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Abstract: Bayesian methods for medical test accuracy are presented, beginning with the 
basic measures for tests with binary scores: true positive fraction, false positive fraction, 
positive predictive values, and negative predictive value. The Bayesian approach is taken 
because of its efficient use of prior information, and the analysis is executed with a 
Bayesian software package WinBUGS®. The ROC (receiver operating characteristic) 
curve gives the intrinsic accuracy of medical tests that have ordinal or continuous scores, 
and the Bayesian approach is illustrated with many examples from cancer and other 
diseases. Medical tests include X-ray, mammography, ultrasound, computed tomography, 
magnetic resonance imaging, nuclear medicine and tests based on biomarkers, such as 
blood glucose values for diabetes. The presentation continues with more specialized 
methods suitable for measuring the accuracies of clinical studies that have verification bias, 
and medical tests without a gold standard. Lastly, the review is concluded with Bayesian 
methods for measuring the accuracy of the combination of two or more tests.  

Keywords: Bayesian inference; posterior distribution; prior distribution; ROC curve; 
verification bias; tests without a gold standard 

 

1. Introduction  

This review presents and describes the Bayesian techniques that are available for estimating the 
accuracy of various medical tests used in the diagnosis and treatment of disease, with a primary focus 
on cancer. Fundamental measures of test accuracy are first introduced, and include the true positive 
rate (sensitivity), the false positive rate (1-specificity), the positive and negative predictive values, and 
the area under the ROC curve. Bayesian approaches are very efficient because they are based on prior 
information that is readily available from previous related studies. 
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Estimating the test accuracy when verification bias is present is considered next. Verification bias 
occurs when not all of the patients are subject to a gold standard. For example, consider 
mammography, where those patients that test positive are usually referred to the gold standard 
(pathology), but where those that test negative are usually not referred to pathology. Or consider PSA 
(prostate specific antigen) testing for prostate cancer, where those that test negative are not usually 
subject to the gold standard (pathology). When verification bias is present, there are special 
biostatistical methods that are available for providing unbiased estimates of test accuracy. 

There are many cases, where a gold standard is not available for estimating test accuracy, but there 
is an imperfect reference standard. For example there may be two tests, one a so-called new test and 
the other the imperfect reference standard used to diagnose a bacterial infection, but no gold standard 
is available. Relative to the imperfect reference standard, the accuracy of the new test can be 
estimated, however, such estimates can be misleading, but fortunately, there are statistical procedures 
that are available for ‘correcting’ the estimated accuracy of the new test. 

This review involves many of the tests used in medical practice for the diagnosis and monitoring of 
disease. Of the many tests used in medicine, many are based on imaging devices such as X-ray, 
CT(computed tomography), MRI(magnetic resonance imaging), mammography, nuclear medicine 
(PET(positron emission tomography) and SPECT(single-photon emission computed tomography) 
gamma cameras), and ultrasound. Of course, there are many others based on biomarkers, such as PSA 
(prostate specific antigen) for prostate cancer, CA19-9 and CA125 for pancreatic disease, and blood 
glucose values for diabetes.  

What biostatistical methods will be described in this review? When estimating the accuracy with 
the fundamental measures such as the true and false positive rates and the positive and negative 
predictive values, ratios or fractions (sometimes referred to as rates) will be employed. On the other 
hand, when estimating the area under the ROC curve, more advanced methods will be explained and 
illustrated with various examples. Special methods have been developed for estimating the accuracy of 
medical tests when verification bias is present and these will be illustrated with several examples, as 
will the case when there is no gold standard but an imperfect reference standard is available.  

When the study and patient covariates are taken into account, regression methods provide the way 
to estimate medical test accuracy. For example, in screening for breast cancer, the patient’s age and 
use of hormones have an effect on breast cancer incidence and should be taken into account when 
estimating the accuracy of mammography.  

Another aspect of test accuracy to be described is the role agreement plays in estimating the 
accuracy of a medical test. There are usually several observers or readers involved in observing the 
medical test results and each has their own interpretation of the test outcomes. For example, suppose 
three radiologists are interpreting the same CT image in order to diagnose lung cancer metastasis, then 
there could be disagreement as to the degree of metastasis of the disease. There are many studies 
where there are separate estimates of test accuracy corresponding to the several readers of the test 
results, and this review will present methods for estimating the agreement between the readers. 

2. Sources of Information 

The author will base the review on two sources of information, textbooks and articles in the 
statistical and medical literature. There are three textbooks that are devoted to statistical methods for 
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the estimating test accuracy and they are: Broemeling [1], who develops methods based on a Bayesian 
approach, and Pepe [2] and Zhou, Obuchowski, and McClish [3] who for the most part, use non 
Bayesian methods such as maximum likelihood etc. Many of the methods and examples for this review 
are taken from these books, while others are based on articles in the medical literature. For example, 
some examples are based on articles in Radiology and others on the Journal of Pathology. 

3. Basic Measures of Test Accuracy 

The basic measures of test accuracy are computed from the information in the 2 by 2 table below. 

Table 1. Classification table. 

Test D = 0 D = 1 
X = 0 ),( 0000 θn  ),( 0101 θn  

X = 1 ),( 1010 θn  ),( 1111 θn  

The ijn  are the number of subjects with test score i = 0 or 1 and disease status j = 0 or 1, while ijθ  

is the corresponding probability, where D = 0 indicates no disease and D = 1 indicates disease. ijθ  is 

the probability a patient has test score i and disease status j, where i,j = 0 or 1, thus 00n  is the number 

of patients without disease and a negative test score X = 0. The true and false positive fractions TPF 
and FPF are defined as 

TPF(θ ) = )/( 011111 θθθ +  = P(X = 1| D = 1)       (1) 

and 

FPF(θ ) = )/( 100010 θθθ +  = P(X = 1| D = 0)      (2) 

Thus, the true positive fraction is the proportion of patients with disease who test positive and the 
false positive fraction is the proportion of non-diseased individuals who test positive for disease. Note 
that these two measures of accuracy are defined in terms of the unknown cell probabilities of the above 
2 by 2 table. Note each cell probability ijθ  is estimated by the corresponding fraction nnij / , where 

n is the total number of individuals in the study. Usually the study is designed as follows: the 
individuals are selected at random from a well-defined population, such that the cell frequencies 
follow a multinomial distribution, and consequently the variance or standard deviation of the estimator 

nnij /  of ijθ  is known. If one takes a Bayesian approach assuming a uniform prior distribution for 

the cell probabilities, it is known that the posterior distribution of the cell probabilities is Dirichlet with 
parameter vector  

)1,1,1,1(~/ 11100100 ++++ nnnnDirdataθ       (3) 

By data is meant the totality of the cell frequencies of the above table. As an example, consider the 
pexample examined by Pepe [2] based on the study by Weiner et al. [4], which is a cohort study of 
1465 subjects, where each is classified as to disease status (coronary artery disease (CAD) via an 
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angiogram) and a diagnostic test, the exercise stress test (EST), which is a nuclear medicine procedure, 
and data can be found in Pepe [2]. 

Table 2. Exercise stress test and heart disease. 

EST D = 0 D = 1 
X = 0 327 208 
X = 1 115 818 

What are the sensitivity and specificity of the exercise stress test? The Bayesian uses the posterior 
distribution (3) of the cell probabilities to estimate the true and false positive fractions (1) and (2) by 
generating samples from the posterior distribution of (1) and (2). Note (1) and (2) are functions of the 
cell probabilities, thus the posterior distribution of the true positive fraction is determined by 
generating samples from the Dirichlet distribution (3), then transforming those samples to samples 
from the true positive fraction via the formula (1). I used 55,000 samples generated from the Dirichlet 
distribution (3) then transformed each one via formula (1) to get the 55,000 observations from the true 
positive fraction. 

