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Abstract: Stroke is the second leading cause of death and disability worldwide, with ischemic stroke
as the most common type. The preferred diagnostic procedure at the acute stage is the acquisition
of multi-parametric magnetic resonance imaging (MRI). This type of imaging not only detects and
locates the stroke lesion, but also provides the blood flow dynamics that helps clinicians in assessing
the risks and benefits of reperfusion therapies. However, evaluating the outcome of these risky
therapies beforehand is a complicated task due to the variability of lesion location, size, shape,
and cerebral hemodynamics involved. Though the fully automated model for predicting treatment
outcomes using multi-parametric imaging would be highly valuable in clinical settings, MRI datasets
acquired at the acute stage are mostly scarce and suffer high class imbalance. In this paper, parallel
multi-parametric feature embedded siamese network (PMFE-SN) is proposed that can learn with few
samples and can handle skewness in multi-parametric MRI data. Moreover, five suitable evaluation
metrics that are insensitive to imbalance are defined for this problem. The results show that PMFE-SN
not only outperforms other state-of-the-art techniques in all these metrics but also can predict the
class with a small number of samples, as well as the class with high number of samples. An accuracy
of 0.67 on leave one cross out testing has been achieved with only two samples (minority class) for
training and accuracy of 0.61 with the highest number of samples (majority class). In comparison,
state-of-the-art using hand crafted features has 0 accuracy for minority class and 0.33 accuracy for
majority class.

Keywords: acute ischemic stroke; siamese network; machine learning; deep learning; imbalance;
multi-parametric MRI; feature embedding

1. Introduction

Stroke is the second leading cause of death and a major cause of disability worldwide [1]. Annually,
15 million people worldwide suffer a stroke that results in permanent disability, placing a burden on
family and community [2]. Most strokes (80%) occur by an unexpected blockage of arteries carrying
blood to the brain, causing ischemia, and are called ischemic strokes. The ischemia is the lack of
oxygen in tissues. As a result, tissues start to die quickly in the next few minutes. The dead tissue
is called “core”. The salvageable tissue is termed as “penumbra” and it is the target for reperfusion
therapies. The affected area of the brain, the stroke lesion, go through several disease stages that can
be categorized as acute (0–24 h), sub-acute (24 h–2 weeks) and chronic (>2 weeks) according to the
time passed since stroke onset [3]. The preferred diagnostic procedure at acute stage involves the
acquisition of multi-parametric magnetic resonance imaging (MRI). The possible options for treatment
are largely limited to reperfusion therapies known as thrombolysis and thrombectomy, which must be
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managed not later than four to six hours after the symptom onset [4]. This treatment is associated with
high risk of intracranial hemorrhage. The success of the intervention is assessed via the standardized
thrombolysis in cerebral infarction (TICI) grading system [5]. As this intervention is risky, clinicians
are interested in measuring the treatment outcome of a patient, i.e., to see the possible benefits of
treatment vs. risk. The gold standard when measuring the outcome for a patient is either in the form
of lesion outcome or clinical outcome. Lesion outcome is determined by a three-month follow-up MR
scan showing the lesion. Clinical outcome after three months is in the form of modified Rankin Scale
(mRS). The mRS runs from 0–6 showing the degree of disability (0–5) and death (6) [6]. The problem of
predicting the clinical outcome of treated patients is shown in Figure 1.
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Clinical outcome prediction in treated patients is complex because it involves various clinical
and imaging biomarkers. The challenge is to integrate these biomarkers into an outcome prediction
model as the relationship amongst a patient’s stroke presentation, clinical parameters, treatment
scores and functional outcomes is not well defined yet. Recent machine learning techniques, such as
deep learning, have been used in the field of cerebrovascular disorders [7] and have the potential to
solve the important problem of outcome prediction in acute ischemic stroke [8]. Machine learning
models have been created to predict the outcome after reperfusion therapy using neuroimaging [9];
however, most of these studies focused on the prediction of lesion outcome as compared to clinical
outcome [10]. We focused only on clinical outcome prediction using multi-parametric MRI imaging
data acquired at the acute stage before any treatment decision, as it is the preferred imaging for
diagnosis and treatment. These imaging data are fed into parallel multi-parametric feature embedded
siamese network (PMFE-SN), which is a novel deep learning end-to-end model presented in this paper.
Deep learning techniques require large amount of data, so there is a need of robust and large datasets
in this area [9,10]. In this regard, Maier et al. [11,12] reported the urgent need of comparability of
outcome prediction models due to the variability in the nature of data, outcomes and metrics used
for comparison in various studies. For that matter, they launched benchmark datasets named ISLES
2016 and ISLES 2017. ISLES 2017 dataset is an extension of ISLES 2016 dataset. The challenge results
on ISLES 2016 dataset for clinical outcome prediction are sub-optimal due to very small number
of samples [12]. This research presents PMFE-SN, an automated end-to-end method for predicting
treatment outcome even with less and highly skewed MRI data. The developed model helps in
reducing bias towards majority class, as well as learning from very few samples, i.e., only two samples
for training. This is the first attempt to solve this problem using ISLES 2017 dataset.
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The major contributions of this research include combining multi-parametric 3D MRI images in an
end-to-end deep learning architecture model, development of multi-parametric feature embedding in
siamese network for handling scarcity of multi-parametric MRI data, introducing two-stage balancing
strategy for solving class imbalance problems and defining evaluation metrics insensitive to imbalance.
Metrics used in previous approaches could be misleading in the assessment of model performance and
in turn could misguide clinicians in making treatment decisions.

