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Abstract: We aimed to estimate tissue displacements’ parameters in midbrain using ultrasound
radiofrequency (RF) signals and to compare diagnostic ability of this RF transcranial sonography
(TCS)-based dynamic features of disease affected tissues with conventional TCS (cTCS) and magnetic
resonance imaging (MRI) while differentiating patients with Parkinson’s disease (PD) from healthy
controls (HC). US tissue displacement waveform parametrization by RF TCS for endogenous brain
tissue motion, standard neurological examination, cTCS and MRI data collection were performed
for 20 PD patients and for 20 age- and sex-matched HC in a prospective manner. Three logistic
regression models were constructed, and receiver operating characteristic (ROC) curve analyses were
applied. The model constructed of RF TCS-based brain tissue displacement parameters—frequency
of high-end spectra peak and root mean square—revealed presumably increased anisotropy in the
midbrain and demonstrated rather good diagnostic ability in the PD evaluation, although it was
not superior to that of the cTCS or MRI. Future studies are needed in order to establish the true
place of RF TCS detected tissue displacement parameters for the evaluation of pathologically affected
brain tissue.

Keywords: Parkinson’s disease; brain tissue micromovements; displacement waveform;
radiofrequency ultrasound; transcranial sonography

1. Introduction

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease
whose main neuropathological feature is the loss of dopaminergic neurons of the substantia nigra
(SN) located in the midbrain [1,2] and the deposition of α-synuclein in neurons [3]. Despite huge
achievements in contemporary neurology and neuroimaging, a definitive diagnostic test for PD is not
yet available [4]. Positron emission tomography and single-photon emission computed tomography
are currently the most common functional radionuclide diagnostic methods used in degenerative
extrapyramidal disorders; however, their application in clinical practice remains limited due to
high price, the relatively short half-life of the radioisotopes, radiation exposure to patients, and the
discrepant data on their reliability in differential diagnosis [4–6]. Advanced magnetic resonance
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imaging (MRI) techniques and post-processing procedures are also being extensively explored to
enhance diagnostic accuracy for PD [7,8], nevertheless, these novel techniques are also rather costly
and not easily accessible.

Transcranial sonography (TCS) is a relatively new method for assessment of the deep brain
structures, including midbrain and SN [9–11]. Hyperechogenicity of SN in a cross-sectional B-mode
(Brightness or Grayscale mode) image of the midbrain is treated as a main PD biomarker [4].
Nevertheless, TCS needs to be performed by an experienced examiner to be reliable and support the
diagnosis for the patient. Therefore, additive techniques are acknowledgeable in order to improve
diagnostic reliability of TCS, especially if they are inexpensive, non-invasive, safe and easily accessible.

TCS modification opens up the possibility to track the brain tissue displacements at the scale of
micrometers caused by the endogenous quasi-periodic pulsatility in the intracranial basin. Endogenous
characteristics of brain tissue displacements are supposedly related with the biomechanical features of
pulsating tissue and are likely affected by evolving pathology and correlated with tissue stiffness [12].
These brain tissue displacements can be evaluated by detailed analysis of raw ultrasound (US)
radiofrequency (RF) signal changes of the same tissue region over time [13]. We developed such
an approach further [14] and in our recent study [15] we demonstrated that evaluation of complex
interactions between the set of RF TCS-based brain tissue displacement parameters allows us to discern
the medial temporal lobe of an Alzheimer’s disease patient from that of a healthy control (HC) subject
with excellent diagnostic ability.

The aim of this study was to estimate tissue displacement parameters in midbrain using
backscattered US RF signals and to compare the diagnostic ability of RF US-based dynamic features of
disease affected tissues with conventional TCS (cTCS) and MRI while differentiating patients with PD
from HC.

2. Materials and Methods

The design and consent procedures of this exploratory study were approved by the Ethics
Committee for Biomedical Research at the Lithuanian University of Health Sciences (decision on 19
December 2017, No. BE-2-728), Kaunas, Lithuania. All participants gave signed informed consent
prior to inclusion in the study. All procedures were in accordance with the Declaration of Helsinki.

2.1. Patients and Control Group

Twenty PD patients were prospectively selected from both outpatient and inpatient units of the
Department of Neurology at the Hospital of Lithuanian University of Health Sciences Kaunas Clinics
(Kaunas, Lithuania) from March 2018 until March 2019.

