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Abstract: The early detection and rapid quantification of acute ischemic lesions play pivotal roles in 

stroke management. We developed a deep learning algorithm for the automatic binary classification 

of the Alberta Stroke Program Early Computed Tomographic Score (ASPECTS) using diffusion-

weighted imaging (DWI) in acute stroke patients. Three hundred and ninety DWI datasets with 

acute anterior circulation stroke were included. A classifier algorithm utilizing a recurrent residual 

convolutional neural network (RRCNN) was developed for classification between low (1–6) and 

high (7–10) DWI-ASPECTS groups. The model performance was compared with a pre-trained 

VGG16, Inception V3, and a 3D convolutional neural network (3DCNN). The proposed RRCNN 

model demonstrated higher performance than the pre-trained models and 3DCNN with an 

accuracy of 87.3%, AUC of 0.941, and F1-score of 0.888 for classification between the low and high 

DWI-ASPECTS groups. These results suggest that the deep learning algorithm developed in this 

study can provide a rapid assessment of DWI-ASPECTS and may serve as an ancillary tool that can 

assist physicians in making urgent clinical decisions. 

Keywords: deep learning; diffusion magnetic resonance imaging; stroke 

 

1. Introduction 

Acute ischemic stroke is a major cause of disability, and urgent decision making for proper 

treatment strategies is critical for the improved outcome of patients with stroke [1,2]. The evaluation 

of infarct volume and stroke onset time play important roles in the early treatment approach [2]; 

hence the early detection and rapid quantification of the acute ischemic lesion on brain imaging with 

computerized tomography (CT) or diffusion-weighted magnetic resonance imaging (DWI) have 

become important for the diagnosis and treatment of acute ischemic stroke.  

The Alberta Stroke Program Early CT Score (ASPECTS) is an established 10-point semi-

quantitative scoring system using brain CT and has been used for the rapid assessment of the extent 
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of early ischemic changes in patients with acute anterior circulation stroke. Although the ASPECTS 

system has been widely utilized to determine the eligibility criteria of mechanical thrombectomy 

[3,4], the lack of agreement and the variability of ASPECTS among even experienced clinicians have 

been the main source of its limitation [5]. The DWI-ASPECTS, which is based on an ASPECTS 

measurement using DWI instead of CT, has been suggested as an alternative and shown to provide 

a superior inter-rater agreement and output prediction compared to CT-ASPECTS [6,7]. 

Recently, deep learning has been shown to be a powerful tool in computer vision, voice 

recognition, and natural-language processing, and has gained widespread attention for application 

in medical research. Convolutional neural networks (CNNs), a class of deep learning methods that 

has emerged as one of the most effective tools for pattern recognition, has been applied to the analysis 

of medical imaging, such as disease classification, lesion detection, segmentation, and data processing 

[8–10]. Although several recent studies have utilized deep learning algorithms to apply to CT and 

magnetic resonance imaging (MRI) data from stroke patients [11,12], the automated assessment of 

the extent of acute cerebral ischemia is still a challenging endeavor. 

Building on previous work in which a 3D convolutional neural network (3DCNN) was applied 

for the binary assessment of DWI-ASPECTS [13], we developed a deep learning algorithm utilizing 

a recurrent residual convolutional neural network (RRCNN) for the automatic binary classification 

of DWI-ASPECTS from patients with acute anterior circulation ischemic stroke. We showed that the 

rapid assessment of DWI-ASPECTS using our proposed algorithm may provide a useful tool for 

physicians for categorizing these patients, which is of importance for time-sensitive clinical decision 

making. 

2. Materials and Methods 

2.1. Subjects 

This retrospective study was approved by the Institutional Review Board of Chonnam National 

University Hospital, which waived the requirement for obtaining written consent. The data collection 

and all methods were carried out in accordance with the relevant guidelines and regulations. A total 

of 319 DWI datasets were included from patients who presented with acute anterior circulation stroke 

due to large vessel occlusion within 6 h of symptom onset at a tertiary stroke center from December 

2010 and January 2016. An additional DWI dataset consisting of a total of 71 patients from February 

2016 to November 2016 were collected for an independent test set. All patients underwent MRI 

examination using a 1.5T MRI scanner (Signa HDxt; GE Healthcare, Milwaukee, Wisconsin). DWI 

sequences were obtained in the axial plane by using a single-shot, spine-echo echoplanar technique 

with the following parameters: repetition time of 9000 ms, echo time of 80 ms, slice thickness of 4 

mm, intersection gap of 0 mm, field of view (FOV) of 260 × 260 mm, matrix size of 128 × 128 

(approximately 2 mm × 2 mm in-plane resolution) and b-values of 0 and 1000 s/mm2.  