The following section—Section 2—presents the literature review highlighting the drawbacks
of the research work done so far in this area. Section 3 provides the details of the developed
methodology. Experimental setup is explained in Section 4. The last section—Section 5—discusses
various experiments and results in comparison to other state-of-the-art methods.

2. Literature Review

Due to the difficult nature of the problem, most papers have dichotomized the clinical outcome
score in different forms. Dichotomizing refers to the process of converting mRS (0–6) to a two-class
problem. This section is divided into dichotomized output-based papers and non-dichotomized
output-based papers.

2.1. Dichotomized Output

Ho et al. [13] built the support vector machine (SVM) using demographic and clinical data from
University of California, Los Angeles (UCLA) Research Electronic Data Capture (Redcap) with 190
patients for predicting discharge mortality. Synthetic Minority Over-sampling Technique (SMOTE) [14]
technique in used in their work to handle class imbalance. The output mRS is converted into binary
class, i.e., mRS (0–5) as alive and mRS (6) as dead. Though the method achieved c-statistics = 0.865,
predicting the outcome only as alive or dead, could mislead the treatment decision as intervening
might cause serious disabilities. Other research does not use this type of dichotomization. Mostly,
mRS ≤ 2 is considered as one class and mRS > 2 as another class. Bentley et al. [15] also employed
SVM with down-sampling for imbalance on a private dataset. They trained the model on two-class
data (intracranial hemorrhage or not) with 116 patients. Data include computerized tomography (CT)
scans, demographic and clinical data. Area under the ROC curve (AUC) = 0.74 is the reported result
in this research. Another study of 1383 patients from MR CLEAN dataset [16] with only clinical and
demographic data was conducted by Van et al. [17]. They binarized the models’ output into functional
dependence and independence. They used SVM, random forest classifier, artificial neural network
(ANN) and an ensemble of all these models for prediction. Using only variables from data before
treatment, maximum achieved AUC = 0.79. CT scans (cerebral blood volume (CBV), mean transit time
(MTT)) of 512 patients were used by Xie et al. [18] to predict functional dependence and independence.
All voxels participated in prediction without any feature extraction. To overcome imbalanced data,
stratified sampling was used. Gradient boosting machine (GBM) and extreme gradient boosting (XGB)
achieved AUC = 0.65 and AUC = 0.67, respectively. Tang et al. [19] suggested the use of radiomics
features based on penumbra quantification from apparent diffusion coefficient (ADC), cerebral blood
flow (CBF) for predicting clinical outcome. Seven-day mRS was dichotomized into functional clinical
outcome and non-functional clinical outcome. The logistic regression model was trained on 168
patients using seven-day mRS as the availability of 90-day mRS was limited. Testing the model on
90-day mRS achieved AUC = 0.77. Lin et al. [20] trained SVM, random forest, ANN and an ensemble
of these models using clinical variables at initial, as well as follow-up stages using dichotomized mRS
≤ 2 and mRS > 2. The dataset in this study was big with 35,798 samples but had high imbalance, which
was dealt with by down-sampling. Without using any follow-up data, the maximum achieved AUC
= 0.92. Wang et al. [21] employed logistic regression, ANN, SVM, random forest and AdaBoost for
the prediction of symptomatic intracerebral hemorrhage (sICH) on 2237 samples. Oversampling and
cost-sensitive adaptation was used for imbalanced distribution of sICH to no-sICH and achieved AUC
= 0.82. Despite the large dataset, they suggested the need for more data to optimize the model’s
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performance. Bacchi et al. [22] showed the trained convolutional neural network (CNN) in combination
with ANN on 204 samples for the prediction of dichotomized three-month mRS ≤ 1 and mRS ≤ 2. CT
scans and clinical data served as inputs to CNN and ANN, respectively. The reported accuracy = 0.74
and F1 score = 0.69. This study states its limitation in terms of fewer data. Wang et al. [23] developed a
Lasso logistic regression model for the prediction of hemorrhagic transformation (HT) at 30 days that
may contribute to patient selection for therapy. Clinical data in US Electronic Health Record dataset
comprising of large population of 621,178 patients was used in this study, out of which 5642 had
hemorrhagic transformation (HT) showing the imbalance in the dataset. They also tested the model on
various large repositories achieving the mean AUC = 0.71. Heo et al. [24] developed a deep neural
network, random forest and logistic regression on 2604 patients’ clinical data. mRS at 90 days was
dichotomized into favorable (mRS ≤ 2) and non-favorable outcome (mRS > 2). The patients receiving
thrombolytic treatment were not included as they could hinder the process of patient selection for
therapy. AUC = 0.88 was the achieved result for deep neural network. Nishi et al. [25] showed the
performance of convolutional neural network using diffusion weighted imaging data of 250 patients as
input for training. The mRS was dichotomized to good (mRS ≤ 2) and poor clinical outcome (mRS > 2)
for model training. Data augmentation was done to counter the small dataset, but imbalance was not
addressed. AUC = 0.81 ± 0.03 was reported in a five-fold cross validation result. Ling-Chien Hung
et al. compared several machine learning models on demographic and clinical data to predict the
risk of readmission. They mainly focused on experimenting with different techniques for handling
the imbalance in data. Their study did not include any treatment-related variables of the acute stage,
which may play a vital role in assessing the risk of readmission or mortality. In addition, the sampling
of data from the population did not include patients treated at the acute stage [26]. Yee-Haur Mah et al.
trained SVM on CT scans and clinical data to predict pre-admission and discharge mRS. The mRS
values were dichotomized in low and high mRS. The SVM model achieved the AUC = 0.77 and 0.76
for both types of predictions showing the applicability of machine learning models to the problem [27].
Wenjuan Wang et al. did a review to identify and critically appraise the reporting and developing
of Machine Learning (ML) models for predicting outcomes after stroke. They emphasized the need
for describing the ML models sufficiently to reproduce them, so that models might be considered for
practice [28].