Neurologists who consulted the patients for a movement disorder performed an initial selection of
potential study subjects. Patients were included in the study if they: (1) were diagnosed with idiopathic
or familial PD, which was based on the United Kingdom Brain Bank criteria [16]; (2) provided written
consent; (3) had satisfactory acoustic window properties on at least one side for TCS; (4) were 18 years
or older; (5) were eligible for MRI. Patients were excluded from the study if they: (1) had an uncertain
diagnosis; (2) had a major somatic disease (decompensated heart failure, terminal renal or hepatic
dysfunction, active cancer, had diagnosed hemodynamically significant intracranial/extracranial artery
stenosis or thrombosis); (3) had a severe mental disorder (psychotic type, severe depression); (4) had a
prominent neurological deficit (severe visual disturbance, aphasia, severe paresis, ataxia).

Twenty age- and sex-matched HC subjects were recruited from healthy relatives of the patients,
provided they did not have any major somatic illness as listed above, cognitive impairment or any
structurally abnormal findings in brain MRI and were not under investigation or treatment for any
neurodegenerative diseases. All participants were Caucasians and most of them were Lithuanians.

All participants completed a questionnaire on general demographic information and risk factors.
Education was evaluated by the duration of formal education in years. Family history was considered
positive if there was at least one known PD case among first- or second-degree relatives. The Motor
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section of the Unified Parkinson’s Disease Rating Scale (UPDRS) [17] was applied while assessing
functionality of the patient.

2.2. Radiofrequency Transcranial Sonography (RF TCS)

RF TCS imaging for endogenous brain tissue motion data collection was performed using a
research-dedicated ultrasound scanner, Ultrasonix Sonix Touch (Analogic Ultrasound, Richmond, BC,
Canada, 2013), equipped with a phased array sector probe (SA 4–2, 64 acoustic elements). The main
parameters of ultrasonic scanning and RF signal digitization were as follows: sampling frequency
fs = 40 MHz, analog-to-digital converter resolution 16 bits, number of post-beam formed scanning
lines—131, angle of phased array transducer sector—60◦, scanning depth—11 cm, frequency of
ultrasound waves 2.5 MHz, frame rate—45 Hz, transmit focal single depth—7 cm. The sequences for
recording B-mode scans (259 frames in total) and raw B scan forming RF signals were acquired and
stored for off-line analysis.

All US scans were performed by an experienced neurosonologist (Vaidas Matijošaitis) with
13 years of experience in intracranial vascular and structural ultrasound. All study subjects were asked
to stay calm and relaxed in a supine position for 5 min and remain motionless and speechless during
the examination. First scans were made in a midbrain (axial) scanning plane in B-mode through a right
temporal bone acoustic window. The position of the transducer was fixed by closing the dedicated
spherical bearing of the bracket during insonation of the midbrain. After recording the sequence of
B-mode scan images, the butterfly shape midbrain was marked as a region of interest (ROI) for further
investigation (see Figure 1a), and 6-s length US RF signal sequences were stored in the computer
memory. The investigator had no contact with the patient, US transducer or the patient’s bed during
US RF signal recording. All procedures described above were repeated while making scans through a
left temporal bone window. Thus, two ROIs—one from the left and another from the right side of the
head—were investigated separately for each study subject.

The classical 1D cross-correlation [18–20] was used to obtain spatial point displacements in ROI
along the scanning line from the acquired US RF signals. The calculation options used at this step were
the same as described in our earlier article [14]. The displacement signal processing was the same as in
our recent study [15]: the coordinate system was changed into Lagrangian [21], the median for each
scanning frame’s line was subtracted separately and high-pass filtered with cutoff at 0.75 Hz and only
confidently repeatable moving spatial points were selected for further analysis.
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Figure 1. Regions of interest (ROI) examples in axial scanning plane images co-registered by different
methods for the same healthy participant: (a) half of the midbrain in radiofrequency (RF) transcranial
sonography (TCS) data-based B-mode image, (b) analyzed half of the midbrain and not-analyzed half
of the midbrain mapped as root mean square (RMS) of confident displacements detected from RF TCS
signal sequences; (c) substantia nigra (SN) in conventional TCS (cTCS) image of midbrain (d) SN by
magnetic resonance imaging (MRI) of midbrain, T2W/TSE/2 mm sequences. Contours of ROI depicted
in colorful lines (see online version). In sonography examples, the ultrasound transducer was on the
left side of the head or at the top of images.

