of 100 for 10K
steps/iterations using the Inception-V3 and MobileNet-V1 models. For transfer learning on the
Inception-V3 model, we removed the weights of last layer and re-trained it using Kaggle’s dataset.
The number of output nodes that is equal to the number of the classes is modified to be 2. The last
layer of the model is trained with a backpropagation algorithm and the weight parameter is adjusted
using the cross-entropy cost function by calculating the error between the softmax layer output and
the specified sample class label vector. For the MobileNet-V1 model, we fine-tune the following
parameters. (1) Width Multiplier with 1.0, 0.75, 0.50, and 0.25. (2) Resolution Multiplier with 224,
and we found that accuracy drops off smoothly from width multiplier = 1 to 0.5 until the value of 0.25.
During the run, the following outputs are generated showing the progress of algorithm training.

1. Training accuracy: Is the percentage of the images that were labeled correctly in the current
training batch.

2. Validation accuracy: Is the accuracy (percentage of correctly labeled images) of a randomly
selected group of images from a different set.

3. Cross entropy: Is defined as a loss function that informs us how well the process of learning
progresses, formulated as follows:

Cross_entropy_loss = −
M

∑
c=1

yo,clog(Po,c) (2)

where M is the number of classes (M = 2 in our experiment for two classes: Malignant, Benign),
y is a binary indicator if class label c is the correct classification for observation o, and P is a
predicted output probability observation o of class c.

For the classification of the detected nodules from the Kaggle dataset, the results that are
shown in Table 10 compares the Inception-V3 model with the MobileNet-V1 model. After 10,000
steps, we achieved the highest accuracy value of 96.05% and 95.66% for the training and validation
accuracy, respectively, using the Inception-V3 model. The Inception-V3 model also achieved the
lowest cross-entropy loss of 0.166 for the validation set. We show the variations of the accuracy and
cross-entropy for that model in Figure 13. For MobileNet, the width multiplier = 1 and the resolution
multiplier = 224 achieved an accuracy of 94% and 93% for training and validation, respectively,
outperforming other parameter settings for MobileNet.
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Figure 13. The variation of accuracy and cross-entropy on the kaggle dataset using the
Inception-V3 model.

Table 10. Comparison of the Inception-V3 model with Mobilenet-V1 model with regards to the accuracy
and the cross-entropy loss.

Model Accuracy_Ttraining Set Accuracy_Valid Set Cross Entropy_Training Set Cross Entropy_Valid Set

Mobilenet_0.25_224 86.23% 85.16% 0.6317 0.7883
Mobilenet_0.5_224 91.32% 90.24% 0.3023 0.3783
Mobilenet_0.75_224 92.49% 92.73% 0.2149 0.2439
Mobilenet_1.0_224 94% 93% 0.1307 0.2450
Inception-V3 96.05% 95.66% 0.1164 0.1346

Furthermore, we also compared the performance of the adopted architectures (Inception-V3
and Mobilenet-V1) with a linear classifier, vanilla 3DCNN, 3D Googlenet, 3D-AlexNet, DFCNet [24],
TumorNet [42], CMixNet [17], and straight and hybrid 3D CNN architectures [16]. Table 11 presents a
summary of the accuracy, sensitivity, and specificity of all the architectures.

Table 11. Comparative results of the proposed models and other models used with different dataset.

Model Accuracy(%) Senstivity(%) Specificity(%) Dataset

Linear classifier 66.5 65.2 67.2 Kaggle
Vanilla 3DCNN 70.5 59.3 76.1 Kaggle
3D AlexNet 85.79 82.74 88.04 Kaggle
3D-Googlenet 87.95 82.74 91.61 Kaggle
DFCNet [24] 86.02 80.91 83.22 LIDC-IDRI
TumorNet [42] 87.41 81.70 85.17 LIDC-IDRI
CMixNet [17] 88.79 93.97 89.83 LIDC-IDRI
straight 3D-CNN + softmax classifier [16] 90.23 86.40 93.09 Kaggle
Hybrid 3D-CNN + RBF-based SVM [16] 91.8 88.53 94.23 Kaggle
3D CMixNet + GBM [17] 91.13 – – LIDC-IDRI
3D CMixNet + GBM + Biomarkers [17] 94.17 94 91 LIDC-IDRI
Ours: DeeplabV3plus(ex_65) + Mobilenet-V1_1.0_224 93 90.01 94.3 Kaggle
Ours: DeeplabV3plus(ex_65) + Inception-V3 95.66 91.2 97.24 Kaggle

Considering the results in Table 11, we demonstrate that the adopted architecture (Inception-V3),
as a part of the proposed two-stage framework, surpassed all other architectures by achieving a 95.66%
accuracy. Note that although 3D CMixNet + GBM + Biomarkers model achieved higher accuracy
than our Mobilenet-based model, it used additional features which are of physiological symptoms
and clinical biomarkers. Moreover, compared to other methods, the proposed framework with the
two adopted architectures (Inception and MobileNet) achieved the highest and the second-highest
specificity. With regards to sensitivity, though, CMixNeT outperformed the proposed framework;
nevertheless, this was attained on a different dataset. The results presented in this section prove that
Inception-V3 and MobileNet classifiers, when combined with semantic segmentation and transfer
learning, can improve significantly the performance of deep learning models in classifying 3D lung CT
scan images.
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5. Conclusions

In this paper, we proposed a two-stage framework that employs deep learning frameworks
for PND in CT scans, trained and tested on LUNA16 and Kaggle 2017 datasets. We showed that
adding a semantic segmentation stage before localizing and classifying the nodules can remarkably
improve the accuracy. We proposed the recently proposed DeepLab-V3 plus model for semantic
segmentation, and we demonstrated that it is capable of attaining state-of-the-art Dice Coefficient and
IoU. On the LUNA 16 test set, we achieved a 30% increase and 60% increase in the Dice Coefficient
and the mIoU, respectively, compared the standard U-Net and its more recent variants. We adopted
two encoders as feature extractors, Xception-65 and MobileNet-V2, and we demonstrated significant
runtime reductions and mIoU gains with both encoders compared to U-Net. The second stage of
the framework is meant to handle the false positives resulted from the first stage. We fed the output
of the semantic segmentation to FRCNN Inception-V2 and SSD Inception-V2 models for localizing
and classifying the nodule lesions, and we showed that the former’s sensitivity is comparable to the
state-of-the art. We have also extended the usage of the deep models trained on LUNA16 to infer
binary (malignant-benign) labels on Kaggle’s dataset. Particularly, although missing nodule-level
labels in the original dataset, we used the LUNA16-trained DeepLab-V3 plus to generate initial nodule
detections. This was latter followed by a localization-classification stage, similar to the procedure
carried out on LUNA16. The proposed framework attained an eventual accuracy and specificity of
95.66% and 97.24%, respectively, on Kaggle dataset, and a FP/Scan of 0.6, outperforming other recent
models in the literature, including deep models. Future directions include the adoption of knowledge
distillation, in the pursuit of the combination of effectiveness and speed. We also look forward to
evaluating the effectiveness of the learned models across different imaging modalities and in other
medical applications.
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