2.2. Non-Dichotomized Output

Asadi et al. [29] worked on the private dataset of 107 patients without including any imaging
data. SVM, linear regressor and ANN were built for predicting a clinical outcome. The results were
reported on both dichotomized and non-dichotomized outputs. This work did not address the problem
of imbalance despite the imbalanced dataset. Forkert et al. [30] used the SVM model with a private
dataset of 68 patients. The data had MR fluid-attenuated inversion recovery (FLAIR) scans on 30 days
from stroke onset and clinical data from initial stage. They incorporated lesion size and location into
account using brain atlas. On scaled mRS from 0–5, the model displayed accuracy of 0.56. They used an
equal number of samples for each class during model training to deal with the imbalance. This paper
focuses on finding the relations in size and location of a 30-day lesion with mRS, rather than providing
decision support for intervention.

Basit et al. (2016) [31] extracted handcrafted image-based features from all images per case in
ISLES 2016 dataset. Random forest regressor was trained with majority class voxels, down-sampled to
overcome the imbalance. Their method achieved the mean absolute error (MAE) of 1.2 ± 0.87 with
the last position on ISLES 2016 challenge test set [32]. They only used imaging data before treatment,
excluding clinical data.

Choi et al. (2016) [33], built three different models to predict mRS with the same dataset. This was
the only work employing deep learning on this type of dataset and was ranked second in ISLES 2016
challenge. Their developed models were deep convolutional neural network, logistic regression and
an ensemble of both techniques, achieving MAE of 1.37 ± 1.00, 1.26 ± 0.81 and 1.10 ± 0.70, respectively.
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In the ensemble technique, image-based features from a 3D CNN were combined with a logistic
regression model. For training 3D CNN, the problem was modelled as a patch-wise classification
problem. Three dimensional patches from training data were used for training and three-month
follow-up binary segmented lesion served as ground truth available in the dataset. This pretrained
3D CNN was then used as a feature extractor, followed by a shallow fully connected network (FCN)
with the last layer having five units representing mRS. In this way, the lack of data is addressed
by (1) using patch-based training, such that the network is trained on many patches, and (2) using
pretrained weights fixed for 3D CNN, and only FCN is trained from scratch. The number of patches
near the lesions were kept the same from each mRS class to counter the imbalance. In comparison, we
deal with the lack of data and imbalance by few-shot learning and two-stage balancing, respectively.
They resized the images to 256 × 256 × 32, whereas in PMFE-SN images are resized to 150 × 150 × 21.

Maier et al. 2016 [34] extracted hand crafted features from multi-parametric MRI images from
ISLES 2016 dataset with no preprocessing. All these features are described in [35]. The main idea of
their work was to identify core, penumbra and normal brain region to estimate mRS. Using random
forest classifier, lesion core was identified on ADC following a binary dilation to estimate penumbra.
The rest of the ADC scan was considered normal brain. After identifying these three regions on ADC,
further features were extracted from each of these regions from ADC and random regressor forest was
trained for prediction. Stratified samples of voxels were used to overcome the imbalance. They did not
make use of any clinical data. With the top result on ISLES challenge 2016 [29] test set, the method
scored MAE = 1.05 ± 0.62.

Kabir et al. [36] used M5 model trees with boost strapping aggregating on clinical data of 437
patients. Clinical data included mRS at admission and at the time of discharge along with other data to
predict full scale mRS at 90 days (0–6). The regression model achieved R = 0.822, MAE = 0.537 and
RMSE = 0.832 and classification model achieved the accuracy = 59.7. Imbalance was not handled in
this work despite the highly imbalanced dataset. This study can help in efficient resource allocation
to manage stroke patients in hospitals rather than selection of patients for treatment. Zeynel A.
Samak et al. presented an approach to predict functional outcomes using multimodal CT and clinical
data. They built a deep learning model and incorporated an attention mechanism to extract features
both spatially and channel-wise. Focal loss was used to deal with class imbalance. The results were
reported on both dichotomized and non-dichotomized mRS with accuracy used for full scale mRS.
Reporting accuracy as an evaluation metric for non-dichotomized output in the presence of class
imbalance may mislead in measuring model performance [37].

From the literature review, few observations hold. First, dichotomizing the output may give the
impression of better performances of the models rather than capturing the correlation of input data to
each mRS score and the process of dichotomizing the mRS is not consistent throughout the studies.
Secondly, there is a lot of heterogeneity in datasets, i.e., different datasets exist with different imaging
modalities, demographic or clinical data. Lastly, most papers are highlighting the imbalance in small
datasets, regardless of the heterogeneity in datasets.