The waveforms of displacement signals were quantified using four groups of the displacement
parameters for each individual confident spatial point:

1. Amplitude parameters:

• Root mean square (RMS)—represents displacement intensity over an entire recorded time
(6-s). RMS of each individual confident spatial point depicted in Figure 1b.

• Peak-to-peak amplitude of a mean repeated movement; this parameter was called “pulse
amplitude” by Kucewicz et al. [19].

2. Strain parameter—Lagrangian strain as module of the derivative of amplitudes of a mean repeated
movement calculated along the ultrasound scanning line’s direction.

3. Morphology parameter—frequency of high-end spectra peak (shortly–FreqHP) was calculated
from the entire displacement signal length (6-s). FreqHP was estimated at the peak of the power
spectra observed in the frequency range from 1.5 × FreqD to 22.5 Hz, where FreqD is the dominant
frequency in displacement low-end spectra (from 0.67 to 2.00 Hz interval) supposedly caused by
heart beats.

4. Energy parameter—relative energy within the 4–6 Hz frequency band normalized to total energy
of displacement signal. This parameter was introduced to control the Parkinsonian 4–6 Hz rest
tremor [22,23]. Distribution of this energy parameter was evaluated only by its statistical mode.

The distributions of remaining parameters—amplitude, strain and morphology group parameters
of all displacement signals of individual points—were quantified by their minimal and maximal
values, median, first (Q1) and third quartiles (Q3), interquartile range (IQR) and the most frequent
value (statistical mode); in addition, amplitude group parameters were also evaluated by ex-Gaussian
estimates µ, σ, τ, also ex-Gaussian distribution mean and standard deviation (SD) using the DISTRIB
toolbox for MATLAB [24]; as strain has similar to exponential distribution, only the ex-Gaussian
distribution τ estimate was added from the ex-Gaussian estimates. Most of above-mentioned parameters
and their distributions were described in more a detailed manner in our previous study [15].
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2.3. Conventional TCS (cTCS)

All PD patients and HC subjects underwent cTCS with a commercially available ultrasound
system, Voluson 730 Expert BT08 (General Electric (GE) Healthcare, Zipf, Austria). The ultrasound
system was equipped with an electronic sectored PA2-5P phased array transducer, which has a working
frequency range of 1.3 to 4.0 MHz, 128 piezoelectric elements, a modifiable 90-degree visual angle.
B-mode images have 8-bit depth (i.e., 256 gray tones), a dynamic range of 180 dB and a maximum
depth of 30 cm. The system comes installed with algorithms to reduce noise and artifacts.

TCS imaging was done using the PA2-5P/NEURO transducer mode. Scans were done in B-mode
without any color coding or Doppler mode. Amplitude gain was changed manually, which was done
by observing the live TCS image. The brightest point on the screen was used as a reference point for
amplitude gain. Regulator sliders of time gain compensation were used and placed in a semicircle
with convexity to the right so that the ROI, the midbrain along with its structures—SN, the red nucleus,
raphe nuclei—could be seen the brightest.

All subjects were supine in a darkened room, scans were performed by placing the transducer at
the level of the eyebrows with the front part pointed upwards, i.e., to the side of face at the pre-auricular
temporal bone area. Scans were performed in two standard planes: (a) the mesencephalic or the
midbrain plane, and (b) the diencephalic plane or the third ventricle plane. In the mesencephalic
plane, the area of the SN projection was measured (in cm2) at the level of the transducer (see
Figure 1c). Measurement of the height of the third ventricle in the segment neighboring brain stem
was also performed.

All participants had quantitative measurements of the size of the third ventricle and the SN
performed twice on each side by the same neurosonologist who performed RF TCS. The penetration
depth of TCS was usually 16.8 cm, while the zoom was 1.6 times to measure the SN and third ventricle
dimensions. The normative threshold values of the SN area calculated in our laboratory for Voluson
730 Expert BT08 were < 0.20 cm2 (mean + 1 SD) and < 0.26 cm2 (mean + 2 SD) [25]. For the third
ventricle diameter, the normative value was <1.0 cm (mean + 2 SD) [26].

