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Abstract: Knee osteoarthritis (OA) is the most common musculoskeletal disease in the world.
In primary healthcare, knee OA is diagnosed using clinical examination and radiographic assessment.
Osteoarthritis Research Society International (OARSI) atlas of OA radiographic features allows
performing independent assessment of knee osteophytes, joint space narrowing and other knee
features. This provides a fine-grained OA severity assessment of the knee, compared to the
gold standard and most commonly used Kellgren–Lawrence (KL) composite score. In this study,
we developed an automatic method to predict KL and OARSI grades from knee radiographs.
Our method is based on Deep Learning and leverages an ensemble of residual networks with
50 layers. We used transfer learning from ImageNet with a fine-tuning on the Osteoarthritis Initiative
(OAI) dataset. An independent testing of our model was performed on the Multicenter Osteoarthritis
Study (MOST) dataset. Our method yielded Cohen’s kappa coefficients of 0.82 for KL-grade and 0.79,
0.84, 0.94, 0.83, 0.84 and 0.90 for femoral osteophytes, tibial osteophytes and joint space narrowing
for lateral and medial compartments, respectively. Furthermore, our method yielded area under
the ROC curve of 0.98 and average precision of 0.98 for detecting the presence of radiographic OA,
which is better than the current state-of-the-art.
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1. Introduction

Osteoarthritis (OA) is the most common musculoskeletal disease leading to disability [1,2].
The etiology of OA is not currently understood, it has no cure and it eventually leads to total knee
replacement [1]. Only available therapies for OA patients at the moment are behavioral interventions,
e.g., weight loss, properly designed physical exercise and strengthening of joint muscles, which could
lead to a temporary pain relief and decreasing OA progression rate [3].

OA is currently diagnosed using clinical examination and almost always confirmed by
radiography (X-ray imaging) that is a cheap and widely used imaging modality [4]. The gold
standard radiographic knee OA severity measure is the Kellgren–Lawrence (KL) grading system [5].
However, KL grade suffers from subjectivity of a practitioner and it is also a composite score not
focusing separately on individual features as well as the side of OA (lateral or medial). A more recent
and feature-specific approach to grade radiographic OA severity is Osteoarthritis Research Society
International (OARSI) atlas [6]. Specifically, it enables grading of such features as femoral osteophytes
(FO), tibial osteophytes (TO) and joint space narrowing (JSN) compartment-wise (see Figure 1).
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However, similar to KL score, OARSI grading suffers from subjectivity of the reader. Potentially,
computer-aided methods based on Machine Learning (ML) could improve the situation by automating
the OARSI grading similarly as it has been done for the KL grading [4].
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Figure 1. Examples of knee osteoarthritis features graded according to the Osteoarthritis Research
Society (OARSI) grading atlas and Kellgren–Lawrence (KL) grading scale. FL, TL, FM and TM represent
the femoral lateral, tibial lateral, femoral medial and tibial medial compartments, respectively. I (a) A
right knee without visual OA-related changes is presented (KL 0, all OARSI grades also zero). (b) An
image of a right knee with severe OA (KL 3) is presented. Blue triangles highlight the osteophytes in
femur and the green triangles highlight the osteophytes in tibia. Red arrow highlights the joint-space
narrowing (JSN). Here, the osteophytes for FL, TL, FM and TM compartments are all of Grade 3. JSN in
the lateral compartment is of Grade 2 and in the medial compartment it is of Grade 0.

Deep Learning (DL) is a state-of-the art ML approach that allows learning of features directly
from the data, and it has recently revolutionized the field of medical image analysis by surpassing
the conventional computer vision techniques that required manual engineering of data representation
methods [7]. In the OA research field, several studies demonstrated success in the analysis of
Magnetic Resonance Imaging (MRI) data [8,9], basic research [10], prediction of knee osteoarthritis
progression [11] and, in particular, automation of the KL-grading of knee and hip radiographs using
deep convolutional neural networks (CNN) [4,12–14]. However, only a few attempts have been made
to assess individual knee OA features from plain radiography.

1.1. Contributions

In this study, we present a robust DL-based multi-task framework for automatic simultaneous
OARSI and KL scoring and validate it with an independent test set. The main contributions of this
paper can be summarized as follows:

• We demonstrate a possibility to accurately predict individual knee OA features and overall knee
OA severity from plain radiographs simultaneously. Our method significantly outperforms
previous state-of-the-art approach [15].