The software package I used is WinBUGS® which is an object-oriented language specifically 
designed for making Bayesian inferences where the samples from the posterior distribution are 
generated via Monte Carlo Markov Chain (MCMC) techniques, and the reader is referred to 
Woodworth [5] for additional information about such simulation methods. 

Now returning to the exercise stress test of Table 1, what are the Bayesian estimates of the true and 
false positive fractions?  

Table 3. Posterior distribution of the true and false positive fractions. 

Parameter Mean SD Error 
Lower 
2 1/2 

Median 
Upper 
2 1/2 

TPF 0.7967 0.0125 5.84 × 10–5 0.7716 0.7968 0.8208 
FPF 0.2612 0.0208 9.22 × 10–5 0.2215 0.2608 0.3033 

Table 3 reports the WinBUGS output for making inferences about the true and false positive 
fractions, and it is seen that the mean of the posterior distribution of the TPF is 0.796 and that the 
standard deviation of the posterior distribution of TPF is 0.0125. A 95% credible interval for the TPF 
is (0.7716, 0.8208) and the median of the posterior distribution is 0.7967 implying that the posterior 
distribution of the TPF is symmetric about the mean 0.7967. The error column of the above table gives 
one information about the accuracy of using 55,000 observations to estimate the ‘true’ posterior mean. 
An important aspect of the package is that it generates plots of the various posterior distribution, as for 
example for the FPF given by: 
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Figure 1. Posterior density of the false positive fraction. 
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Note that the density is centered over the posterior mean of 0.2612 and appears to be symmetric 

about the mean. My impression is that the exercise stress test is accurate if one uses the sensitivity to 
estimate accuracy, but I am not so sure about the relatively high value for the false positive fraction.  

There are other ways to measure the accuracy of the exercise stress test, namely the positive and 
negative predictive values: 

PPV(θ ) = )/( 110111 θθθ +  = P(D = 1| X = 1)     (4) 

and 

NPV(θ ) = )/( 010000 θθθ +  = P(D = 0|X = 0)     (5) 

These measures of accuracy are of interest to the patient. Take for example the positive predictive 
value (PPV), which is the proportion of patients who test positive that have the disease as determined 
by the gold standard), and the negative predictive value of NPV, which is defined as the proportion of 
patients that test negative that do not have the disease.  

Table 4. Posterior distribution of predictive values. 

Parameter Mean SD Error Lower 2 
1/2 

Median Upper 2 
1/2 

PPV 0.8759 0.0108 <0.0001 0.8538 0.8762 0.8961 
NPV 0.6109 0.0211 <0.0001 0.5693 0.611 0.6517 

A casual look at the above table tells me that the exercise stress test is accurate based on the PPV, 
but not on the NPV. Among those that test negative, approximately 61% do not have the disease! Does 
this give you confidence in the exercise stress test? It should be noted that rarely is a test perfect, 
where the TPF, FPF, PPV, and NPV are all one! 

Consider the diagnostic likelihood ratios as a third group of test accuracy measures and are defined 
as     the positive diagnostic likelihood ratio 

PDLR(θ ) = P(X = 1|D = 1)/P(X = 1|D = 0) 

             = [ )]/(/[)]/( 001010011111 θθθθθθ ++          (6) 

        = TPF(θ )/FPF(θ ) 

  

    and the negative diagnostic likelihood ratio 
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NDLR(θ ) = P(X = 0| D = 1)/P(X = 0|D = 0) 

   = [ )]/(/[)]/( 001000011101 θθθθθθ ++      (7) 

     = FNF(θ )/ TNF( )θ  

These measures are quite different than that the previous measures. The positive diagnostic 
likelihood ratio is a fraction, the numerator of which is the TPF and the denominator is the FPF, and 
note that larger values indicate a more accurate test, because more accurate tests have larger TPF and 
smaller FPF. As for the negative diagnostic likelihood ratio, smaller values are indicative of a more 
accurate test, because more accurate tests have a smaller FNF and a larger TNF! With regard to the 
exercise stress test, the Bayesian analysis gives the following results: 

Table 5. Posterior distribution of diagnostic likelihood ratios. 

Parameter Mean SD Error Lower 2 1/2 Median Upper 2 1/2 
PDLR 3.07 0.2526 0.0011 2.616 3.055 3.609 
NDLR 0.2755 0.0187 <0.0001 0.2399 0.275 0.3135 

Is the PDLR large enough? Recall that the TPF is three times that of the FPF and the FNF is 0.27 
that of the TNF. For me the TPF, FPF, FNF, and TNF each gives a separate way to view the accuracy 
of a medical test and are more informative than the diagnostic likelihood ratios. 

The ROC curve is another way to measure the accuracy of a medical test and is appropriate when 
the test scores are ordinal or continuous. Consider the results of mammography given to 60 women, of 
which 30 had the disease. This is presented in Zhou et al. ([3], p. 21). 

Table 6. Mammogram results. 

Status Normal 1 Benign 2 Probably 
Benign 3 Suspicious 4 Malignant 5 Total 

Cancer 1 0 6 11 12 30 
No Cancer 9 2 11 8 0 30 

The radiologist assigns a score from 1–5 to each mammogram, where 1 indicates a normal lesion, 2 
a benign, 3 a lesion which is probably benign, 4 indicates suspicious, and 5 malignant. How would one 
estimate the accuracy for mammography from this information? When the test results are binary, the 
observed TPF and FPF are calculated, but here there are 5 possible results for each image. The scores 
could be converted to binary by designating 4 as the threshold, then scores 1–3 are negative and 4–5 
are positive test results. Then estimate the TPF as tpf = 23/30 and the specificity (1-FPF) as  
(1-fpf) = 21/30. Another approach would be to use each test result as a threshold and calculate the tpf 
and fpf, which are depicted in Table 6. 
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Table 7. TPF versus FPF for Mammography. 

Status Normal 1 Benign 2 Probably 
Benign 3 Suspicious 4 Malignant 5 

tpf 30/30 = 1.00 30/30 = 1.00 29/30 = 0.966 23/30 = 0.766 12/30 = 0.400 
fpf 30/30 = 1.00 21/30 = 0.700 19/30 = 0.633 8/30 = 0.266 0/30 = 0.000 

Of the 30 diseased, 30 had a score of at least 1, while 23 had a score of at least 4. On the other hand, 
of the 30 without cancer, 30 had a score of at least 1, and 8 had a score of at least 4, etc. Figure 2 is a 
plot of the observed true and false positive values of Table 6. What does this graph tell us about the 
accuracy of mammography?  

Figure 2. Empirical ROC for Mammography. 
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The area under the ROC gives the intrinsic accuracy of a diagnostic test and can be interpreted in 

several ways. Either as the average sensitivity for all values of specificity, or the average specificity for 
all values of sensitivity, or as the probability that the diagnostic score of a diseased patient is more of 
an indication of disease than the score of a patient without the disease or condition. The problem is in 
determining the area under the curve. For the graph above, there are five points corresponding to the 
five threshold values.  

In the case of ordinal data, the area under the curve (AUC) as determined by a linear interpolation 
of the points on the graph (including (0,0) and (1,1)) and the area has the following interpretation, 

AUC = P(Y > X) + (1/2)P(Y = X)     (8) 

See the description of Pepe ([2], p. 92), where it is assumed that one patient is selected at random 
from the population of diseased patients, with a diagnostic score of Y and another patient, with a score 
of X, is selected from the population of non-diseased patients. Note that the AUC depends on the 
parameters of the model. Let us return to the mammography example and estimate the area under the 
curve via a Bayesian method. 