2.4. MRI Acquisition

All MRI scans were obtained using a 1.5 T Siemens MAGNETOM Avanto (Erlangen, Germany)
scanner within 2 to 4 weeks from the examination by TCS. The imaging protocol included axial
T2W/TSE/2 mm (TR 4740 ms, TE 3.37 ms, TI 1100 ms, flip angle 120), T1W/mpr/p2/iso (TR 3000 ms,
TE 89 ms), T2W/fl2d/hemo (TR800 ms, TE 26 ms, flip angle 20), coronal T2W/TSE (TR 5000 ms, TE 93 ms,
flip angle 150), DW/ADC (TR 3000 ms, TE 89 ms), axial and coronal T2W/FLAIR (TR 9000 ms, TE 98 ms,
TI 2500 ms, flip angle 150) and sagittal T2W/spc2d/iso (TR 3200 ms, TE 379 ms) sequences of the entire
brain. No contrast media were injected. No hardware or software upgrades of the MRI scanner were
done during the study period.

All sequences (T2W/FLAIR, T2W, T2W/fl2d/hemo, DW/ADC) were used to eliminate intra- and
extra-axial lesions (tumors, vascular pathology, etc.). For the measurements of the SN, T2W/TSE/2 mm
axial images of midbrain were used in all PD patients and in HC. In the axial plane, SN is as
crescent-shaped region (see Figure 1d); therefore, two quantitative measurements—ventral and
dorsal—were taken. The ventral measurement was a maximum width of the visible SN in the cerebral
peduncle near the interpeduncular cistern and 1.5 mm proximal from the inner corner of the midbrain.
The dorsal measurement was a maximum width of the visible SN in the cerebral peduncle near the
peripontine cistern and 2.0 mm distal from the inner corner of the midbrain. The area of SN was
evaluated in the same sequence and scan level using the JiveX Diagnostics Advanced 5.2.0.3 system
(VISUS Health IT GmbH, Bochum, Germany) measurement tool (Poligon statistic measurement).
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2.5. Statistical Analysis

RF TCS, cTCS and MRI data were made quantitative in this study. This allowed us to provide
detailed statistical analysis.

Normality of data distributions were examined using the Shapiro–Wilk test. Since majority of
RF TCS-based parameter estimates were not normally distributed, they were compared between HC
subjects and patients with PD using the non-parametric Mann–Whitney U test; remaining variables
were compared between groups by a parametric Student t test for independent samples. Variables
that achieved a p value of less than 0.20 were examined with multivariate analysis using logistic
regression (LR) for three methods—RF TCS, cTCS and MRI—based measures separately. Forward and
backward stepwise LR was applied to assess the predictive characteristics of the amplitude, strain and
morphology (FreqHP) groups of parameters between PD patients and control subjects, with age (for
all three methods based quantitative measures) and relative energy in the 4–6 Hz frequency band (only
for RF TCS-based quantitative measures) included as a covariate.

Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the
diagnostic ability of the analyzed parameter estimates and—more generally—to evaluate the accuracy
of the LR model that classified subjects into sick or healthy. An optimal diagnostic cut-off point was
determined via the Youden index. ROC curves were analyzed to define a cut-off value for the highest
sensitivity and specificity of predicted probability of LR models and the RF US parameter estimates,
which achieved p ≤ 0.05 using a Mann–Whitney U test.

The significance level α was set at 0.05. Statistical analysis was performed using IBM SPSS
Statistics 22.0 (IBM Corp., Armonk, NY, USA) software.

3. Results

3.1. Demographic Data and Single TCS and MRI Quantitative Measures

Initially, among PD patients 12 (60%) were men, 11 (50%) of HC subjects were men, and, thus,
groups were similar regarding sex (χ2 test, p = 1.00, p > 0.05). Age and education of the initial sample
did not differ statistically between the HC and PD groups (see Table 1: all subjects).

Table 1. Demographic characteristics, conventional transcranial sonography and magnetic resonance
imaging quantitative measures. Statistically significant differences according to the Student t test
marked in bold.