3. Methodology

This research focuses on the problem of scarcity of multi-parametric MRI data and class imbalance
for predicting treatment outcomes in acute ischemic stroke patients. The developed method is based
on a novel strategy of treating this problem as a few-shot imbalanced classification problem due to (1)
very few samples per class, (2) discrete values (mRS) for each label and (3) high imbalance in class
labels. Few studies in medical imaging have exploited the dimension of few-shot learning. In this
work, we draw inspiration from earlier work in few-shot learning, such as siamese network [38],
also used for content-based image retrieval [39]. Siamese networks are a special type of neural network
architecture. Instead of a model learning to classify its inputs, the siamese neural network learns
to differentiate between two inputs by learning similarity between them [39]. This type of network
basically consists of two identical neural networks, each taking one of the two inputs. The last
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layer of the network calculates the similarity or distance between the features extracted for two
inputs. The basic siamese architecture for one shot learning [38] consists of the deep learning feature
embedding for single image per sample in data. We have developed a novel parallel multi-parametric
deep learning feature embedding for useful feature extraction in multi-parametric images per sample.
Normalized cosine similarity is used in our work as distance metric contrasting to L1 distance used
in [34]. Moreover, we have initialized the parallel convolutional layers of the developed feature
embedding with pretrained ImageNet weights [40] for better learning during model training instead
of random weight initialization. For handling imbalance, we developed a two-stage balancing strategy.
First, stage balancing is performed at patient level to make the number of samples equal for each
class. This helps to reduce the model bias towards predicting majority class, i.e., mRS. Second, stage
balancing is performed at the pair level. Number of pairs from similar and dissimilar classes are made
equal along with keeping the number of pairs from dissimilar class labels same. In this way, the model
learns the similarity and dissimilarity in an equal manner during optimization. Moreover, pairs from
dissimilar class labels are equally emphasized during training. Both these strategies are explained in
detail in Sections 3.2.2 and 3.2.3, respectively. To the best our knowledge, this approach has not been
applied yet for this problem. The developed model can be helpful in other domains, as well where
nature of data is multi-parametric, having an imbalance with very few samples available.

3.1. Data

The data consist of 43 cases from two medical centers provided in ISLES challenge 2017 (training
set) [12]. Each case has an apparent diffusion coefficient (ADC) map deduced from diffusion weighted
imaging (DWI), showing the infarct core. The salvageable brain tissue is represented by different
perfusion maps derived from perfusion weighted imaging (PWI). These maps include mean transit
time (MTT), time-to-peak (TTP), time-to-maximum (Tmax), cerebral blood volume (CBV) and cerebral
blood flow (CBF). All these images are 3D volumes with different resolutions per case. Co-registration
and skull stripping are already performed on all images. Clinical data are also available denoting
the time since stroke (TSS), time to treat (TTT) and TICI. TSS is the time passed since stroke onset
till image acquisition. TTT is the time that will still pass to treatment/intervention. TICI has been
explained in Section 1 of this paper. The ground truth in this dataset is clinical outcome at 3-month
follow up represented by mRS ranging from 0 to 4. As accurate predictions of treatment outcome from
multi-parametric MRI data before treatment can provide invaluable evidence to support the treatment
decision, only MRI scans before treatment are used in this study. Although PWI scans and TSS also
belong to the data captured before treatment, neither were used in this work.

The sample MRI scans of case no. 8 used in this work are presented in Figure 2.
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Figure 2. Center axial slice extracted from 3D volume resized to 150 × 150 × 21 of case no. 8. The shown
maps are apparent diffusion coefficient (ADC), mean transit time (MTT), cerebral blood flow (CBF),
cerebral blood volume (CBV), time-to-maximum (Tmax) and time-to-peak (TTP) (left to right).

3.2. Basic Framework

The overall framework presented in this work is shown in Figure 3. During the training phase,
first step is the preprocessing of training data followed by data augmentation of minority classes.
Pairs are then created from augmented training set using samples belonging to similar and dissimilar
classes. Next, PMFE-SN is trained using the created pairs. During testing phase, test data point is
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preprocessed. After preprocessing, pairs are created using test data point and each original data point
in the training set, excluding the augmented samples. These pairs are then passed from the trained
PMFE-SN model, which puts out a similarity score for each pair. The class of the data point in the
non-augmented training set having maximum similarity with test data point is the predicted class of
the test data point.
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3.2.1. Preprocessing

Image data are resized to 150 × 150 × 21 resolution. The images are already skull-stripped and
co-registered. Bias-field correction or intensity range standardization are not required for ADC and
perfusion maps [34]. Three middle axial slices from each volumetric multi-parametric MRI image per
patient are extracted. In each fold of leave one cross-out testing, the mean of training data is subtracted
from training, as well as from the test data.

3.2.2. Data Augmentation

This is the first stage of balancing. In each fold of leave one cross-out testing, only training
samples are augmented to address skewness in data. All minority classes are augmented using new
samples. Geometric transformations including zoom, rotation, translation, shear, horizontal flipping
and vertical flipping are applied to generate new samples. The transformations applied are the same
for each multi-parametric image per sample. In this way, each class has equal number of samples
before creating pairs.