For the mammography example, the area is defined as  

AUC ),( φθ  = P(Y > X| ),φθ ) + (1/2)P(Y = X| φθ , )     (9) 



Diagnostics 2011, 1              
 

 

8

where Y (= 1,2,3,4,5) is the diagnostic score for a person with breast cancer and X (= 1,2,3,4,5) for a 
person without. It can be shown  

AUC ),( φθ = 
15 5

2 1 1

(1/ 2)
j ii i

i j i i
i j i

θ φ θ φ
= −= =

= = =

+∑ ∑ ∑      (10) 

It is assumed the Y and X are independent, given the parameters, and that P(Y = i) = iθ  and  
P(X = j) = jφ , i, j = 1,2,3,4,5. AUC is a parameter that depends on the parameters θ and φ ,  
and their posterior distributions are )13,12,7,1,2(~/ Dirdataθ  and independent of 

)1,9,12,3,10(~/ Dirdataφ , assuming a uniform prior for the parameters, see Table 5. 

Samples from the posterior distribution of the AUC are generated by sampling from the posterior 
distributions of θ and φ . This is accomplished with WinBUGS, where 55,000 observations are 
generated from the posterior distribution of all the parameters.  

Table 8. Posterior distribution of area under the ROC curve. 

Parameter Mean SD Error Lower 2 1/2 Median Upper 2 1/2 
auc 0.7811 0.0514 <0.001 0.6702 0.7848 0.8709 
A1 0.688 0.0635 <0.001 0.5564 0.6909 0.8036 
A2 0.1861 0.0307 <0.001 0.128 0.1854 0.2484 

Notice that mammography gives fair to good accuracy based on the ROC area, which is estimated 
as 0.7811(0.0514) with the posterior mean and by (0.6702,0.8709) using a 95% credible interval. The 
Bayesian estimate of the ROC area is similar to the Zhou et al. ([3], P. 30) estimate. The MCMC error 
for the parameter based on 50,000 observations is less than 0.001, but the reader should vary the 
simulation sample size to see its effect on the MCMC error and posterior mean. The parameter A1 is 
P[Y > X] and estimated as 0.688(0.06350) and the probability of a tie, P[Y = X], given by A2, is 
estimated as 0.1861(0.0307).  

See Broemeling ([1], p. 82) and Zhou ([3], p. 134) with an example from mammography. In 
mammography the mammogram is partitioned into five areas of interest and the radiologist assigns a 
score from say 1 to 5 (which indicates the degree of malignancy) as in the above example of 
mammography in Table 5, and one would expect the scores to be correlated between the five areas of 
interest, which is taken into account by the Bayesian approach.  

With regard to continuous test scores, Bayesian estimators of the ROC area are easily determined 
by the WinBUGS code of O’Malley et al. [6]. The area under the ROC curve gives an intrinsic value 
to the accuracy of a diagnostic test and has a long history beginning in signal detection theory. See 
Egan [7] for the early use of the ROC curve in signal detection theory. Also, the books by Pepe [2] and 
Zhou et al. [3] provide the history as well as the latest statistical methods (non Bayesian) for using 
ROC curves in diagnostic medicine. The ROC area is generally accepted as the way to measure 
diagnostic accuracy in radiology. 

Let X be a quantitative variable and r a threshold value, and consider the test positive when X ≥  r, 
otherwise negative, then the ROC curve is the set of all points 
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ROC(.) = {[FPF( r ) ,TPF( r )], r any real number}    (11) 

   = {[t, ROC( t )], t )1,0(∈ } 

where t = FPF(r), that is, r is the threshold corresponding to t. As r becomes large, FPF(r) and TPF(r) 
tend to zero, while if r becomes small, FPF(r) and TPF(r) tend to 1, thus the ROC curve passes through 
(0,0) and (1,1). If the area under the curve is 1, the test is discriminating perfectly between the diseased 
and non-diseased groups, while if the area is 0.5, the test cannot discriminate between the two groups. 

Pepe ([2], ch. 4) presents several useful properties of the ROC curve, namely: (1) the invariance of 
the ROC curve under monotone increasing transformations of X, (2) interpreting the ROC area for 
continuous variables as AUC = P(X > Y), and (3) a formula for the AUC area when X is normally 
distributed. The Bayesian approach to estimating the ROC area is based on  

AUC = ]1/[ 2ba +Φ       (12) 

where X is normally distributed,  

a = D
D

D σμμ /)_( −        (13) 

and 
b = _/

D
D σσ        (14) 

The mean and standard deviation of X for the diseased population are Dμ  and Dσ  respectively, 
while _

D
μ and _

D
σ are the mean and standard deviation of X for the non-diseased. Φ  is the cumulative 

distribution function of the standard normal distribution. Formula (12) is the binormal assumption and 
is cited by many authors, including Pepe [2], who presents a good discussion of its use. Note that the 
ROC area AUC depends on the unknown parameters of the model.  

Bayesian methods for estimating the ROC area with continuous data will be illustrated by referring 
to a hypothetical example of diabetes, which involves 59 subjects with diabetes and 19 without, where 
those with diabetes have a mean blood glucose value of 123.34 mg/dl and those without have a mean 
value of 107.54. The corresponding standard deviations are 6.76 for those with diabetes and 9.09 
mg/dl for those without the disease, and the actual values from the study are given below in the first 
list statement of the WinBUGS program appearing below. The y vector of the first list statement 
contains the blood glucose values, where the first 49 entries correspond to diabetic patients and the 
remaining 19 to non diabetic patients. Note the first 49 entries of the d vector are 1 designating a 
diabetic patient, while the 19 remaining entries are zero. The O’Malley et al. [6] approach assumes 
binormality, where the blood glucose values for both the diabetic and non diabetic patients are 
assumed to be normally distributed. I have inserted comments about the WinBUGS code designated by 
a # symbol. 
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WinBUGS Code for Diabetes Example 

model; 
# Calculates posterior distribution of model parameters and the area under curve. y = test 
# Based on O’Mally et al. [6] regression method. 
{ 
# likelihood function 
 for(i in 1:N) { 
# The following statement is the regression of y on the disease vector d  
  y[i]~dnorm(mu[i],precy[d[i]+1]); 
#  yt[i] < –log(y[i]); # logarithmic transformation 
# The beta vector are the regression coefficients  
  mu[i] < –beta[1] + beta[2] × d[i] ;   
   }     
# prior distributions - non-informative prior; similarly for informative priors 
 for(i in 1:P) {  
  beta[i] ~ dnorm(0, 0.000001);  
    }     
 for(i in 1:K) {  
  precy[i]~dgamma(0.001, 0.001); 
  vary[i] < –1.0/precy[i]; 
   }   
# calculates area under the curve 
 la1 < –beta[2]/sqrt(vary[1]); # ROC curve parameters 
 la2 < –vary[2]/vary[1]; 
# auc is the area under the ROC curve 
 auc < –phi(la1/sqrt(1+la2));  
} 
# Diabetes data 
list(K = 2, P = 2, N = 78, y = c(123,129,115,131,119,111,129,127,118,111, 
131,118,126,130,122,112,122,128,123,119,132,118,126,136,118,122, 
119,117,129,120,125,115,131,123,130,113,128,138,119,118,124,127, 
139,120,122,120,114,114,122,127,123,118,131,130,139,125,135,121,124, 
109,106,100,88,106,108,110,111,112,94,122,110,113,106,114,101,99,128,106), 
d = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
# the initial values for the simulation 
list(beta = c(0,0),precy = c(1,1)) 

There are 78 patients, of which 19 do not have diabetes. The primary parameters are the area under 
the curve, auc, and the regression coefficients. Based on the above code, 75,000 observations are 
generated from the posterior distribution for the area and regression parameters. 
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Table 9. Posterior distribution for the ROC area. 