Variable
Mean ± Standard Deviation

p Value
HC PD

All subjects

Age, years 68.5 ± 6.8 64.1 ± 10.1 0.17
Education, years 15.2 ± 3.2 14.7 ± 2.9 0.61

Motor section of UPDRS – 33.2 ± 12.9 –

Subjects with repeatable waveforms in RF TCS recordings

Age, years 68.1 ± 6.8 62.9 ± 10.7 0.123
Education, years 15.0 ± 3.2 14.9 ± 3.2 0.99

Motor section of UPDRS – 31.6 ± 10.7 –
SN dorsal width by MRI, mm 4.29 ± 1.29 3.08 ± 1.77 0.007
SN ventral width by MRI, mm 5.35 ± 1.31 4.05 ± 1.44 0.002

SN area by MRI, mm2 55.4 ± 7.9 33.1 ± 10.9 <0.001
SN area by cTCS, mm2 10.8 ± 2.74 24.4 ± 7.49 <0.001

Width of 3rd ventricle by MRI, mm 6.19 ± 2.80 6.53 ± 1.98 0.70
Width of 3rd ventricle by cTCS, mm 5.89 ± 1.89 6.58 ± 2.38 0.36

cTCS—conventional transcranial sonography; MRI—magnetic resonance imaging; HC—healthy controls;
PD—Parkinson’s disease; RF TCS—radiofrequency transcranial sonography; UPDRS—the Unified Parkinson’s
Disease Rating Scale.
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Once the US RF data were processed, six subjects from the PD patient group and one subject from
the HC group were excluded due to an insufficient number of repeated waveforms in displacement
signals (see Table 1: subjects with repeatable waveforms in RF TCS recordings). Therefore, US RF data
of 19 control subjects (the ROIs of both sides for 10 subjects, only right ROI for three subjects, only left
ROI for six subjects—29 ROIs in total) and of 14 PD patients (the ROIs of both sides for six patients,
only right ROI for four patients, only left ROI for four patients—20 ROIs in total) were used for the
final analyses. Ten persons (52.6%) of the control group were men, and nine (64.2%) were men in the
PD group; however, groups did not differ by sex (χ2 test, p = 0.72). Age and education of the remaining
subjects did not differ statistically between the HC and PD groups (see Table 1) too.

The morphology parameter FreqHP Q3 was the only parameter from RF US-based parameters
that significantly differed statistically between HC (Me = 2.37, Q1 = 1.95, Q3 = 2.62, IQR = 0.68) and
PD groups (Me = 2.71, Q1 = 2.20, Q3 = 3.30, IQR = 1.10) according to the Mann–Whitney U test
(p = 0.018). The area under a curve (AUC) of ROC for FreqHP Q3 was 70.0% (95% confidence interval:
55.1–84.9%); at cut-off of 2.62 Hz, sensitivity was 65.0%, specificity was 75.9%. Besides, there was
tendency that maximal FreqHP value (p = 0.076), RMS ex-Gaussian SD (p = 0.080) and RMS IQR
(p = 0.091) was higher in PD group too. The dominant frequency (FreqD) of the low-end spectrum
peak (expected heart rate) did not differ between groups (Mann–Whitney p = 0.282). Relative energy
in 4–6 Hz frequency band did not differ between HC and PD groups too (Mann–Whitney p = 0.222).

The SN area had remarkable discrepancy between quantitative measures by MRI and by cTCS,
these measures had moderate negative correlation (Pearson r = −0.498, p < 0.001). Scores on Motor
section of UPDRS did not correlate with size of the SN area neither by MRI (p = 0.752), nor by cTCS
measures (p = 0.487).

3.2. Models of Logistic Regression (LR) Analysis

To assess the predictive power of multiple parameters together for the likelihood that the subject
had PD, forward and backward stepwise LR was applied.

From all 40 RF TCS-based parameter estimates, nine had a Mann–Whitney p value of less than
0.20, and thus initially we tried to pass them into LR; however, both forward and backward stepwise
LR analysis produced models without RF TCS-based variables (i.e., both models only contained
an intercept).