3.2.3. Pair Creation for Training

A “pair” refers to a set of any two samples in the augmented training set. It is mandatory to train
PMFE-SN on pairs as it consists of two subnetworks each taking single input from a pair as shown
in Figure 4. The output of PMFE-SN is normalized cosine similarity between two samples in a pair
provided as input to the model. This section explains the second stage of balancing that is applied
while creating pairs from same and different classes.
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Pairs of Samples from Same Classes

Unique pairs of samples are generated from each class in the augmented training set. The formula
used is n!

2!(n−2)! where n is the number of samples in each class, i.e., same for all classes after augmentation.
Let S be total number of pairs of samples from same class and is given by

S =
M∑

m=1

nm!
2!(nm − 2)!

(1)

where M is number of classes and m is the number of samples/class.

Pairs of Samples from Dissimilar Classes

Let D be the number of unique pairs of samples generated from dissimilar classes and can be
calculated using (2). D is much larger than S in (1) and can lead to model bias in learning dissimilarity
between samples more than learning similarity. To counter this, number of pairs from similar and
dissimilar classes for model training must be same. One strategy could be random sampling of S
number of pairs from D dissimilar pairs. However, it does not guarantee the selection of equal number
of pairs of samples from any two dissimilar classes for training. For example, the number of sample
pairs from class 0 and 1 is not necessarily equal to the number of sample pairs from class 0 and 2 via
random sampling. So, the pairing strategy from dissimilar classes is as follows. Let L be the set of class
labels, i.e., mRS. Make Z = l!

2!(l−2)! ! unique pairs from L where l is the number of labels in L. Create S/Z
number of pairs from samples belonging to each dissimilar class pair.

D =
Z∑

z=1

S
Z

(2)

3.2.4. Classification Model Architecture

The classification model presented in this paper learns the similarity between the pairs of samples
in the training set. A pair having samples from the same class is given a label 1 and a pair of samples
from different class is given label 0. A siamese network consisting of two twin convolutional neural
networks is trained to get features for samples in a pair belonging to the same class or belonging to
different class. The word “twin” here is crucial as all the weights of both CNNs should be same as in
the original work [39]. This weight sharing ensures that samples from the same class will map closer
to each other and not in different parts of the embedding space as each branch of siamese has the
same functionality. In addition, it makes the network symmetric, i.e., in each pair, similarity between
two samples remains same irrelevant of the order of the sample in a pair [41]. Another benefit of this
weight sharing is the reduction of number of parameters in the model by half. Cosine similarity is
computed between the features obtained for each sample in a pair in the output layer. Cosine similarity
is normalized to keep the output of the model between 0 and 1. Binary cross entropy loss function is
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minimized using backpropagation algorithm, stochastic gradient descent. This results in maximizing
the similarity between the samples from similar class and minimizing the similarity between samples
from dissimilar classes. At the test time, pairs are created of test sample with each original sample in
the training set excluding the augmented training samples. The similarity is computed for each of
these pairs by passing each pair from the trained PMFE-SN. The class of the sample in the training set
with maximum similarity with the test data point is predicted class of test data point, i.e., predicted
mRS. The classification model architecture is shown in Figure 4.

Parallel Multi-Parametric Feature Embedding

Deep learning (DL) models have shown outstanding performances in the recent decade.
These models can analyze complex, high dimensional and noisy data sets. DL models are deeper
variants of ANNs with multiple layers. Each layer is connected to its lower and upper layers through
different weights. The capability of DL models in learning hierarchical features from various types of
data, e.g., numerical, image, text and audio makes them powerful. In turn, they can solve recognition,
regression, semi-supervised and unsupervised problems [42–44]. Deep learning has proven its efficacy
in medical imaging like in many other domains such as self-driving cars, natural language and
image processing, predictive forecasting, eye tracking systems, object detection in space, finger print
localization systems [45–49]. Vgg16 is one of the deep learning models [50] that is a successful feature
extractor in multiple domains having lots of image data. Due to the scarcity of big data, especially in
medical imaging, these deep learning models are combined with transfer learning [51]. In transfer
learning, the weights from pretrained models trained on millions of image data, such as ImageNet [40],
are transferred to solve other tasks having fewer data and are fine tuned. But this strategy can lead to
overfit even training only the last layer of pretrained model due to very small number of samples per
class. Experimenting this technique on our dataset with same data augmentation did not improve
accuracy for the minority class. In PMFE-SN, a novel deep learning based multi-parametric embedding
function has been developed for feature extraction. The embedding function has six parallel pretrained
vgg16 models trained on ImageNet as shown in Figure 5. Each of these vgg16 models are till the
last convolution block 5, excluding all the fully connected layers. Only last convolution block 5 is
fine-tuned keeping all the earlier layers’ weights fixed.
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This is to avoid overfitting as the amount of training data even after pairing is not very large as in
the case of natural images. Each vgg16 model is then followed by a flatten layer, batch normalization
layer, dense layer having 20 neurons with ReLU activation and a dense layer having 10 neurons with
ReLU activation. Figure 5 provides the details of CNN used to get feature embedding from each
input MRI modality per sample. Total number of parameters in PMFE-SN is 7,259,878 × 6 where 6 is
the number of multi-parametric MRI per sample. The batch normalization layer is important as we
empirically found that network does not learn without it. Each vgg16 is taking resized three middle
axial slices from MRI volume modalities i.e., ADC, MTT, CBV, CBF, Tmax, TTP per case. The output
from all vgg16 models is concatenated to make a 60-dimensional feature vector. Table 1 demonstrates
the CNN for feature embeddings in detail.