DWI-ASPECTS was retrospectively assessed by two neuroradiologists who were blinded to 

clinical information. The assessment of DWI-ASPECTS involves 10 distinct regions, subdividing the 

territory of the middle cerebral artery, in which the overall score is determined by deducting a score 

of 1 from the initial score of 10 for each affected region [14]. Approximately 95% of the DWI-ASPECTS 

assessment (370 out of 390 cases) were the same between the two neuroradiologists. The final 

conclusions for the disagreeing 20 cases were made by a consensus from the two neuroradiologists 

after a further inspection by them. Patients were classified into two groups according to their DWI-

ASPECTS: group 1 consisted of patients with the DWI-ASPECTS of 1–6 (n = 147) and group 2 with 

the DWI-ASPECTS of 7–10 (n = 243). This binary classification was based on the previous finding, 

which demonstrated the distinct clinical outcome between the two groups and consequently the need 

for rapid determination of differential treatment options between these two groups [15,16]. Figure 1 

shows an example of DWI images from the two groups. 
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Figure 1. Representative diffusion-weighted magnetic resonance imaging (DWI) slices from two 

groups. DWI data from a patient with the Alberta Stroke Program Early Computed Tomographic 

Score (ASPECTS) of 5 (a) and the ASPECTS of 7 (b) are shown. The slices in the first, second and third 

column in each patient correspond to the supraganglionic, ganglionic, and infraganglionic levels, 

respectively. The yellow arrows indicate infarct lesions. 

Eighty percent of the 319 DWI data points were randomly selected for the training dataset (n = 

244) and the remaining 20% were kept for validation (n = 75). The additional dataset (n = 71) was used 

for the independent testing. The distribution of the ASPECTS among the training, validation, and 

independent test set is shown in Table 1. 

Table 1. Distribution of the Alberta Stroke Program Early Computed Tomographic Score 

(ASPECTS) among the training, validation, and independent test set. 

 ASPECTS Group 1 

(ASPECTS 1–

6) 

Group 2 

(ASPECTS 7–

10) 

Total 
 1 2 3 4 5 6 7 8 9 10 

Training 1 4 5 13 35 32 48 65 39 2 90 154 244 

Validation 0 0 2 3 12 9 14 20 14 1 26 49 75 

Testing 0 3 4 7 5 12 9 19 9 3 31 40 71 

2.2. Slices Filtering 

A slice filtering strategy was applied to bypass DWI slices that were non-informative. Each DWI 

dataset contained a sequence of approximately 40 imaging slices. Approximately 15% of cranial and 

35% of caudal slices of each patient data, which were well outside the area of the middle cerebral 

arterial territory and uninformative for estimating ASPECTS, were removed. As a result, 

approximately 20 slices, with regions that included the middle cerebral arterial territory, remained. 

2.3. DWI Preprocessing 

After the slice filtering, the DWI datasets were preprocessed by brain cropping and a contrast 

stretching (Figure 2). The brain cropping was intended to remove the background portion of the 

images and to include only brain parenchyma. Based on the pixel intensity values from the image 

histogram, the top, bottom, left and right boundary pixels of the brain parenchyma were determined 

and utilized for selecting the boundary for cropping. The contrast of the cropped image was enhanced 

by the contrast stretching algorithm using the following formula: 
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𝑃𝑜𝑢𝑡 = (𝑃𝑖𝑛 − 𝑃𝑖𝑛
𝑚𝑖𝑛) (

𝑃𝑜𝑢𝑡
𝑚𝑎𝑥 − 𝑃𝑜𝑢𝑡

𝑚𝑖𝑛

𝑃𝑖𝑛
𝑚𝑎𝑥 − 𝑃𝑖𝑛

𝑚𝑖𝑛
) + 𝑃𝑜𝑢𝑡

𝑚𝑖𝑛  

where Pout is the pixel value of the contrast-stretched image and Pin is the pixel value of the original 

image. 𝑃𝑜𝑢𝑡
𝑚𝑎𝑥  and 𝑃𝑜𝑢𝑡

𝑚𝑖𝑛 are 255 and 0, respectively. 𝑃𝑖𝑛
𝑚𝑎𝑥 and 𝑃𝑖𝑛

𝑚𝑖𝑛 are the 99th and 80th percentile 

of the histogram in the original image, respectively. 