Then, we evaluated multiple sets of RF TCS-based variables (four variables having a
Mann–Whitney p value of less than 0.10) with their interactions manually. Only variables not exceeding
0.5 value of Spearman correlation were included into the one set for the LR model. According to ROC
analysis, the most optimal LR model was with two single variables (FreqHP Q3 and RMS ex-Gaussian
SD) and their interaction (see RF TCS 1st Model in Table 2 and Figure 2). After adding age covariate into
this LR model, age became a statistically significant variable; however, two RF TCS-based components
(one single variable and interaction) remained statistically significant (see RF TCS 2nd Model in Table 2).
Relative energy in the 4–6 Hz frequency band was not a statistically significant variable after adding it
as a covariate; however, then only one RF TCS-based component (interaction) remained at the threshold
of statistical significance (see RF TCS 3rd Model in Table 2). All these three models were statistically
significant (p < 0.005) and had a good classification ability (AUC > 80%) according to the ROC analysis
(see Table 3 for more details).

The predicted probability of these RF TCS data-based LR models did correlate with the size of
the SN area as measured by cTCS (from Spearman rho = 0.459 and p = 0.002 for RF TCS 1st Model to
Spearman rho = 0.531 and p < 0.001 for RF TCS 2nd Model) and MRI (from Spearman rho = −0.347
and p = 0.015 for RF TCS 1st Model to Spearman rho = −0.517 and p < 0.001 for RF TCS 3rd Model).
Predicted probability of these LR models did not correlate on the Scores on Motor section of UPDRS
(p > 0.05).

Meanwhile cTCS and MRI quantitative data based LR models had an excellent classification ability
(AUC > 90%) even with a single variable—size of SN area, independent of age (see Tables 2 and 3).
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Table 2. The predictive power of the midbrain tissue displacement signal parameters or size of
substantia nigra area for the likelihood that the subject has Parkinson’s disease. Results of logistic
regression analyses.

Parameter Estimate β Exp(β) Exp(β) 95% CI p Value

RFTCS 1st Model

RMS_exG_SD −3.490 0.030 [0.001, 0.684] 0.028
FreqHP_Q3 −4.392 0.012 [0.000, 0.857] 0.042

FreqHP_Q3 × RMS_exG_SD 1.806 6.084 [1.352, 27.37] 0.019
Constant 7.235 1387.2 - 0.112

RF TCS 2nd Model

RMS_exG_SD −2.807 0.060 [0.004, 0.917] 0.043
FreqHP_Q3 −3.627 0.027 [0.001, 1.364] 0.071

FreqHP_Q3 × RMS_exG_SD 1.527 4.606 [1.212, 17.50] 0.025
Age −0.120 0.887 [0.811, 0.971] 0.010

Constant 12.873 3.898 × 105 – 0.012

RF TCS 3rd Model

RMS_exG_SD −2.895 0.055 [0.002, 1.433] 0.081
FreqHP_Q3 −3.915 0.020 [0.000, 2.249] 0.104

FreqHP_Q3 × RMS_exG_SD 1.599 4.946 [0.986, 24.806] 0.052
Age −0.135 0.873 [0.791, 0.964] 0.007

Relative energy in 4–6 Hz 163.25 7.917 × 1070 [0.000, 1.083 × 10180] 0.203
Constant 13.448 6.923 × 105 – 0.018

cTCS 1st Model

TCS_SN_area 0.731 2.076 [1.319, 3.267] 0.002
Constant −11.868 0.000 – 0.001

cTCS 2nd Model

TCS_SN_area 0.808 2.243 [1.239, 4.063] 0.008
Age −0.119 0.888 [0.694, 1.136] 0.345

Constant −5.084 0.006 – 0.463

MRI1st Model

MRI_SN_area −0.225 0.798 [0.706, 0.902] <0.001
Constant 9.633 1.526 × 104 – 0.001

MRI 2nd Model

MRI_SN_area −0.264 0.768 [0.652, 0.905] 0.002
Age −0.202 0.817 [0.680, 0.981] 0.031

Constant 23.973 2.578 × 1010 – 0.006

β—logistic regression coefficient; Exp(β)—odds ratios; CI—confidence interval; RF TCS—radiofrequency
transcranial sonography; cTCS—conventional transcranial sonography; MRI—magnetic resonance imaging;
FreqHP_Q3—frequency of high-end spectra peak, third quartile, Hz; RMS_exG_SD—root mean square, standard
deviation of ex-Gaussian distribution, µm; TCS_SN_area – area of substantia nigra by conventional transcranial
sonography, mm2; MRI_SN_area—area of substantia nigra by magnetic resonance imaging, mm2.
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Table 3. ROC analysis of the predicted probability of logistic regression models for the likelihood that
the subject has Parkinson’s disease.