• Compared to the previous study [15], for the first time, we utilize two independent datasets for
training and testing in assessing automatic OARSI grading: OAI and MOST, respectively.

• We perform an extensive experimental validation of the proposed methodology using various
metrics and explore the influence of network’s depth, utilization of squeeze-excitation and
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ResNeXt blocks[16,17] on the performance, as well as ensembling, transfer learning and joint
learning of KL and OARSI grading tasks.

• Finally, we also release the source codes and the pre-trained models allowing full reproducibility
of our results.

2. Materials and Methods

2.1. Overview

In this study, we used bilateral posterior–anterior (PA) fixed-flexion knee radiographs as our
training and testing material. To pre-process the data, we performed knee joint area localization using
random forest regression voting [18] and applied intensity normalization. Subsequently, utilizing a
transfer learning approach [19], we initialized a convolutional part of our model from an ImageNet [20]
pre-trained model and predicted the KL and OARSI grades simultaneously. The overall pipeline is
graphically illustrated in Figure 2. Finally, we note that all the experiments in our study were performed
in accordance with relevant guidelines and regulations.
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Figure 2. Schematic representation of the workflow of our approach. We used transfer learning from
ImageNet and trained two deep neural network models, averaged their predictions and predicted
totally six knee joint radiographic features according to the OARSI grading atlas as well as a the KL
grade. OARSI grades for osteophytes in femoral lateral (FL), tibial-lateral (TL), femoral-medial (FM)
and tibial-medial (TM) compartments as well as the joint space narrowing (JSN) grades in lateral and
medial compartments were predicted.

2.2. Data

We utilized two publicly available knee X-ray datasets: OAI (https://nda.nih.gov/oai/) and
MOST (http://most.ucsf.edu). Fixed-flexion bilateral Posterior–Anterior (PA) images acquired using a
Synaflexer positioning frame with the X-ray beam angle of 10◦ were used in both datasets [21].

OAI is a longitudinal study of 4796 participants examined with X-ray, MRI and other means
during nine follow-up examinations (0–96 months). MOST is a similar dataset to OAI, but acquired
from 3026 participants who were not part of OAI. MOST included four follow-up examinations with
imaging (0–84 months). The main inclusion criterion for both cohorts was the presence of OA or an
increased risk of developing it. The age of the subjects was of 45–79 and 50–79 years old for OAI and
MOST, respectively.

Both OAI and MOST studies were approved by the institutional review board of the University
of California San Francisco and the data acquisition sites. The informed consent was obtained from all
the subjects participated in the study and all the data were fully anonymized. Further details regarding
the ethical approvals and methodology of data acquisition can be found by the aforementioned
website links.

2.3. Data Pre-Processing

We performed two types of data pre-processing—on the metadata and image levels. As such,
we first removed the data with the missing labels from both OAI and MOST datasets. After filtering
out the missing labels (KL and OARSI scorings), we derived a training set of 19704 knees from the

https://nda.nih.gov/oai/
http://most.ucsf.edu
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OAI dataset and a testing set of 11743 knees from the MOST dataset. Eventually, from the OAI
dataset, we used the data from all the subjects (4796) and from MOST we excluded five subjects
due to missing metadata (total number of subjects—3021). We note here that for each individual
subject our dataset contained one or more knee X-rays. The full description of the data is presented in
Table 1. A visual representation of distribution of OARSI grades in lateral and medial compartments is
presented in Figures S2 and S3, respectively. Sample availability: MOST and OAI datasets are publicly
available at http://most.ucsf.edu/ and https://nda.nih.gov/oai/, respectively. Our dataset splits,
source codes and the pre-trained models are publicly available: https://github.com/MIPT-Oulu/
KneeOARSIGrading.

Table 1. Description of the datasets used in this study. We used all the follow-up examinations from
Osteoarthritis Initiative (OAI) and Multi-Center Osteoarthritis Study (MOST). L and M indicate lateral
and medial compartments, FO and TO indicate femoral and tibial osteophytes and JSN indicates joint
space narrowing. KL indicates the Kellgren–Lawrence grade. # sign stands for the amount of data.