 

Figure 2. Representative diffusion-weighted magnetic resonance imaging (DWI) images illustrating 

the preprocessing step. The original DWI image (a) was cropped around brain parenchyma and a 

contrast stretching algorithm was applied to enhance the contrast of the DWI data (b). 

2.4. Data Augmentation 

Every 2D imaging slice of the DWI datasets was resized to 80 × 80 by a bicubic interpolation, 

rendering a final input DWI sequence with a 20 × 80 × 80 resolution. The DWI datasets used for 

training the model were augmented by a horizontal flip, the addition of Gaussian noise, and a 

clockwise and counter-clockwise 15-degree rotation as shown in Figure 3. After the data 

augmentation, the training set consisted of 1220 DWI samples, corresponding to a total of 24,400 

imaging slices. 

 

Figure 3. An illustration of data augmentation. The preprocessed diffusion-weighted magnetic 

resonance imaging data (a) underwent a horizontal flip (b), the addition of Gaussian noise (c), a 

clockwise 15-degree rotation (d), and a counter-clockwise 15-degree rotation (e). 
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2.5. Model Training 

We used the RRCNN for model training, which considered the DWI slices as a sequence of 

images. It contained five convolution blocks for extracting 2D features and one recurrent block for 

extracting sequential features. The proposed RRCNN structure was adapted from the VGG16 [17] 

and ResNet [18] structure by adding skip connections in each convolution block as shown in Figure 

4. Each block of convolution had two or three convolution layers with the kernel size of 3 × 3 or 7 × 7 

and one max pooling layer. The number of feature maps in each convolution block was 32, 64, 128, 

256, and 256, respectively. The recurrent block contained one long short term memory (LSTM) layer 

with 256 hidden nodes. The DWI datasets underwent a slice filtering, preprocessing, and 

augmentation step before training. We used an Adam optimizer with a learning rate of 1e-6 and a 

batch size of 32. Our models were trained using Tensorflow-GPU with NVIDIA GTX 1080 Ti. 

 

Figure 4. The flowchart of the recurrent residual convolutional neural network model developed in 

this study. The proposed model contained five convolution blocks followed by a recurrent block, fully 

connected layers, and a softmax classifier. LSTM, long short term memory; FC, fully connected layer; 

ASPECTS, Alberta Stroke Program Early Computed Tomographic Scoring. 

2.6. Comparison of RRCNN with Pre-Trained Models and 3DCNN 

We evaluated and compared the performance of the proposed RRCNN structure with those of 

VGG16 [17] and Inception V3 [19] models that were pre-trained using ImageNet data [20]. The pre-

trained models were fine-tuned by adding one LSTM layer before the fully connected layers. During 



Diagnostics 2020, 10, 803 6 of 12 

 

training, the weights on the LSTM layer and the fully connected layers were updated, while the pre-

trained CNN weights were frozen. We used an Adam optimizer with a learning rate of 1e-5 and a 

batch size of 32. In addition, we trained the 3DCNN model [21], which considered the DWI slices as 

three-dimensional data, and compared its performance with that of the proposed RRCNN model. 

The learning rate and the batch size of 3DCNN was 1e-5 and 32, respectively. Detailed information 

about the 3DCNN model has been previously described [13]. All deep learning models were trained 

and evaluated three times using the validation set in order to assess and verify the performance of 

their training and the mean performances were reported. Sensitivity (Group 1 considered as a 

positive condition), specificity, F-score, accuracy with a threshold of 0.5 and the area under the curve 

(AUC) from the receiver operating characteristic (ROC) curve was calculated. 

3. Results 

The ability of our proposed RRCNN for the classification of DWI data between patients with a 

low and high DWI-ASPECTS was demonstrated and compared with other deep learning algorithms. 