Model AUC, % 95% CI p Value Cut-Off,
%

Sensitivity,
%

Specificity,
%

Overall Correct
Classification, %

RF TCS 1st 80.9 [69.1, 92.7] <0.001 29.9 85.0 69.0 75.5
RF TCS 2nd 86.2 [74.9, 97.6] <0.001 44.6 80.0 86.2 83.7
RF TCS 3rd 88.3 [78.6, 97.9] <0.001 42.7 80.0 86.2 83.7

cTCS 1st 98.2 [94.9, 100.0] <0.001 77.7 90.0 100.0 95.9
cTCS 2nd 98.7 [96.5, 100.0] <0.001 70.8 90.0 100.0 95.9

MRI 1st 94.1 [86.5, 100.0] 0.039 54.1 90.0 96.6 93.9
MRI 2nd 97.8 [94.3, 100.0] 0.018 43.3 95.0 96.6 95.9

AUC—area under a curve; CI—confidence interval; cTCS—conventional transcranial sonography; MRI—magnetic
resonance imaging; RF TCS—radiofrequency transcranial sonography.

0 1 2 3 4 5 6 7
Frequency of high-end spectra peak, Hz

0 

5 

10

15

20

25

30

N
um

be
r 

of
 p

oi
nt

s,
 %

PREDICTED_PARKINSON’S_DISEASE_PROBABILITY = 

7.235 − 4.392 × FreqHP_Q3 + 1.806 × FreqHP_Q3 × RMS_exG_SD − 3.490 × RMS_exG_SD

standard
ex-Gaussian

deviation

3rd quartile

Figure 2. Visualization of radiofrequency ultrasound-based displacement parameter estimates that
were included in the first logistic regression model. Sub-images represent distributions of displacement
parameters of confidently repeatable moving individual points, from midbrain: (a) frequency of
high-end spectra peak (FreqHP) and (b) root mean square (RMS). FreqHP_Q3—FreqHP third quartile,
Hz; RMS_exG_SD—RMS standard deviation of ex-Gaussian distribution, µm.

4. Discussion

We aimed to assess the diagnostic ability of endogenous brain tissue displacement parameters in
a midbrain using US RF signals and compare it with a diagnostic ability of the measurements of the
SN area by cTCS and by MRI for the differentiation of patients with PD from HC subjects. The model
constructed of RF TCS-based tissue displacement parameters—FreqHP and RMS—demonstrated quite
good diagnostic ability in the evaluation of the midbrain.

The interaction between one morphology parameter (FreqHP) distribution estimate and one
amplitude parameter (RMS) distribution estimate had the highest influence in the RF US-based model
(RF TCS 1st Model). FreqHP reflects the distribution of frequency values by finding a peak with the
maximum power within high-end spectra for every spatial point separately. Since this displacement
waveform morphology parameter estimate Q3 was the only one from all US RF-based variables differing
between HC subjects and PD patients (only Q3 of FreqHP became higher in PD patients), we can
hypothesize that the registered micromovements in most parts of the midbrain did not significantly
change with the disease, and the changes occurred only in part of the midbrain which had a relatively
sharper micromovements pattern. The same FreqHP parameter-captured disease affected other brain
structures in our previous study [15]. There, a set of brain tissue displacement signal parameters
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(FreqHP maximum, mode and IQR, and strain) worked together well while differentiating the medial
temporal lobe of an Alzheimer’s disease patient from that of an HC subject with an excellent diagnostic
ability [15]. The observed tendency that PD has wider RMS dispersion (as evaluated by ex-Gaussian
SD and IQR) also suggest increased anisotropy in the midbrain.

The obvious difference in the results using the method under investigation could be caused by
differences of the constitutive properties of tissue between various regions of the brain, between white
matter and gray matter [27–29], by the specificities of the underlying neurodegenerative process,
by cardiovascular pulsatility [30] and cerebral autoregulation [31] and by the method itself.