Dataset # Images Grade # KL
# FO # TO # JSN

L M L M L M

OAI
(Train) 19704

0 2434 11,567 10,085 11,894 6960 17,044 9234
1 2632 4698 4453 5167 9181 1160 5765
2 8538 1748 2068 1169 2112 1061 3735
3 4698 1691 3098 1474 1451 439 970
4 1402 - - - - - -

MOST
(Test) 11743

0 4899 9008 7968 8596 6441 10,593 7418
1 1922 1336 1218 1978 3458 465 1865
2 1838 795 996 647 1212 442 1721
3 2087 604 1561 522 632 243 739
4 997 - - - - - -

In contrast to the previous studies [4,12,15,22], we applied a different approach to localize
the region of interest (ROI). Specifically, we utilized the random forest regression voting approach
implemented in a BoneFinder tool [18] to localize the knee joint landmarks. Subsequently, we cropped
the ROIs of 140 × 140 mm from the right and the left knees and rotated each individual knee image
to horizontally align the tibial plateaus. We also applied histogram clipping and global contrast
normalization to each localized knee joint image as proposed in [4]. Finally, we rescaled all the images
to 310 × 310 pixels (0.45 mm resolution) using bilinear interpolation.

2.4. Network Architecture

Our approach is based on ensembling of two convolutional neural networks. Each model within
the ensemble consists of two parts. The first part is convolutional and was pre-trained on ImageNet [20].
The second part consists of seven independent fully-connected (FC) layers each corresponding to its
own task (a KL grade and six OARSI grades). To connect these two parts, we utilized an average
pooling layer after the convolutional block of our network.

For the convolutional part of the model, we evaluated various network backbones from Resnet
family [23]. As such, we firstly utilized Resnet-18, Resnet-34 and Resnet-50 to assess whether the depth
of the model plays any role in predicting OARSI and KL grades in a multi-task setting. Then, we tested
the use of squeeze-excitation (SE) blocks by utilizing SE-resnet-50 model architecture [16]. Finally,
we also used the blocks from ResNeXt model combined with SE modules as proposed in [16].

In addition to the experiments presented in Section 3, we also evaluated Global Weighted Average
Pooling (GWAP) [24] instead of a simple average pooling and also GWAP with a hidden layer.
Despite being attractive, GWAP and its modification did not lead to improvements on cross-validation.
Therefore, we present only the results with the average pooling in the paper.

http://most.ucsf.edu/
https://nda.nih.gov/oai/
https://github.com/MIPT-Oulu/KneeOARSIGrading
https://github.com/MIPT-Oulu/KneeOARSIGrading
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2.5. Training Strategy

Our experimental setup employed a five-fold subject-wise stratified cross-validation. At the
model selection phase, we calculated Cohen’s kappa coefficients and also the balanced accuracy on
out-of-fold sample, thereby utilizing the whole training set. Eventually, we selected two models that
performed best in the majority of the tasks and used them in the final ensemble. At the test phase,
we performed the inference for each of the model in the ensemble (five snapshots per model) and
eventually averaged their predictions.

In all the experiments, the same training strategy was utilized per type of experiment (with and
without transfer learning from ImageNet). Firstly, we performed the transfer learning experiments
jointly training to predict both KL and OARSI grades to select the best network architectures. Secondly,
we trained the same models from scratch using the random weight initialization. Thirdly, we also
attempted to predict solely OARSI grades without joint training with KL grade prediction task while
still using the ImageNet weights for model initialization.

We executed the transfer learning experiments as follows. For the first training epoch, only the
FC layers were trained with the learning rate (LR) of 0.01. Subsequently, we unfroze the convolutional
layers and trained the full network with the LR of 0.001. Finally, at the beginning of the third epoch, we
switched to LR of 0.0001 and trained all the models for the remaining eighteen epochs. Adam optimizer
was used in all the experiments [25].

The training of all the models was regularized using data augmentations from SOLT library [26].
We used random cropping of 300 × 300 pixels, Gaussian noise addition and random gamma correction.
Besides data augmentations, we also used weight decay of 0.0001 and dropout of 0.5 (inserted before
each FC layer). PyTorch v1.0 was used to train all the models [27].

The training of the models from scratch was done with exactly the same hyper-parameters as in
the transfer learning experiments besides the starting LR and the LR schedule. As such, the starting
LR was set to 0.0001 and it was dropped ten times after the 10th and 15th epochs.

Finally, it is worth noting that, due to data imbalance, we tested various weighted data sampling
strategies (e.g., balancing the KL grade distribution as in [4]). However, they did not lead to
improvement in the scores.