Parameter  Mean  SD Error Lower 
2 1/2 

Median Upper 2 
1/2 

beta [1] 107.5 2.237 0.0401 103 107.5 111.9 
beta [2] 16.14 2.438 0.2438 11.35 16.11 21.02 
precy [1] 0.0129 0.004 <0.0001 0.00544 0.0116 0.0211 
precy [2] 0.0205 0.0038 <0.0001 0.0137 0.0203 0.0286 
auc 0.9084 0.04227 <0.0001 0.8062 0.9155 0.9689 

The estimated area is 0.9082 which implies that the blood glucose test had good accuracy and the 
area given is almost identical to that given by the basic formula (12). A plot of the posterior density is 
shown in Figure 3. The second regression coefficient is estimated as 16.14, which implies that the 
group effect is strong on the mean blood glucose values, which is one reason why the ROC area is as 
high as it is. Also, note the variation in the MCMC errors of estimation. 

Figure 3. Posterior density of ROC area for head trauma study. 
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The plot indicates a slight asymmetry which is also implied by comparing the posterior median with 
the posterior mean. 

This review is continued by considering two medical tests that are each applied to all patients, and a 
good example of this is the following hypothetical example of CT and MRI imaging of subjects for 
lung cancer. In order to compare the two, consider the following two tables, the first for lung cancer 
patients and the other for those without lung cancer. The example is employed to illustrate the 
Bayesian estimation of the basic measures of test accuracy and to compare the two modalities in regard 
to the true positive and false positive fractions. There are 995 subjects with the disease and 435 
without lung cancer and the important question is which modality, MRI or CT is most accurate and by 
how much? Note that both modalities are imaging the same subjects, and one would expect the MRI 
and CT test scores to be correlated!  
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Table 10. (a) CT and MRI study for diseased subjects; (b) CT and MRI study for non-
diseased subjects. 

(a) 

CT MRI=0 MRI=1 TOTAL 
0 22 191 213 
1 30 752 782 
TOTAL 52 943 995 

(b) 

CT MRI=0 MRI=1 TOTAL 
0 148 167 315 
1 49 71 120 
TOTAL 197 238 435 

The Bayesian analysis will consist of finding the posterior distribution of the true and false positive 
fractions of the two modalities and comparing them on the basis of the ratios of the two basic 
measures. Let ijθ  be the probability that a lung cancer patient has a CT score of i and an MRI score of 

j, where i, j = 0,1, where 0 indicates a negative outcome and 1 a positive. In a similar manner, let ijφ  

be the corresponding probability for a non-diseased subject. 
Assuming a uniform prior distribution for ),,,( 11100100 θθθθθ =  and 

),,,( 11100100 φφφφφ = , their joint posterior distribution is Dirichlet with parameter 

(23,192,31,753;149,168,50,72). The analysis is executed with 55,000 observations generated from the 
joint posterior distribution of the cell probabilities ijθ  and gives the following results: 

Table 11. Posterior analysis for CT and MRI imaging for lung cancer. 

Parameter Mean SD Error 2 1/2 Median 97 1/2 
fpfct 0.2778 0.0212 <0.00001 0.2375 0.2775 0.3202 
fpfmri 0.5468 0.2371 <0.0001 0.5 0.5469 0.5928 
rfpf(ct/mri) 0.5089 0.0437 <0.0001 0.427 0.5076 0.5984 
rtpf(ct/mri) 0.8295 0.0144 <0.00001 0.801 0.8296 0.8577 
tpfct 0.7847 0.0130 <0.00001 0.7589 0.7848 0.8097 
tpfmri 0.9595 0.0071 <0.00001 0.931 0.9462 0.9592 

Note that fpfct is the false positive fraction for CT while rfpf (ct/mri) is the ratio of the false 
positive fraction of CT to that of MRI, and the 95% credible intervals for the two ratios do not include 
1, implying that the two modalities have different accuracies for diagnosing lung cancer. With regard 
to the true positive fraction, MRI is more accurate, but CT has the smallest false positive ratio, and in 
fact the false positive fraction for MRI is quite large with a posterior median of 0.5469. Which 
modality would you use? I would use both.  

The above approach can be extended to comparing the ROC areas of two modalities and more 
information can be found in Broemeling ([1], p. 84). 
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4. Verification Bias 

Up to this point, interest has been confined to standard studies of medical test accuracy, but now 
attention will be focused on specialized methods for measuring accuracy. In a standard study, each 
subject will have been subjected to the gold standard where the disease status is known, but there are 
many studies where this is not possible. For example with the exercise stress test, those that test 
positive will most likely be referred to the gold standard (coronary angiography), however those that 
test negative will not, unless there are other indicators that point to disease. Actually, verification bias 
is present in many medical test accuracy studies; however, often the investigator is unaware that bias is 
present. According to Zhou et al. [3], Greenes and Begg [8] reviewed 145 investigations that took 
place over the period 1976–1980 and found that 26% had verification bias that was not recognized by 
the authors. In addition, Bates, Margolis, and Evans [9] reported that at least 1/3 of 54 pediatric studies 
had unrecognized verification bias. There are many more such studies, including those reported by 
Philbrick, Horwitz, and Feinstein [10] who found that of 33 diagnostic studies for coronary artery 
disease, 31 had verification bias. In a major review of verification bias, that reviewed 112 studies 
in major medical journals, Reid, Lachs, and Feinstein [11] reported finding that 54% had  
verification bias! 

This section will present Bayesian methods for estimating test accuracy, when some of those that 
test positive or negative are referred to the gold standard, which is presented in the following table. 

Consider the following table for one binary test Y = 0,1 where verification bias is present. 

Table 12. One binary test.  

V=1  Y=1 Y=0 
 D=1 1s  0s  
 D=0 1r  0r  

V=0  1u  0u  
Total  1m  0m  

V = 1 indicates the patient is verified and the disease status is known, and V = 0 indicates a patient 
has not been verified, thus, there are 1u  individuals who are not verified when Y = 1. The total 
number of patients in the study are 1m + 0m , while the number who tested positive and had the 
disease is 1s . If the test accuracy is based on only the verified patients, the estimates are misleading. 

Fortunately there are statistical methods for correcting these misleading estimates of test accuracy. In 
order to implement these procedure, the missing at random assumption (MAR) is imposed, which 
entails assuming that the decision to verify the disease status depends on only the results Y of the 
diagnostic test and not other factors related to the disease status. That is to say: 

P[V = 1|D,Y] = P[V = 1|Y]      (15) 

Our approach is likelihood based, where the likelihood function is based on the conditional 
distribution of the disease status D = 1, given Y = 0 or 1, and on the marginal distribution of Y. The 
probability that Y = 1, given D = 1 is then found by Bayes theorem. The derivation of the likelihood 
and relevant posterior distributions is as follows: 
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Let 

1[ == DPiφ | ]iY =      (16) 

and  

][ iYPi ==θ                     (17) 

where i = 0,1, then the likelihood function for the parameters is  

0011
0

0001111 )1()1(),( mmrsrsL θθφφφφθ φ −−∝    (18) 

where all parameters are between zero and one and .110 =+θθ  With a uniform prior for all 

parameters, the posterior distribution of the parameters is as follows: 

)1,1(~ ++ iii rsbetaφ            (19) 

for i = 0,1, and ( ), 10 θθ  has a Dirichlet with parameters )1,1( 10 ++ mm .  