The brainstem, including the midbrain, is globally stiffer than the cerebral hemispheres [27],
and is anisotropic [32,33] because the largest part of brainstem consists of ascending and descending
axons forming major tracts, and white matter tissue is found to be stiffer than gray matter [29]. In the
case of PD, a neurodegenerative process in the midbrain affects mainly dopaminergic neurons of the
compact part of the SN which forms a less-stiff gray matter nucleus. The SN is a very small part (small
percentage) of the entire midbrain and, in contrast to Alzheimer’s disease, does not result in apparent
atrophy or other changes on conventional neuroimaging modalities such as computed tomography or
MRI [34]. Deformation-based morphometry and independent component analysis, however, identified
PD-specific atrophy in the midbrain, basal ganglia, basal forebrain, medial temporal lobe and discrete
cortical regions [35]. Since the SN area is taking a relatively small part in the midbrain scanning plane,
therefore, observed changes by our RF TCS-based micromovements tracking method are relatively
subtle; however, they are still captured by this method.

Besides, according to our data, the midbrain is located about 1.5 times deeper than the medial
temporal lobe assessed in our previous study. Therefore, the US scanning inter-line gaps are increased
from 0.54 to 0.73 mm, although this loss of resolution is hardly influencing our results. However,
transtemporal scanning perpendicular to the cranio-caudal axis of the pulsating brain [36,37] might
limit the possibility of detecting the endogenous deformations more significantly.

Despite all the conditions mentioned above, diagnostic ability findings for the RF TCS of the
midbrain (when age included as covariate, sensitivity is 80.0%, specificity is 86.2%) appear to be similar
to that recently published for the cTCS of the SN (sensitivity: 85%, specificity: 89% respectively) [38],
as well as to our previously published results (sensitivity: 90%, specificity: 82.4%, respectively [25].

To our knowledge, our study is the first one providing quantitative measures obtained by RF TCS
(with high amount of various parameter estimates), cTCS and MRI methods simultaneously. In our
present study, the predicted probability of PD was excellent (ROC AUC ≥ 90%) with a sensitivity of
90–95% and a specificity of 96.6–100% for both structural TCS and MRI measurements of the SN area,
i.e., a bit higher compared to that reported by other researchers. Conventional T1- and T2-weighted
MRI measurements of the SN area were criticized for poor delineation of the SN and we found just two
published studies looking at the differences of the measurements of the SN area between PD patients
and HC subjects with conflicting results [39,40]. In a study by Minati et al. [39], the SN area of the PD
patients was significantly smaller compared to that of HC subjects while no difference was found in
a study by Oikawa et al [40]. Recently the SN pars compacta T1w/T2w ratio value on 3T MRI was
proposed as a novel, parsimonious in vivo biomarker for the PD [41].

It should be noted, however, that our current study was not designed as a diagnostic accuracy
study, the number of participants was quite small and investigators were not blinded to the clinical
status of the subject, and this might have had some influence on the results. A high percentage of PD
patients’ data were excluded due to non-repeated movement of the brain tissue.

We believe that an assessment of endogenous brain tissue displacement parameters in order
to detect pathologic changes specific for PD in a midbrain using backscattered US RF signals still
has a future, as it has potential for the improvement in respect of sonography scanning planes and
transcranial acoustic windows, enabling detection of stronger displacement of midbrain endogenous
motion along the cranio-caudal axis. Furthermore, more parameters, for instance, relative strain
could be informative in the semi-longitudinal section of a midbrain. Future studies could validate
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our results using larger samples of participants to try to achieve a better balance between temporal
and spatial resolution with the RF TCS method, which could ideally open the possibility to locate the
small SN structure and simultaneously capture its micromovements to try to better integrate data
while evaluating SN or midbrain properties by simultaneously using several methods such as RF TCS
and cTCS.

5. Conclusions

The model constructed of RF TCS-based brain tissue displacement parameters—FreqHP and
RMS—revealed, presumably increased anisotropy in the midbrain and demonstrated rather good
diagnostic ability in the PD evaluation, although it was not superior to that of the structural cTCS or
MRI. Future studies are needed in order to establish a true place of US RF signal-based displacement
parameters for the detection of pathologically affected brain tissue.
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