3. Results

3.1. Cross-Validation Results and Backbone Selection

We performed a thorough evaluation of Resnet-18, Resnet-34, Resnet-50, SE-Resnet-50 and
SE-Resnet-50-32x4d (SE-Resnet-50 with ResNext blocks) using cross-validation (see Table 2 and
Table S1). Based on cross-validation, we selected two models for further investigation: SE-Resnet-50
and SE-Resnet-50-32x4d. In particular, we investigated the added value of jointly training OARSI and
KL grading tasks, added value of transfer learning and, finally, model ensembling. Our experiments
indicate that jointly training KL and OARSI grading tasks hurts the performance of automatic OARSI
grading. Besides, we found that transfer learning helps significantly for the model convergence. Finally,
ensembling the two best models allowed increasing the performance in both tasks. Further, we report
the results for the ensemble of SE-Resnet-50 and SE-Resnet-50-32x4d as our final model since it yielded
the best performance in terms of both Cohen’s kappa and balanced accuracy (see the latter in Table S1).
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Table 2. Cross-validation results (out of fold): Cohen’s kappa coefficients for each of the trained tasks
on out-of-fold sample (OAI dataset). The best results task-wise are highlighted in bold. We selected
two best models for thorough evaluation: SE-Resnet-50 † and SE-ResNext50-32x4d ‡. We trained these
models from scratch (*) and also with transfer learning, but without the KL-grade (**). Finally, in the
last row, we show the results for the ensembling of these models. L and M indicate lateral and medial
compartments, respectively. FO and TO indicate femoral and tibial osteophytes and JSN indicates joint
space narrowing, respectively. KL indicates the Kellgren–Lawrence grade.

Backbone KL
FO TO JSN

L M L M L M

Resnet-18 0.81 0.71 0.78 0.80 0.76 0.91 0.87
Resnet-34 0.81 0.69 0.78 0.80 0.76 0.90 0.87
Resnet-50 0.81 0.70 0.78 0.81 0.78 0.91 0.87
SE-Resnet-50 † 0.81 0.71 0.79 0.81 0.78 0.91 0.87
SE-ResNext50-32x4d ‡ 0.81 0.72 0.79 0.82 0.78 0.91 0.87

SE-Resnet-50 * 0.78 0.66 0.73 0.76 0.70 0.91 0.87
SE-ResNext50-32x4d * 0.77 0.67 0.73 0.75 0.71 0.91 0.87

SE-Resnet-50 ** - 0.71 0.79 0.82 0.78 0.91 0.88
SE-ResNext50-32x4d ** - 0.73 0.80 0.83 0.78 0.91 0.88

Ensemble †,‡ 0.82 0.73 0.80 0.83 0.79 0.92 0.88

3.2. Test-Set Performance

Based on the cross-validation, we selected our final ensemble model to be evaluated on the test
set. Its test set performance and also the current state-of-the-art performance reported previously by
Antony et al. are presented in Table 3. Our method yielded Cohen’s kappa of 0.82 (0.82–0.83) and
balanced accuracy of 66.68% (0.66–0.67%) for KL grading. For OARSI grading tasks, the developed
method yielded Cohen’s kappa and balanced accuracy of 0.79 (0.78–0.80) and 63.58% (62.46–64.84%),
0.84 (0.84–0.85) and 68.85% (68.03–69.61%), 0.94 (0.93–0.95) and 78.55% (76.70–80.31%), 0.84 (0.83–0.85)
and 65.49% (64.49–66.47%), 0.83 (0.83–0.84) and 72.02% (70.99–0.72.96%) and 0.90 (0.89–0.90) and
80.66% (79.82–81.54%) for TO, FO and JSN in lateral and medial compartments, respectively. The 95%
confidence intervals here were computed using stratified bootstrapping with 500 iterations.

Table 3. Test set performance of our ensemble method with SE-Resnet50 and SE-ResNext50-32x4d
backbones. MSE, A and K indicate the mean squared error, balanced accuracy and Cohen’s kappa,
respectively. As a comparison, the three rightmost columns show the state-of-the-art (SOTA)
performance reported by Antony et al. in a similar work. L and M indicate lateral and medial
compartments, respectively. FO and TO indicate femoral and tibial osteophytes and JSN indicates joint
space narrowing, respectively. KL indicates the Kellgren–Lawrence grade.