The approach to correcting for bias is to use Bayes theorem to compute  

P[Y = 1|D = 1] = P[D = 1|Y = 1]/P[D = 1]     (20) 

where 

P[D = 1] = 0011 θφθφ +       (21) 

Let )/( 0011 θφθφθφα += iii      (22) 

then 1α  is the sensitivity of the test. On the other hand, let  

)00111/(1)11(1 θφθφθφβ −−−=      (23) 

then 1β  is the false positive fraction, that is, the probability that Y = 1, given D = 0. 

Once the posterior distribution of the parameters is determined, the posterior distribution of the true 
and false positive fractions is also determined.  

A good example of verification bias is the study of Drum and Christacopoulos [12], which is a 
hepatic scintigraphy test for liver disease. 

Table 13. Hepatic scintigraphy study for verification bias. 

 V=1  Y=1 Y=0 
 D=1 1s = 298 0s = 31 
 D=0 1r = 26 0r = 48 

V=0  1u = 150 0u =117 
Total  1m = 474 0m = 196 

This test had two results Y = 0 or 1, where a 1 indicates a positive result for disease. Note that the 
total number of subjects is 670, with 474 who tested positive, and among those, 150 were not verified 
for the disease.  

Among those who tested negative, 79 were examined by the gold standard, with 31 of those having 
the disease. The estimated sensitivity based on the verified patients is 298/329 = 0.905, and the 
estimated false positive rate is 26/74 = 0.35. What are the corrected estimates and how do they differ 
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from these? The Bayesian analysis assumes a uniform prior for the parameters of the likelihood 
function and is executed with 50,000 observations for the MCMC simulation. 

Table 14. Posterior distribution for hepatic scintigraphy study. 

Parameter Mean SD Error 2 1/2 Median 97 1/2 
fpf 0.2139 0.0336 <0.0001 0.1525 0.2125 0.2834 
tpf 0.8393 0.0235 <0.0001 0.7918 0.84 0.8836 

Note the reasonably good accuracy of the scintigraphy test for liver disease, with a sensitivity of 
0.83 and a false positive fraction of 0.2139. Recall the estimated sensitivity using the verified cases 
only (the naïve estimates) is 0.9224 and the false positive fraction is 0.372, thus, the corrected true and 
false positive rates are smaller than those calculated from the verified cases only. In general if those 
that test positive are more likely to be verified than those patients that test negative, the naïve estimates 
(those based on verified cases only) are such that the true and false positive fractions are larger than 
the unbiased estimators respectively. See Pepe ([2], p. 169) for further details. 

The above approach that produces unbiased estimators for the TPF and FPF, is easily extended to 
two paired binary tests, but will not be presented here; instead the approach is generalized to 
estimating the area under the ROC curve for medical tests with ordinal test scores. Consider the typical 
layout for such a test Y with possible values 1,2,…,k reported below with familiar notation as: 

Table 15. Verification bias and one ordinal test. 

V = 1 Y = 1 Y = 2 Y = k 
D = 1 1s  2s  ks  
D = 0 1r  2r  kr  
V = 0 1u  2u  ku  
Total 1m  2m  km  

If a uniform prior distribution is deemed appropriate, the posterior distribution of the iφ  is beta 
with parameters is +1 and ir +1 and that for the iθ  is Dirichlet with parameter 

)1,...,1,1( 21 +++ kmmm . 

In order to compute the area under the ROC, one must compute P[Y = i|D = 1] and P[Y = i|D = 0] 
for all i = 1,2,…,k, where the first component is represented by Bayes theorem as 

P[Y = i|D = 1] = P[D = 1|Y = i]P[Y = i]/P[D = 1]     (24) 

  = ]1[/ =DPiiθφ     

where, 

∑
=

=
==

ki

i
iiDP

1
]1[ θφ       (25) 

On the other hand, the second component is computed as 

P[Y = i|D = 0] = (1– ii θφ ) /P[D = 0]      (26) 

where P[D = 0] = 1 – P[D = 1]. 
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We are now in a position to compute the area under the ROC curve. 
Let  

iTPi == [α |D=1]      (27) 

and 

iTPi == [β |D=0]      (28) 

for i = 1,2,..,k, then the area under the ROC is given by 
 

   A= 2/21 AA +       (29) 

where 

 )...(...)( 121213121 −+++++++= kkA βββαββαβα      (30)  

and 

∑
=

=
=

ki

i
iiA

1
2 βα

    
       (31) 

Formula (29) for the ROC area is given in Broemeling ([1], p. 72). 
The example for ordinal test scores is taken from a hypothetical mammography study with 1,509 

subjects, where each patient is given a score of Y where Y = 1,2,3,4,5.  

Table 16. Ordinal results for mammography. 

V = 1 Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 
D = 1 1s = 72 2s = 54 3s = 121 4s = 145 5s = 245 

D = 0 1r = 308 2r  = 127 3r = 78 4r = 33 5r = 77 

V = 0 1u = 92 2u = 66 3u = 76 4u = 10 5u = 5 

Total 1m = 472 2m = 247 3m = 275 4m = 188 5m = 327 

Note the number of unverified cases is 249 out of a total of 1509 subjects. A Bayesian analysis is 
performed using 55,000 observations for the simulation and the posterior analysis appears in the 
following table, where the median ROC area is 0.7764. 

Table 17. Posterior analysis for mammography study. 

Parameter Mean SD Lower 2 1/2 Median Upper 2 1/2 
A  0.7762 0.0126 0.7509 0.7764 0.8005 
1A  0.6972 0.0154 0.6665 0.6974 0.7272 
2A  0.0789 0.00303 0.0729 0.0789 0.0848 

Generalizations for verification studies are possible in many directions including extensions to 
several observers and to using patient and study covariates. Also, it is possible to drop the MAR 
assumption and to estimate test accuracy. The case of extreme verification bias for binary tests is not 
considered, which is the case where only those that test positive are verified, while none are verified 
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among those that test negative. See Pepe ([2], p. 180), and see Broemeling [1], Pepe [2], and  
Zhou et al. [3] for additional interesting information about the analysis of verification studies 

5. Tests with an Imperfect Reference Standard 

Suppose that a gold standard does not exist, but that test accuracy of a new test will be assessed 
with an imperfect gold standard. Many cases exist where there is no perfect gold standard. For 
example, depression is usually determined by a series of questions and observing the behavior of the 
patient, but such assessments are highly subjective, and there is no one test that will provide a perfect 
diagnosis. For infectious diseases, a perfect diagnosis can be elusive, where a culture is taken; 
however, the culture may not contain the infective agent or if the agent is present may not grow in the 
culture. Pepe [2] gives other examples, including tests for diagnosing cancer and hearing loss.  
Zhou et al. [3] also present various studies, including the diagnosis of a bacterial infection with the 
stool and serology tests. Their analysis is to use maximum likelihood while Bayesian is the approach 
taken here. Other examples presented by Zhou et al. include two tests for tuberculosis, with the Tine 
and Mantour tests, at two different sites, while a third example for detecting pleural thickening is 
performed by X-ray with three readers. Another interesting example of multiple tests is described by 
Pepe [2], where chlamydia bacterial infection is diagnosed with a blood culture, PCR, and ELISA. 