Table 1. Details of convolutional neural network used to get feature embedding for each magnetic
resonance imaging (MRI) modality per sample.

Layer (Type) Output Shape No. of Parameters

input_1 (InputLayer) (None, 150, 150, 3) 0
block1_conv1 (Conv2D) (None, 150, 150, 64) 1792
block1_conv2 (Conv2D) (None, 150, 150, 64) 36,928
block1_pool (MaxPooling2D) (None, 75, 75, 64) 0
dense_1 (Dense) (None, 75, 75, 128) 73,856
block2_conv2 (Conv2D) (None, 75, 75, 128) 147,584
block2_pool (MaxPooling2D) (None, 37, 37, 128) 0
block3_conv1 (Conv2D) (None, 37, 37, 256) 295,168
block3_conv2 (Conv2D) (None, 37, 37, 256) 590,080
block3_conv3 (Conv2D) (None, 37, 37, 256) 590,080
block3_pool (MaxPooling2D) (None, 18, 18, 256) 0
block4_conv1 (Conv2D) (None, 18, 18, 512) 1,180,160
block4_conv2 (Conv2D) (None, 18, 18, 512) 2,359,808
block4_conv3 (Conv2D) (None, 18, 18, 512) 2,359,808
block4_pool (MaxPooling2D) (None, 9, 9, 512) 0
block5_conv1 (Conv2D) (None, 9, 9, 512) 2,359,808
block5_conv2 (Conv2D) (None, 9, 9, 512) 2,359,808
block5_conv3 (Conv2D) (None, 9, 9, 512) 2,359,808
block5_pool (MaxPooling2D) (None, 4, 4, 512) 0
flatten_1 (Flatten) (None, 8192) 0
batch_normalization_1
(BatchNormalization) (None, 8192) 32,768

dense_1 (Dense) (None, 20) 163,860
dense_2 (Dense) (None, 10) 210

Total params: 14,911,526
Trainable params: 7,259,878
Non-trainable params: 7,651,648
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Distance Metric and Loss Function

Normalized cosine similarity is used as the distance metric between 60-dimensional feature
vector of both samples in a pair. After computing similarity, the network outputs a similarity
score between 0 and 1. Binary cross entropy loss is then employed such that the similarity
between the similar samples in a pair is maximized and similarity between the dissimilar samples is
minimized using stochastic gradient descent. The pseudocode of PMFE-SN is shown in Algorithm 1.

Algorithm 1. Algorithm of PMFE-SN in leave one cross-out fold

N is the number of samples in the training set X.
M is the number of classes in the training set.
nm is the number of samples belonging to class m.
L = {0, . . . , M− 1}, the set of class labels.
Training Phase

Input: Training set =
{
(x1, y1), . . . , (xN , yN)

}
, where each yi ∈ L

Method:
1: Identify I, representing the largest number of samples amongst all classes.
2: Augment each class m with I−nm number of new samples in the training set.
3: Create unique pairs of samples from class m where m ∈ {1, . . . , M} and put in set SP.
4: Assign label 1 to each pair in set SP.
5: Create unique number of pairs of dissimilar class labels from set L and put in set LP.
6: Create |SP|

|LP| unique pairs of samples for each dissimilar class label pairs in LP and put in set DP.
7: Assign label 0 to each pair in set DP.
8: Let Train = SP U DP such that Train =

{
(p1, b1), . . . ,

(
p|SP|+|DP|, b|SP|+|DP|

)}
, where pi is the ith pair of training

and bi ∈ {0,1}
9: Split Train in ratio 7:3 for training and validation of PMFE-SN.
10: Train PMFE-SN.
Testing Phase

Input: Initial Training set =
{
(x1, y1), . . . , (xN , yN)

}
, where each yi ∈ L

Test Sample: x̂
Method:
1: Make pairs of testing sample x̂ with every original sample in X.
2: Pass all pairs from trained PMFE-SN to get similarity of each pair.
3: Class of sample in X with highest similarity with x̂ is the predicted class of x̂.
4: If there is more than 1 sample in X with highest similarity with x̂, choose randomly amongst such samples
and assign the class of randomly chosen sample to x̂.

3.3. Evaluation Metrics

It is evident from the literature review that none of the methods for predicting non-dichotomized
output have discussed the performance measures in detail for this problem. The state-of-the-art
methods using imaging data are evaluated using mean absolute error (MAE) in ISLES 2016 challenge
results [32]. For high class imbalanced datasets, MAE can be misleading and computing a macro
averaged MAE (MAEM) across all classes is more robust [52,53]. In addition, like MAE, it also
accesses the amount of deviation of true class from predicted class. This deviation is crucial to the
problem at hand, as high deviated output from true class might lead to wrong decision of treatment.
MAEM = 1

M
∑M

m=1
1

nm

∑nm
i=1

∣∣∣yi − ŷi
∣∣∣ I{yi ∈ class m} where M is the number of classes, nm is the number of

samples in mth class, I{} is the indicator function with value 1 if yi ∈ class m and 0 otherwise and
MAEM