Side Grade A K MSE ASOTA KSOTA

L
FO 0.69 (0.68–0.7) 0.84 (0.84–0.85) 0.22 (0.21–0.23) 44.3 0.47
TO 0.64 (0.62–0.65) 0.79 (0.78–0.8) 0.33 (0.31–0.34) 47.6 0.52
JSN 0.79 (0.77–0.8) 0.94 (0.93–0.95) 0.04 (0.04–0.05) 69.1 0.80

M
FO 0.72 (0.71–0.73) 0.83 (0.83–0.84) 0.26 (0.25–0.27) 45.8 0.48
TO 0.65 (0.64–0.67) 0.84 (0.83–0.85) 0.41 (0.38–0.44) 47.9 0.61
JSN 0.81 (0.8–0.82) 0.9 (0.89–0.9) 0.20 (0.19–0.20) 73.4 0.75

Both KL 0.67 (0.66–0.67) 0.82 (0.82–0.83) 0.68 (0.65–0.70) 63.6 0.69
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Besides the metric-based evaluation, we also analyzed the confusion matrices for both OARSI
and KL grades, as well as the performance of detecting OA, osteophytes presence and abnormal JSN
in each knee joint compartment (Figure 3). The confusion matrices for the OARSI grades are presented
in Figure 4. The confusion matrix for the KL grading is presented in Figure S1.
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Figure 3. ROC and precision-recall curves demonstrating the performance of detecting the presence of
radiographic OA (KL ≥ 2) osteophytes (grade ≥ 1) and joint-space narrowing (grade ≥ 1).
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Figure 4. Confusion matrices for the OARSI grades prediction tasks: (a–c) the matrices for femoral
osteophytes (FO), tibial osteophytes (TO) and joint space narrowing (JSN) automatic grading in lateral
compartment, respectively; and (d–f) the confusion matrices in the same order, but for the lateral
compartment. The numbers indicate percentages.
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3.3. Evaluation on the First Follow-Up of MOST Dataset

To verify the impact of repeated subjects in the test set, we made an additional evaluation of the
models using only the data from the first imaging follow-up from the MOST dataset. We obtained
the Cohen’s kappa values of 0.83 (0.82–0.84), 0.79 (0.77–0.81), 0.84 (0.82–0.85), 0.94 (0.93–0.95), 0.86
(0.84–0.87), 0.83 (0.82–0.84) and 0.91 (0.90–0.91) for KL as well as for OARSI grades (FO, TO and JSN
for lateral and medial compartments), respectively.

The balanced accuracy in KL and OARSI grading tasks were of 67.90% (66.57–69.13%),
64.72% (62.23–67.16%), 69.11% (66.99–70.99%), 80% (76.48–83.21%), 65.80% (63.68–67.74%), 72.51%
(70.40–74.46%) and 83.34% (81.94–84.64%). Here, the 95% confidence intervals were computed via
stratified bootstrapping with 500 iterations.

3.4. Evaluation of Performance with Respect to the Stage of OA

In addition to the results presented on the whole MOST dataset, we performed additional
evaluations on its three strata, grouping KL0 and KL1 into a “No OA” group, KL2 in “Early OA” group
and KL3 and KL4 into “Severe OA” group. These results are shown in Table 4.

In addition to the metrics shown in Table 3, we also computed the F1 score performance weighing
by the support as well as the macro-average. The former allows judging the performance of model
when detecting both positive and negative samples. The latter calculates the average of F1 scores
computed for each of the classes.

Table 4. Test set performance of our ensemble method with SE-Resnet50 and SE-ResNext50-32x4d
backbones with respect to the stage of osteoarthritis. F1, MSE, A and K indicate F1-score (geometric
average of precision and recall) either weighted by the support or by averaging F1 scores across the
classes (macro averaging), mean squared error, balanced accuracy and Cohen’s kappa, respectively.
L and M indicate lateral and medial compartments, respectively. FO and TO indicate femoral and tibial
osteophytes and JSN indicates joint space narrowing, respectively. KL indicates the Kellgren–Lawrence
grade. Here, “No OA” indicates knees with KL0 and KL1, “Early OA” indicates knees with KL2 and
“End stage” indicates knees with KL3 and KL4.