Table 2 shows the comparison of results between the proposed RRCNN, the pre-trained VGG16 and 

Inception V3 model, and the 3DCNN. For the validation data, the accuracy of the proposed RRCNN 

was 84.4%, which was higher than those of the pre-trained VGG16 (72.8%), pre-trained Inception V3 

(72.4%), and 3DCNN (81.7%). Similarly, the AUC of the proposed RRCNN was 0.910, which was 

higher than those of the pre-trained VGG16 (0.801), pre-trained Inception V3 (0.834), and 3DCNN 

(0.844). The sensitivity and F1 score also showed a similar trend. The specificity of RRCNN and 

3DCNN were similar (89.8% and 89.1%, respectively), which were slightly higher than those of pre-

trained VGG16 (86.3%) and pre-trained Inception V3 (84.3%). 

Table 2. Comparison of model performances between various deep learning algorithms for 

classifying patients with high diffusion-weighted magnetic resonance imaging-Alberta Stroke 

Program Early Computed Tomographic Score (DWI-ASPECTS) (7–10) and low DWI-ASPECTS (1–6). 

Model 

Validation Dataset Independent Test Dataset 

Sens. 4 

(%) 

Spec. 5 

(%) 
F1 

Acc. 6 

(%) 
AUC 

Sens. 4 

(%) 

Spec. 5 

(%) 
F1 

Acc. 6 

(%) 
AUC 

Pre-trd. 1 VGG16 70.5 86.3 0.801 72.8 0.801 61.3 92.5 0.831 78.8 0.920 

Pre-trd. 1 Inception 

V3 
71.8 84.3 0.795 72.4 0.834 64.5 92.5 0.840 80.0 0.921 

3DCNN2 78.2 89.1 0.848 81.7 0.844 77.4 90.0 0.867 84.5 0.929 

Proposed RRCNN3 82.0 89.8 0.872 84.4 0.910 83.9 90.0 0.888 87.3 0.941 

1 Pre-trd., Pre-trained; 2 3DCNN, 3D convolutional neural network; 3 RRCNN, recurrent residual 

convolutional neural network; 4 Sens., Sensitivity; 5 Spec., Specificity; 6 Acc., Accuracy 

Using the independent test dataset, the proposed RRCNN model demonstrated a reasonable 

performance with a sensitivity, specificity, F1-score, accuracy, and AUC of 83.9%, 90.0%, 0.888, 87.3%, 

and 0.941, respectively. For all CNN models, the specificity, F1 score, accuracy and AUC of the 

independent test were either slightly higher than or comparable to those of the validation test. The 

sensitivities of the RRCNN and 3DCNN were comparable between the validation and independent 

test datasets, while the sensitivities of pre-trained models in the validation set were higher than those 

in the independent set. In general, the evaluation metrics showed that the proposed RRCNN had 

comparable performances with slightly higher levels of sensitivity, specificity, F1 score, accuracy and 

AUC compared to the other three models. The high level of F1 score (0.888) and the relatively small 

difference between the sensitivity (83.9%) and the specificity (90.0%) of the RRCNN model indicate 

that our proposed model did not have a critical bias toward a specific ASPECTS class.  

Figure 5a shows the comparison of ROC curves between the four deep learning models. The 

confusion matrix of the RRCNN model on the independent test data is shown in Figure 5b. Among 

five cases that were incorrectly predicted as Group 2, three belonged to ASPECTS 6, one ASPECTS 5, 
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and one ASPECTS 4. Among four cases that were incorrectly predicted as Group 1, two belonged to 

ASPECTS 7, and the other two to ASPECTS 8. 

 

Figure 5. Summary of results using the independent test set. The receiver operating characteristic 

(ROC) curves are shown for the pre-trained VGG16, pre-trained Inception V3, 3D convolutional 

neural network (3DCNN), and proposed recurrent residual convolutional neural network (RRCNN) 

models (a). The proposed RRCNN model demonstrated a slightly higher area under the curve (AUC) 

(0.941) compared to other models. The confusion matrix demonstrates the classification results using 

the independent test set (b). 

4. Discussion 

Estimating the extent of infarction volume plays a pivotal role in the management of patients 

with acute ischemic stroke and has shown to be an important factor in determining the eligibility of 

reperfusion therapy and predicting clinical outcomes [4,6,7]. CT-based ASPECTS as well as DWI-

ASPECTS are widely used tools for the indirect and rapid assessment of infarction volume [3,5–7]. 