Previous work has focused on maximum likelihood estimation and Bayesian. Zhou et al. [3] 
emphasize maximum likelihood and Bayesian. The Bayesian method is based on earlier work by 
Joseph, Gyorkos, and Coupal [13] who employ an augmented data approach. The augmented data 
approach views the missing data (the disease status D of a patient) as an unobservable random variable 
that can be modeled in such a way as to provide the posterior density of the measures of disease 
accuracy (true and false positive rates). Such an approach will be used here, because the Bayesian 
method has the advantage of using prior information and being able to separate the parameters of 
interest from nuisance parameters. Fortunately, prior information is available for diagnostic tests, 
especially the disease rates and the accuracy assessments of medical tests, and can be used as part of 
the posterior analysis. 

With the Bayesian approach of Joseph, Gyorkos, and Coupal [13] and Dendukuri and Joseph [14], 
the various tests are assumed to be conditionally independent, an assumption that will be used in the 
present approach, however, the assumption will be relaxed in some cases and the two ways compared 
in estimating test accuracy. 

Pepe ([2], p. 195) presents the following example of using an imperfect reference standard R to 
assess the accuracy of a new test T, namely:  

Table 18. Hypothetical example imperfect reference. 

New Test D = 0 D = 1 R = 0 R = 1 
T = 0 70 20 74 16 
T = 1 30 80 46 64 
Total 100 100 120 80 

The new test T has a ‘true’ sensitivity of 0.80 (80/100) and a specificity of 0.70 (70/100) but of 
course this is actually not known because there is no gold standard. Relative to the reference test R, the 
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estimated sensitivity is also 0.8 (64/80) but has a specificity of 0.61(74/120), thus, the new test is 
assessed to be less specific than it actually is. Also, with respect to the gold standard, the prevalence of 
disease is 50%, but is estimated to be 40% with regard to R. Remember the gold standard is not 
present, we do not know the ‘true’ measures of accuracy, only those with regard to the reference 
standard can be estimated, and can be misleading!  

The two tests are said to be conditionally independent if  

P[T,R|D] = P[T|D]P[R|D]     (32) 

a condition which is usually employed with both the conventional and Bayesian approaches. Using this 
assumption, Pepe ([2], p. 195) states that it is likely that both the observed (relative to the reference 
test R) sensitivity and specificity will be decreased.  

Are there methods that will improve on the measures of accuracy provided by the imperfect 
standard test? Using primarily the Bayesian approach, this question will be explored in this chapter. In 
what is to follow, the subject is introduced with two binary tests, one is the reference test R and the 
other a new one T whose accuracy is to be assessed. Note none of the patients will have their true 
disease status D measured, instead each patient will be given a positive or negative score by both tests. 
A Bayesian approach is taken, where based on the likelihood function the posterior distribution of the 
sensitivity and specificity are determined. The likelihood function is presented where the missing 
disease status is modeled by augmented or latent variables. Conditional independence is assumed. 

With the likelihood function based on latent variables and assuming conditional independence, the 
posterior distribution of the sensitivity, specificity, and disease prevalence are determined. An example 
er analyzed by Joseph, Gyorkos, and Coupal [13] involves a bacterial infection of immigrants to 
Canada and employs the augmented data method to estimate the sensitivity and specificity of the 
reference test R (a serology test) and another test T, the stool examination. 

Consider a layout for the experiment with the two tests R and T, using the augmented  
data approach. 

When D = 1, the results of the study are: 

Table 19. (a) Augmented data for reference R and test T when D = 1; (b) Augmented data 
for R and T, when D = 0. 

(a)  

Reference Test  T = 1 T = 0 
R = 1 y11 y10  

R = 0 y10  y 00  

Total   

 (b) 

Reference Test  T = 1 T = 0 
R = 1 −11n y11 −10n y10  

R = 0 −01n y10  −00n y 00  

Total   
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where the augmented data is represented by the ijy and the observations by the corresponding ijn .  

Now let 

jTiRPij === ,[θ |D = 1]     (33) 

i, j=0 or 1, and 

jTiRPij === ,[φ | D = 0]     (34) 

Then the likelihood function is 
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and assuming a uniform prior, the posterior distribution of the parameters p, the ijθ , and the ijφ can be 

determined in terms of all the conditional distributions as follows: 
If one assumes the conditional independence assumption the likelihood function is expressed 

directly in terms of the sensitivity and specificity as  

0001
210112

0010
1011112121 )1()1(),,,,( yyyyyyyy ssssccsspL ++++ −−∝

011101111001000101 )1( yynnyynn cc −−+−−+ −      (36) 

101110112000100012 )1( yynnyynn cc −−+−−+ −  

...... )1( yny pp −−  

..y  is the sum of the ijy and ..n is the sum of the four cell frequencies. The notation has been changed 

to denote 1s  and 1c  as the sensitivity and specificity of T respectively, while 2s  and 2c denote the 

corresponding quantities for the reference R. 
For computational purposes and assuming a uniform prior, it is obvious from the above likelihood 

function that the conditional distribution of the unknown parameters are: 
The marginal distribution of p is beta with parameters 

ap = 1.. +y  

                                                                           and                                                                             (37) 

      bp = 1.... +− yn  

The conditional distribution of 1s  given the other parameters is beta with parameters as1 and  

bs1 where  

as1 = 10111 ++ yy  

                                                              and                                                            (38) 

bs1 = 10010 ++ yy  

The conditional distribution of 1s , given the other parameters is beta with hyperparameters 
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as2 = 11011 ++ yy  

                                                                 and                                                                           (39) 

bs2 = 10001 ++ yy  

The conditional distribution of 1c  is beta with hyperparameters  

ac1 = 100100010 +−−+ yynn  

                                                         and                                                                           (40) 

bc1 = 101110111 +−−+ yynn  

and the conditional distribution of 2c  is beta with parameters 

ac2 = 100010001 +−−+ yynn  

                                                        and                                                                          (41) 

bc2 = 110111011 +−−+ yynn . 

In addition, the posterior distribution of the latent variables is:  
The conditional distribution of 11y given the other variables is binomial with parameters 

       m11 )]1)(1)(1(/[ 212121 ccpspssps −−−+= (the probability parameter) 

                     and                                                                          (42) 

q11 = 11n  

The conditional distribution of 10y , given the other parameters is binomial with parameters: 

m10 = )]1()1()1(/[)1( 212121 ccpsspssp −−+−−  

                                       and                                                                         (43) 

q10 = 10n  

The conditional distribution of 01y , given the other parameters, is binomial with hyperparameters 

m01 = ])1)(1()1(/[)1( 212121 ccpspssps −−+−−  

                                                                             and                                                                       (44) 

q01 = 01n  

and lastly  

The conditional distribution of 00y given the other parameters is binomial with hyperparameters 

m00 = ])1()1)(1(/[)1)(1( 212121 ccpsspssp −+−−−−  

                                                                            and                                                                       (45) 

q00 = 00n  
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It is important to know that the above posterior distributions for the accuracy of two binary tests 
assumes a uniform prior for 121 ,,, cssp , and 2c and the assumption of conditional independence 

between R and T!  
An example assuming a uniform prior and conditional independence between an imperfect 

reference test R and a new test T is presented as follows. Consider the diagnosis of a bacterial infection 
by Strongyloides exposing 162 Cambodian refugees to Canada. They entered Canada from July 1982 
to February 1983 and were tested with a Stool examination, which serves as the ‘new’ test T and a 
serologic reference test R, and the results as reported by Zhou et al. ([3], p. 366) are given below. 