Stage Side Grade F1 (weighted) F1 (macro) MSE A K

No

L
FO 0.94 (0.93–0.94) 0.36 (0.35–0.74) 0.08 (0.07–0.09) 0.85 (0.8–0.89) 0.47 (0.42–0.53)
TO 0.95 (0.94–0.95) 0.31 (0.29–0.42) 0.08 (0.07–0.1) 0.74 (0.66–0.8) 0.26 (0.19–0.32)
JSN 0.99 (0.98–0.99) 0.71 (0.62–0.8) 0.01 (0.01–0.02) 0.72 (0.61–0.84) 0.42 (0.23–0.59)

M
FO 0.85 (0.84–0.86) 0.49 (0.48–0.5) 0.17 (0.15–0.19) 0.81 (0.78–0.83) 0.49 (0.45–0.52)
TO 0.95 (0.95–0.96) 0.34 (0.32–0.47) 0.07 (0.06–0.09) 0.79 (0.73–0.85) 0.34 (0.26–0.41)
JSN 0.86 (0.85–0.88) 0.46 (0.45–0.48) 0.16 (0.15–0.18) 0.8 (0.76–0.83) 0.45 (0.4–0.49)

Early

L
FO 0.94 (0.93–0.94) 0.36 (0.35–0.74) 0.08 (0.07–0.09) 0.85 (0.8–0.89) 0.47 (0.42–0.53)
TO 0.95 (0.94–0.95) 0.31 (0.29–0.42) 0.08 (0.07–0.1) 0.74 (0.66–0.8) 0.26 (0.19–0.32)
JSN 0.99 (0.98–0.99) 0.71 (0.62–0.8) 0.01 (0.01–0.02) 0.72 (0.61–0.84) 0.42 (0.23–0.59)

M
FO 0.85 (0.84–0.86) 0.49 (0.48–0.5) 0.17 (0.15–0.19) 0.81 (0.78–0.83) 0.49 (0.45–0.52)
TO 0.95 (0.95–0.96) 0.34 (0.32–0.47) 0.07 (0.06–0.09) 0.79 (0.73–0.85) 0.34 (0.26–0.41)
JSN 0.86 (0.85–0.88) 0.46 (0.45–0.48) 0.16 (0.15–0.18) 0.8 (0.76–0.83) 0.45 (0.4–0.49)

Severe

L
FO 0.66 (0.63–0.69) 0.60 (0.57–0.63) 0.48 (0.41–0.56) 0.64 (0.61–0.67) 0.81 (0.78–0.83)
TO 0.64 (0.6–0.66) 0.57 (0.54–0.6) 0.77 (0.65–0.89) 0.61 (0.57–0.64) 0.74 (0.7–0.77)
JSN 0.94 (0.93–0.95) 0.66 (0.61–0.72) 0.07 (0.05–0.08) 0.68 (0.64–0.74) 0.96 (0.95–0.97)

M
FO 0.60 (0.57–0.63) 0.6 (0.56–0.64) 0.47 (0.42–0.52) 0.62 (0.58–0.65) 0.72 (0.69–0.75)
TO 0.64 (0.61–0.67) 0.56 (0.52–0.59) 0.85 (0.72–0.97) 0.57 (0.53–0.61) 0.66 (0.61–0.71)
JSN 0.88 (0.86–0.9) 0.70 (0.67–0.75) 0.13 (0.11–0.16) 0.73 (0.69–0.8) 0.93 (0.92–0.94)
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4. Discussion

In this study, we developed a DL-based method to perform an automatic simultaneous OARSI
and KL grading from knee radiographs using transfer learning. The developed approach employed
two deep residual networks with 50 layers that incorporated SE and ResNeXt blocks [16]. Compared to
the previous state-of-the-art [4,15], our model performs significantly better in simultaneous OARSI and
KL grading as well as in the detection of radiographic OA presence. The agreement of the predicted
OARSI grades on the test set with the test labels exceeds both previously reported human [15,28] and
algorithm [15] performances (see Table 3). Moreover, this is the first study in OA when an independent
test set was used for automatic OARSI grading from plain radiographs.

To the best of our knowledge, Oka et al. [29] were the first to report automatic analysis of
individual knee OA features. Later, Thomson et al. (2016) [30] used a more robust setup and
an advanced methodology based on the shape and texture descriptors to evaluate the presence
of osteophytes and radiographic OA (KL ≥ 2). The authors reported the area under the receiver
operating characteristic (ROC) curve for detecting osteophytes as 0.85. That study, however, had two
main limitations. Firstly, the test set size was relatively small compared to the other OA studies [4,12].
Secondly, the problem of binary discrimination between osteophytes of OARSI Grades 0–1 and 2–3
may not be clinically relevant as Grade 1 already indicates the presence of an osteophyte [6].