Several efforts have been made to automate the process of estimating the extent of infarction using 

computer software. e-ASPECTS is one such method, which was proposed by Hampton-Till et al. and 

designed for the automated scoring of CT-based ASPECTS [14]. Several studies have demonstrated 

the feasibility of using e-ASPECTS in assessing CT scans of acute ischemic stroke patients and 

suggested that the software achieved a performance comparable to stroke physicians or 

neuroradiologists [22,23]. Other studies have shown that the software can be used to predict the 

outcome after mechanical thrombectomy [24,25]. 

Although CT scan is commonly used for the assessment of infarct lesion for stroke patients 

because of its availability in most emergency clinical environments, the MRI-based assessment of 

infarction, including DWI-ASPECTS, has shown to provide alternative methods [15,16,26,27]. In a 

recent study, automated computer-based ASPECT scoring was applied to DWI [28]. The authors 

utilized a decision tree algorithm to develop an automated method to predict the total ASPECT score. 

Although the performance of their automated method was slightly worse than human expert scoring, 

they demonstrated that the machine learning-based method can be used to determine DWI-ASPECTS 

with good precision. Another automated ASPECTS system combining feature engineering and 

random forest learning was developed with non-contrast CT scans of 257 patients with acute ischemic 

stroke using DWI as the ground truth and demonstrated the ability to determine ASPECTS using an 

automated approach [29]. These studies suggest that machine learning algorithms can be utilized for 

the automated assessment of ASPECTS. 

Deep learning algorithms have been applied to medical imaging [9] and have led to an exciting 

opportunity for data-driven stroke management and guiding the diagnosis of acute ischemic stroke 

[30,31]. Recently, several studies have used CNN algorithms for application in acute ischemic lesions 
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[32–36] and provided effective tools for automatic lesion segmentation or volume calculation. Other 

studies have focused on developing a deep learning-based approach for detection or identification of 

large vessel occlusion from CT angiography [37,38]. These studies suggest that deep learning 

algorithms can be effectively applied to the management of stroke. 

Although previous efforts using e-ASPECTS have been shown to provide quantitative scores of 

ASPECTS, we focused on developing a deep learning algorithm for a fast rendering of a binary 

classification of DWI-ASPECTS. In ischemic stroke, time is brain, meaning delays to proper treatment 

lead to worse brain injuries and damage [1,2]. Currently, endovascular treatment is regarded as the 

standard treatment for selected acute ischemic stroke patients due to large vessel occlusion; however, 

an appropriate patient selection based on rapid decision-making is important for producing maximal 

clinical outcome [39]. Previous findings reported marked differences in clinical outcome between two 

subgroups. The patients with DWI-ASPECTS greater than or equal to 7 had a distinct clinical outcome 

compared to those with DWI-ASPECTS smaller than 7 after intra-arterial or IV pharmacologic 

thrombolysis [15,16]. These findings signified the need for determining the different treatment 

strategies based on the rapid characterization of ischemic lesions between the two groups. The results 

from our findings suggest that the RRCNN model developed in this study may provide an important 

ancillary tool for clinicians in a time-sensitive assessment of DWI-ASPECTS from acute ischemic 

stroke patients. With further improvements and clinical validations, we envision that the algorithm 

developed in this study may be used for building a triage and fast response system where it can 

provide a shorter time to mechanical thrombectomy and also a faster time to transfer from a 

peripheral hospital to a tertiary stroke center, so that the relevant procedure can be performed. This 

would present a significant clinical benefit because there is a shortage of interventional 

neuroradiologists [40] and the automated DWI-ASPECTS assessment can help accelerate the 

procedure of identifying patients who need an interventional neuroradiologist’s consultation. Most 

recently, Viz LVO (Viz.ai, Inc. San Francisco CA, USA), which is software with the similar aim to 

improve the triage and shorten the time-to-treatment for stroke patients using CT angiography, 

became the first artificial intelligence-based software to receive the Medicare New Technology Add-

on Payment (NTAP) by the Centers for Medicare & Medicaid Services [41,42]. 