Table 20. Results of a stool exam T and a serologic reference exam R. 

Serology Test R T = 1 T = 0 Total 
R = 1 38 87 125 
R = 0 2 35 37 

 40 122 162 

This information has been analyzed by a number of people, including Joseph, Gyorkos, and  
Coupal [13] and Dendukuri and Joseph [14]. The observed sensitivity and specificity of the stool exam 
relative to the serology exam are 38/125 = 0.304 and 35/37 = 0.945 respectively. The main focus is to 
correct the actual sensitivity and specificity of the stool exam via the methodology derived in the 
previous section. Assume conditional independence between T and R, then the posterior distribution of 
the relevant parameters is given by the conditional distributions of each parameter given the others, 
which are identified in statements (37)–(45). 

Table 21. Posterior analysis for the stool and serology exams. 

Parameter Mean SD Error 2 1/2 Median 97 1/2 
p 0.4986 0.2011 0.0053 0.1604 0.4991 0.8352 
1c  0.6977 0.2586 0.0109 0.0922 0.7046 0.9942 
2c  0.2504 0.2552 0.0109 0.0042 0.1237 0.8862 
1s  0.2517 0.2503 0.0107 0.0046 0.1308 0.8826 
2s  0.7014 0.2623 0.0109 0.0889 0.7192 0.9945 

The above table reports the analysis which is executed with 125,000 observations generated from 
the posterior distribution of the parameters. As seen from Table 20, the standard deviation for the two 
sensitivities is almost as large as the mean indicating uncertainty for these measures of accuracy, and 
the MCMC errors are relatively large ( but reasonable) for all parameters. Also, the distributions for 

2c  and 1s  are skewed, and I would use the posterior medians to report the accuracy of the two tests. 

One can employ the prior information used by Zhou et al. ([3], p. 367) who utilized informative 
prior information about the parameters, namely: 
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Table 22. Prior information about stool and serology tests. 

Parameter Range Alpha Beta 
p 0–100 1 1 
1c  90–100 71.25 3.75 
2c  35–100 4.1 1.76 
1s  5–45 4.44 13.31 
2s  65–95 21.96 5.49 

The prior information was elicited form a panel of experts and the ranges of the parameter values 
converted to the hyperparameters of the corresponding beta prior distribution, that is, a beta prior was 
used for each parameter with the above values for the parameters of that variable. Note the uncertainty 
for p, expressed as a range (0,1) and a uniform prior for the prevalence. For example, the prior mean 
for 1c the specificity of the stool exam is 0.95, while that for the sensitivity 2s  of the serology test is 

believe to be 0.80, compared to a prior mean of 0.74 for the sensitivity of the stool exam.  
Of course, the accuracy of serology is supposed to be better than that compared to stool, and this is 

reflected in the prior values of the above table. 
A Bayesian analysis is performed utilizing the prior information in the above table and  

conditional independence between the two tests. Again 125,000 observations are generated from the 
joint posterior distribution: 

Table 23. Posterior analysis for the stool and serology exams. 

Parameter Mean SD Error 2 1/2 Median 97 1/2 
p 0.7618 0.1007 0.0014 0.5236 0.7755 0.9286 

1c  0.957 0.0214 <0.0001 0.9065 0.9603 0.9885 

2c  0.6901 0.1605 0.0020 0.3727 0.7006 0.9558 

1s  0.3093 0.0518 <0.0001 0.2224 0.3043 0.4269 

2s  0.8831 0.0423 <0.0001 0.7892 0.8874 0.9535 

Comparing Tables 20 and 22 reveals less uncertainty in the estimates (posterior means) using 
informative beta priors for the accuracy parameters, and the MCMC errors are much smaller when the 
informative prior is used. For the accuracy parameters (sensitivity and specificity), the posterior 
standard deviations are less across the board. Not the posterior distributions appear to be symmetric. 
This example shows the effect of prior information on the posterior analysis, where a uniform prior 
was compared to an informative prior (based on expert opinion). Which analysis would you use?  

The Bayesian analysis for correcting for an imperfect reference test is easily generalized to multiple 
binary tests and to the situation where the conditional independence assumption is not imposed. See 
Broemeling [1], Pepe [2], and Zhou et al. [3] for additional information about this interesting topic. 

6. Accuracy of Multiple Tests 

This section introduces methods to assess the accuracy of the combination of two or more tests. 
Two tests for the diagnosis of a disease measure different aspects or characteristics of the same 
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disease. In the case of diagnostic imaging, two modalities have different qualities (resolution, contrast, 
and noise), thus although they are imaging the same scene, the information is not the same from the 
two sources. When this is the case, the accuracy of the combination of two modalities is of paramount 
importance. For example, the accuracy of the combination of mammography and scintimammography, 
for suspected breast cancer, has been reported by Buscombe, Cwikla, Holloway, and Hilson [15]. 
Another study for diagnosing breast cancer was performed by Berg, Gutierrez, et al. [16] who 
measured the accuracy of mammography, clinical examination, ultrasound, and MRI in a preoperative 
assessment of the disease, The accuracy of each modality and various combinations of the modalities 
were measured. When investigating metastasis to the lymph nodes in lung cancer, Van Iverhagen, 
Brakel, and Heijenbroket al. [17] measured the accuracy of ultrasound and CT and the combination of 
two. Ultrasound conveys different information about metastasis compared to CT, but the combination 
of the two might provide a more accurate diagnosis than each separately. For an example of the 
diagnosis of head and neck cancer, Pauleit, Zimmerman, Stoffels et al. [18] used two nuclear medicine 

modalities, 18F-FET PET and 18F-FDG PET to assess the extent of the disease and estimated the 
accuracy of each and combined. On the other hand, Schaffler, Wolf, Schoelinast et al. [19] evaluated 

pleural abnormalities with CT and 18F-FDG PET and the combination of the two.  
Switching from cancer to heart disease, Gerger, Coche, Pasquet et al. [20] used Four-Section  

Multi-Detector CT and 3D Navigator MR for detecting stenosis of the coronary arteries, where the 
accuracy of each and the combination of the two was estimated. The above examples involve binary 
test scores where accuracy is measured by TPF, FPF, PPV, and NPV, but when the test scores are 
ordinal and involve more than two possible values, or when the test scores are continuous, the 
accuracy is measured by the area under the ROC curve.  

What is the optimal way to measure the accuracy for the combination of two binary tests?  
Pepe ([2], p. 268) presents two approaches: (1) believe the positive rule, or BP, where a positive test 
score on a subject means one or the other of the two tests is scored positive, and (2) believe the 
negative rule, or BN, where a subject is scored positive if both tests are scored positive. Pepe ([2], p. 
268) also provides some properties about these rules, namely: 

Statement 1. 

a. The BP rule increases sensitivity relative to the two binary tests, but increase the FPF, but by no 
more than the sum of the two false positive fractions, namely, 21 FPFFPF + . 

b. The BN rule decreases the false positive rate relative to the false positive rates of the two tests, 
but at the same time, decreases the sensitivity, however, the sensitivity remains above 

.121 −+ TPFTPF  
For the first part on two binary tests, several examples are provided, then the idea is generalized to 

two binary tests with several readers and to two binary tests when verification bias is present. For the 
section on two ordinal tests, the accuracy of the combination of the two tests is provided by the ROC 
curve, which in turn depends on the risk score of the component tests.  