In contrast to those studies, the above-mentioned limitations were addressed in the recent study
by Antony [15] where a CNN-based approach for simultaneous analysis of KL and OARSI grades
was proposed. However, the limitation of that study was a dataset that consisted of a combination of
MOST (Multi-center Osteoarthritis study) and OAI (Osteoarthritis Initiative) data and, furthermore,
the agreements between the method’s predictions and the test set labels were shown to be lower than
inter-rater agreements between the human observers for KL and OARSI grades. Here, we tackle both
of these limitations and demonstrate an excellent agreement of our method with the test set labels.

Other related works to this study are by Antony et al. [12,31] and Tiulpin et al. [4]. While the
studies by Antony et al. were pioneering in the field, the study by Tiulpin et al. produced the new
state-of-the-art results in KL grading—Cohen’s quadratic kappa of 0.83—as well as in radiographic
OA detection—area under the ROC curve of 0.93. The balanced accuracy was 66.71%.

We conducted our experiments in multiple settings: joint training for predicting OARSI and
KL grades with and without transfer learning and also prediction of solely OARSI grades without
the use of transfer learning. Our results on cross-validation indicate that transfer learning is useful
for automatic OARSI grading and also that joint prediction of KL and OARSI grades leads to worse
performance. However, the latter is a clinically relevant setting since the KL grade allows for a
composite assessment of the knee condition and it is used by practitioners world-wide, in contrast
to the OARSI grades. However, OARSI grades allow for evaluation of individual knee features
and can be utilized for more comprehensive quantification of OA-related changes between the
follow-up examinations when monitoring the OA progression in time. Therefore, despite worse
performance, joint prediction of KL and OARSI grades has additional clinical value. To overcome
the limitations of learning joint KL and OARSI tasks, we performed an ensembling of two models
selected using cross-validation—SE-Resnet-50 and SE-ResNext50-32x4d. Our results indicate the
notable improvement on cross-validation compared to all the investigated single models (Table 2 and
Table S1).

This study, while providing the new state-of-the-art results in automatic OARSI grading and
detection of radiographic OA presence, still has some limitations. Firstly, compared to the previous
work [4], we did not analyze the attention maps produced by our method. Attention maps could
provide further insights into the specific decisions made by the CNN [32]. However, in this
study, we decided to mainly focus on a large-scale experimental evaluation of the conventional
transfer learning rather than on model interpretation. Secondly, the presented ensemble approach
is computationally heavy due to ensembling and, hypothetically, could affect the real-life use of the
developed method unless the model is deployed on GPU. Potentially, techniques such as knowledge
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distillation [33] could help to decrease the computational effort needed for model execution. Thirdly,
we utilized the whole knee images for training our models. Future studies should compare this
approach with the Siamese model proposed by Tiulpin et al. [4]. Fourthly, we considered only the
OARSI grades that had sufficient amount of training and test data. Therefore, some additional OARSI
features (medial tibial attrition, medial tibial sclerosis and lateral femoral sclerosis) were not considered
at all, which could be the target of future studies. Finally, our test set included the data from the same
patients obtained from multiple follow-ups. However, this should not significantly affect our results
and rather made them less optimistic due to the fact that MOST is a cohort of subjects at risk that have
progressing osteoarthritis. Therefore, the appearance of the images changes across the follow-ups
and the overall dataset still contains diverse images. To verify the significance of the this limitation,
we made an additional evaluation of the models using only the data from the first imaging follow-up
from MOST dataset (Section 3.4).

The final and the main limitation of this work is a possible bias in performance of the algorithm.
While the method performs well on the whole dataset, it still lacks good results when we stratify the
test set according to the stages of OA. Specifically, while the reported results on the whole MOST
dataset are in line or better than the previous state-of-the-art [4,15], one can observe that the F1 score
(both weighted and macro-averaged) improve when the algorithm is tested on population with severe
OA (see Table 4). Therefore, the future studies need to put a bigger emphasis on improving the scores
on cases when OA is not severe.

To conclude, this study demonstrated the first large-scale experiment for automatic KL and OARSI
grading. Despite the limitations, we believe that the developed methodology has potential to become a
useful tool in clinical OA trials and also could provide better quantitative information about the knees
of the patients who already have OA for a clinician in a systematic manner.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/11/932/s1.
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