In our previous effort, we provided a similar approach for the rapid assessment of DWI-

ASPECTS using a 3DCNN model. Although the previous results demonstrated an accuracy of 81% 

and AUC of 0.872 for the binary classification DWI-ASPECTS, the 3DCNN possessed more than 100 

million parameters, requiring a substantial amount of computation for training. The current study 

presents several advancements over the previous one. A larger number of data were included in the 

current study (390 DWI data in the current study vs. 308 in the previous study). In this study, we 

developed our proposed model based on a recurrent neural network (RNN), which has exhibited 

promising results in recognizing patterns in sequences of data [43]. In this setting, the multi-slice DWI 

datasets were regarded as a sequence of images, rather than 3D images. The performance of the 

proposed RRCNN model was compared to that of the 3DCNN model that has been extensively used 

for processing 3D datasets [21]. Although the results from the two models were comparable, with our 

RRCNN model showing a slightly higher level of accuracy (87.3%) and AUC (0.941) compared to the 

3DCNN model (accuracy, 84.5%; AUC, 0.929), the computation cost of the proposed RRCNN model 

was notably reduced compared to that of the 3DCNN, requiring approximately 4 to 5 h of training 

time, while the 3DCNN required more than 10 to 12 h of training time. These results suggest that 

RNN-based models may provide an alternative way to analyze multi-slice medical imaging data. 

VGG16 [17] and Inception V3 [19] are two of the popular deep neural networks that have been 

shown to be very efficient in image classification. Although these networks, which were pre-trained 

with large-scale data from ImageNet [20], have been widely applied to medical image analysis in 

combination with transfer learning and fine tuning technique [44–48], the effectiveness of the transfer 

learning method using these deep networks is debatable [49] because medical images, such as MRI 

and CT, are very different from the images in ImageNet, which are mostly natural images, and the 

high-level features that are learned during training of medical images can be very different. In 

addition, the application of transfer learning using these deep networks may need careful 
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consideration depending on the training condition, such as the number of training datasets, because 

these complex neural networks generally require a large amount of training data to be effectively 

trained. Nevertheless, pre-training the well-known networks and applying the transfer learning 

technique are still very popular methods for medical image analysis. We compared the performance 

of the proposed RRCNN model that was trained from scratch to those of pre-trained VGG16 and 

Inception V3. Although this comparison may provide limited information given the data and the 

specific classification task we applied, the results may be used as a reference regarding the choice of 

CNN model and training strategy for future studies. The results from our study suggest that the 

proposed RRCNN model, which has a smaller number of layers and parameters compared to VGG16, 

Inception V3 and 3DCNN, proved to be as effective, if not more effective, for a rapid assessment of 

ASPECTS with a limited number of training datasets (Table 2). A recent study reported a similar 

observation that the pre-training method using images from ImageNet sped up convergence early in 

training, but did not necessarily provide improved regularization, nor increase test accuracy [49,50]. 

Although our study demonstrated the potential of the deep learning model to be used for the 

rapid, automatic assessment of early acute ischemic changes in DWI, it still presents several 

limitations. First, our study aimed at differentiating low ASPECTS (DWI-ASPECTS 1–6) from high 

ASPECTS (DWI-ASPECTS 7–10) groups, thereby presenting a global estimation of DWI-ASPECTS 

rather than a classification of individual DWI-ASPECTS regions. The multi-class classification of 

individual ASPECTS or a region-based approach may provide an added prognostic value and will 

be considered in future research. Second, our study included a total of 319 patient DWI datasets 

acquired from an MR scanner located in our emergency department. Although our results 

demonstrated the feasibility of using deep learning models for the automatic classification of DWI-

ASPECTS, the collection of a larger number of datasets should be considered to improve the 

performance of the model. In addition, the inclusion of data acquired from MR scanners of different 

vendors needs to be considered in order to improve the general applicability of our results. A 

concerted effort to collect data from multiple institutions and validate the developed model with 

different external datasets is on-going, which is expected to contribute not only to further validate 

our model, but also to accumulate and share MRI data from stroke patients that can be used in future 

research. The additional datasets that will be available from the coordinated multi-center 

collaboration may allow us to develop deep learning models that are able to perform a multi-class 

classification of DWI-ASPECTS or a region-based analysis of ASPECTS. 

5. Conclusions 

We developed a deep learning algorithm based on a recurrent residual convolutional neural 

network for the classification of DWI-ASPECTS. Our model demonstrated an accuracy of 87.3% and 

AUC of 0.941 for automatic classification between the low and high DWI-ASPECTS. The results 

suggest that the deep learning algorithm developed in this study can serve as an ancillary tool that 

assists in the rapid decision making for patients with acute ischemic stroke. 
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