∈ [0,M −1]. For a fair comparison, methods are also evaluated using classification metrics
for imbalanced data. These metrics include macro averaged F1 (F1macro), macro averaged precision
(Pmacro), macro averaged recall (Rmacro), sometimes referred to as balanced accuracy, and Matthews
correlation coefficient (MCC). The idea of macro-averaging in F1macro, Pmacro and Rmacro is to calculate
the measure for each class separately and then take the average of these measures. In this way, all
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classes are weighted equally, regardless of their sample size. This averaging is important to assess
a method, whether it can classify rare, as well as common classes [53]. Computing Rmacro for this
problem refers to measuring the ability of a method to avoid deviation from true mRS, but like MAEM,
it cannot calculate the amount of deviation from true mRS. Computing Pmacro for this problem is
important to see if the classifier has a tilt towards predicting an mRS due to a greater number of samples.

F1macro = 2 PmacroRmacro
Pmacro+ Rmacro

, where Pmacro =
∑M

m=1 Pm
|M| and Pm is the precision of class m, Rmacro =

∑M
m=1 Rm
|M|

and Rm is the recall of class m. MCC for multi-class is described in detail by Gorodkin [54] and
is a suggested metric to measure the performance of classifiers for imbalanced data and has been
extensively used in bioinformatics [55]. Area under the ROC curve (AUC) is also reported for each class.

4. Experimental Setup

All experiments are performed using Intel (R) Zeon (R) Silver 4210 CPU @ 2.20 GHz, 2.19 GHz (two
processors), NVIDIA Tesla P40 Graphics Card, 128 GB RAM, Gryphon Z87 Motherboard, Windows
Server 2016 standard operating system, Keras and TensorFlow-gpu. Learning rate of 0.0001 is used
with a momentum = 0.9 and batch size = 32. In every fold, the model is trained for 20 epochs with
an early stop when the decrease in training loss is equal to or less than 0.0001 using patience = 1.
Stochastic gradient descent backpropagation optimizer is used to train the network. Data are shuffled
before each mini batch training iteration. All the weights, except the convolutional layers, are initialized
using random normal distribution with the mean = 0 and standard deviation = 0.01 [34].

5. Results and Discussion

The proposed PMFE-SN in this work is compared with state-of-the art methods on ISLES 2017
challenge dataset with 43 samples [12]. Considering the small dataset, the results are reported on leave
one cross-out testing. The dataset is not only highly skewed but the number of samples for class 4 is
smaller, as shown in Figure 6.
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The results reported in this section show that PMFE-SN is outperforming the state-of-the-art in
all metrics suitable to this problem. The top method amongst the state-of-the-art methods in ISLES
2016 challenge is using random forest regressor on hand crafted features and its output values are
continuous. For computing MAEM, these continuous output values are not rounded off to discrete
values. PMFE-SN, on the other hand, has the output in the form of discrete class label as it models
the problem as a classification problem. MAEM, for PMFE-SN is hence computed using the confusion
matrix in Figure 7. The results in Table 2 show that PMFE-SN is performing better than state-of-the art
in terms of MAEM.
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Table 2. Comparison of MAEM of state-of-the-art and PMFE-SN on leave one cross out testing.

Method Cases from ISLES 2017 MAEM

Random Forest for Stroke Lesion and
Clinical Outcome prediction [22] 43/43 1.24

PMFE-SN 43/43 1.18

F1macro, Pmacro and Rmacro and MCC are computed using confusion matrices for both methods
provided in Figures 7 and 8. The continuous output from state-of-the art is rounded off to compute
the confusion matrix (see Figure 8). It is important to note that all confusion matrices are constructed
using leave one cross out testing. The results on all the classification metrics for both methods are
provided in Table 3. Clearly, PMFE-SN has improved performance on all the metrics.
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Table 3. Comparison of Pmacro, Rmacro, F1macro and Matthews correlation coefficient (MCC) of
state-of-the-art and PMFE-SN on leave one cross out testing.

Method Cases from
ISLES 2017 Pmacro Rmacro F1macro MCC

Random Forest for Stroke
Lesion and Clinical

Outcome prediction [22]
43/43 0.152 0.21 0.18 0.04

PMFE-SN 43/43 0.258 0.31 0.28 0.09
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Table 4 demonstrates per class precision, recall, accuracy, and AUC for both methods. All the
values in Table 4 are also computed using the confusion matrices in Figures 7 and 8. PMFE-SN has
mostly better precision and recall per class. Moreover, it is seen from confusion matrices that PMFE-SN
can predict the class (class 4) with least number of samples (see Figure 7) but state-of-the-art cannot
predict any samples of this class (see Figure 8).

Table 4. Comparison of per class precision, recall, accuracy, and area under the curve (AUC) of
state-of-the-art and PMFE-SN on leave one cross-out testing.

Class

Method 0 1 2 3 4

State-of-the-art

Precision 0 0.50 0.26 0 0

Recall 0 0.33 0.73 0 0

AUC 0.50 0.55 0.50 0.50 0.50

Accuracy 0 0.33 0.73 0 0

PMFE-SN

Precision 0 0.46 0.33 0 0.50

Recall 0 0.61 0.27 0 0.67

AUC 0.46 0.55 0.54 0.46 0.81

Accuracy 0 0.61 0.27 0 0.67

Class accuracy reported in Table 4 shows the accuracy improved by PMFE-SN in predicting
class 4 (with minimum number of samples), as well as class 1 (with maximum number of samples).
This result depicts that the model is not biased towards predicting the majority class. It has improved
the accuracy of the majority, as well as minority class. Class 4 and class 1 are predicted with 67%
and 61% accuracy, respectively, in comparison to state-of-the-art with 33% accuracy for class 1 and
no correct prediction for class 4. Hence, PMFE-SN is learning with very few and imbalanced data.
Moreover, since most of the cases are from class 1 and class 2, and state-of-the-art method is predicting
every sample as belonging to class 1 or class 2 (see Figure 8). This shows that state-of-the-art method is
biased towards predicting majority class. PMFE-SN on the other hand can predict the outcome in the
range 0–4 (see Figure 7).

Figures 9 and 10 show AUC per class for both models. The predictive power of PMFE-SN as
compared to state-of-the-art is better. It can classify and separate the minority outcome (class 4).
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Effect of Augmentation

The utility of augmenting training data in PMFE-SN is evident from the results in this section.
With augmentation, PMFE-SN is performing much better in all metrics defined for this problem as
compared to no augmentation (see Table 5). It is empirically found that using augmentation there
is always a single sample in training data with maximum similarity with the test data point at test
time. Without augmentation, there could be more than one sample with maximum similarity with the
test data point. So, out of all these samples select a sample randomly and assign its class to test data
point (see step 4 from testing phase of Algorithm 1 in Section 3). This means that PMFE-SN is learning
similarity better in case of augmentation as compared to without augmentation.

Table 5. Comparison of PMFE-SN with and without data augmentation using MAEM, Pmacro, Rmacro,
F1macro and MCC on leave one cross out testing.

PMFE-SN MAEM Pmacro Rmacro F1macro MCC

With data augmentation 1.18 0.258 0.31 0.28 0.09

Without data augmentation 1.45 0.162 0.21 0.18 0.07

The confusion matrix in Figure 11 depict that without augmentation PMFE-SN mostly predicts
the most occurring classes in the dataset and is contributing to model bias to predict majority class.
But with augmentation PMFE-SN has predictions with all classes (see Figure 12).
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Without augmentation, the accuracy is 0 for minority class, whereas with augmentation this
metric is satisfactory for minority, as well as majority classes (see Table 6).

Table 6. Comparison of per-class accuracy of PMFE-SN with and without augmentation on leave one
cross-out testing.

Accuracy Per Class (PMFE-SN)

0 1 2 3 4

Without Augmentation 0 0.33 0.73 0 0

With augmentation 0 0.61 0.27 0 0.67

The results for state-of-the-art methods are computed and compared by ISLES 2016 challenge
organizers, not by the authors, so in this paper PMFE-SN is only compared to the top result from ISLES
challenge 2016. Table 7 presents methodologies and corresponding scores using cases from ISLES 2016,
highlighting the top result.

Table 7. ISLES 2016 challenge result showing the state-of-the-art method as top result [12].

Method Cases from ISLES 2016 MAE

1. Prediction of ischemic stroke lesion
and clinical outcome in multi-modal
MRI images using random forests [31]

19/19 (test set) 1.26 ± 0.87

2. Ensemble of deep convolutional
neural networks for prognosis of
ischemic stroke [33]

19/19 (test set) 1.10 ± 0.70

3. Predicting stroke lesion and clinical
outcome with random forests [34] 19/19 (test set) 1.05 ± 0.62

Figure 13 shows the training and validation curves for PMFE-SN. Due to training of only
last convolution block of vgg16 in each sub network of PMFE-SN instead of training full vgg16,
the model is not overfitting. But at the same time, class 0 and 3 are not predicted by PMFE-SN like
state-of-the-art method.
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6. Conclusions and Future Work

In this paper, PMFE-SN is proposed for prediction of three-month treatment outcome of patients in
acute ischemic stroke. The treatment window is of few hours and involves high risk. Accurate prediction
of treatment outcome with merely acute multi-parametric MRI can guide clinicians in making decisions
for intervention. The multi-parametric MRI datasets for this problem are scarce and have two major
issues. Firstly, these datasets are small; secondly, they have high class imbalance. PMFE-SN deals
with both issues by combining parallel multi-parametric feature embedded few-shot learning with
two-stage balancing strategy. The multi-parametric embedding architectural design presented in
PMFE-SN is based on deep learning, but it does not suffer from overfitting even with a very small
number of samples in the dataset. In addition, it is learning with even two samples in a training set.
The two-stage balancing incorporated reduces model bias towards predicting majority class, as well as
helps in learning from same and different class pairs in a balanced way. Evaluation metrics used in
previous research may mislead in measuring the performance of various models as they are sensitive
to imbalance. In addition to development of PMFE-SN, we define five evaluation metrics insensitive to
imbalance for assessment of the models. Results show that PMFE-SN outperformed the state-of-the-art
methods in all these metrics.

In future, more layers of vgg16 can be trained to predict class 0 and class 3 that have not been
predicted correctly yet. In addition to this, training can be done using all slices instead of only three
middle axial slices to exploit all the information in MRI volumetric data. Clinical data in this dataset
before treatment and after treatment can be used to assess whether they play any role in improving the
performance of prediction. Similarity metrics other than cosine similarity can be used for improvement
in results.
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