This section will employ a Bayesian approach to estimate the accuracy to two binary tests and the 
accuracy of the combination of the two using the believe the positive BP rule and believe the negative 
or BN. Label the two tests 1Y  and 2Y  where both take on the values 0 or 1, where 0 indicates a 
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negative test and 1 a positive score for the medical test. A subject either has the disease or does not, as 
determined by the gold standard, thus when D = 1, let 

]2,1[ jYiYPij ===θ       (45) 

for i , j = 0,1, and when D = 0, let 

]2,1[ jYiYPij ===φ       (46) 

Thus the thetas are the four cell probabilities for the diseased subjects and the corresponding phis 
are the cell probabilities for the non-diseased subjects. The corresponding cell frequencies are denoted 
by ijn  and ijm for the diseased and non-diseased subjects respectively, thus assuming a uniform prior 

for the cell probabilities, the posterior distribution of the cell probabilities are Dirichlet for 
)11,10,01,00( θθθθθ =  with parameter )111,110,101,100( ++++ nnnn , and for 

)11,10,01,00( φφφφφ =  is also Dirichlet with parameter )111,110,101,100( ++++ mmmm .  

Once the posterior distribution of the cell probabilities is determined, the posterior distribution of 
the truncated cell probabilities is easily found. The truncated cell probabilities for the diseased subjects 
are given by 

∑
=

=
=

1

0
* /

i

i
ijijij θθθ     (47) 

and for the non-diseased subjects the truncated cell probabilities are  

∑
=

=
=

1

0
* /

i

i
ijijij φφφ     (48) 

for i and j = 0 or 1. 
The true and false positive fractions for the first test 1Y  are 

       tpf1= .1θ           (49) 

and 

        fpf1= .1φ         (50) 

respectively. 
while for the second test the true and false positive fractions are  

      tpf2 = 1.θ         (51) 

and 

       fpf2= 1.φ         (52) 

respectively. 
The above give the accuracy of the individual tests, but what about the combination of the two? 

Recall there are two ways to measure the accuracy of combined tests, either by the BP rule, or by the 
BN rule. With the former rule, the true positive fraction is  
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tpfbp = 101101 θθθ ++       (53) 

and the false positive fraction is  

fpfbp = 101101 φφφ ++ .      (54) 

On the other hand, using the BN rule the true positive fraction is  

   tpfbn = 11θ         (55) 

while the false positive fraction is 

   fpfbn = 11φ         (56) 

In what is to follow the accuracies of the individual tests and the combined test will be estimated for 
several examples. The next example is based on the study of Gerber, Coche, Pasquet et al. [20] which 
investigated the use of both CT and MRI to determine the degree of stenosis in the coronary arteries, 
where 26 patients were suspected of having coronary artery disease. The gold standard is coronary 
catherization, which found 58 diseased segments (stenosis greater than 50%) and 236 non-diseased 
segments. This was an experimental study to determine the value of the two non invasive imaging 
modalities to diagnose coronary artery disease. The study found that the sensitivity of CT and MRI 
were 79% and 62% respectively, and that on the other hand the specificity of CT and MRI were 71% 
and 84% respectively, thus, CT had higher sensitivity but smaller specificity compared to MRI. This is 
a very interesting study and only a brief synopsis is given here, thus the reader is invited to read the 
article for more detail in order to know the value of the investigation. The information for the study is 
given below: 

Table 24. (a) Study results the CT-MRI study; (b) study results the CT-MRI study. 

(a) 

CT MRI=0 MRI=1 Total 
0 12 0 12 
1 10 36 46 
Total 22 36 58 

(b) 

CT MRI=0 MRI=1 Total 
0 168 0 168 
1 30 38 68 
Total 198 38 236 

Our goal is to determine the accuracy of the combined test using the BP and BN rules, where the 
simulation consists of generating 25,000 observations from the joint posterior distribution24.  
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Table 25. Bayesian analysis for combined test of CT and MRI.  

Parameter Mean SD Error 2 1/2 Median 97 1/2 
bnfpf 0.1627 0.0236 <0.0001 0.1191 0.1617 0.2116 
bntpf 0.5965 0.0623 <0.0001 0.4731 0.5977 0.7148 
bpfpf 0.2959 0.0293 <0.0001 0.2404 0.2953 0.3553 
bptpf 0.7901 0.0515 <0.0001 0.68 0.7933 0.8817 
fpfct 0.2918 0.0292 <0.0001 0.2361 0.2911 0.3511 
fpfmri 0.1668 0.0238 <0.0001 0.1228 0.1658 0.2163 
tpfct 0.7739 0.0527 <0.0001 0.662 0.766 0.8675 
tpfmri 0.6127 0.0619 <0.0001 0.4883 0.614 0.7299 

Which rule, the BP or BN rule, should be used to measure the accuracy of the combined test? Note 
the true positive fraction with the BP rule is higher than that with the NP rule, but on the other hand, 
the false positive rate is lower with the BN rule compared to the BP rule. This is a true quandary and it 
is not obvious which rule should be used to measure the accuracy of the combined test. Note the 
posterior mean for the bnfpf (believe the negative false positive fraction) is 0.1627 with a standard 
deviation of 0.0236. What is the best way to measure the combined tests of CT and MRI? 

A change of emphasis from binary to ordinal and continuous test scores brings us to some ‘new’ 
ideas for measuring the accuracy by combining two tests. For ordinal and continuous scores the area 
under the ROC curve measures the intrinsic accuracy of a medical test, but how should the area be 
computed when two tests are combined? The ROC curve of the risk score is the foundation for 
measuring the accuracy for the combined test, but in turn, the risk score is a monotone increasing 
function of the likelihood ratio, which is the optimal way to measure accuracy for the combined test. 

The optimality of the risk function is a consequence of the Neyman-Pearson lemma, which is a 
familiar result from classical statistics for testing hypotheses. In what is to follow, the likelihood ratio 
will be defined and the optimality of the ROC curve of the likelihood ratio will be demonstrated by 
referring to the Neyman-Pearson lemma, then the risk function will be defined and shown to a 
monotone increasing function of the likelihood ratio, thus the ROC curve of the risk function is the 
same as the ROC curve of the likelihood ratio. The Pepe et al. ([2], pp. 269–274) development of the 
subject is closely followed but given a Bayesian emphasis, and the end result will be that the optimal 
way to measure the accuracy of the combined test is to estimate the area under the ROC curve of the 
risk function. Determining the risk function is equivalent to performing a logistic regression using the 
test scores of the two tests as predictors, then the ROC curve of the predicted probabilities(from the 
logistic regression) is computed, from which the area is then estimated. Such an area is the accuracy of 
the combined test, and the methodology is illustrated with various examples using ordinal test scores. 
The first example is from an imaging trial using MRI and CT to detect lung cancer, where the one 
radiologist uses a five point confidence score, and the ROC curve of the risk function of the combined 
test is computed and compared to the ROC curve of the individual tests.  

This section is continued with the definition of the likelihood ratio and concluded with the 
definition of the risk score. 

Suppose ),...,2,1( pYYYY =  is the vector of scores of p ordinal tests, then the likelihood ratio is  

LR(Y) = P[Y|D = 1]/P[Y|D = 0]      (57) 
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where D is the indicator of disease. The numerator is the probability of the observed test scores, give 
the disease is present, and the denominator is the probability of the observed scores, given the disease 
is not present.  

Recall that the likelihood ratio is used as a test statistic for the null hypothesis 

H: D =1 
versus the alternative hypothesis 
A: D = 0, 

where larger values of LR(Y) are evidence of the null hypothesis, and smaller values are evidence the 
alternative is true.  

It can be shown the likelihood ratio has certain optimal properties, summarized by the result: 

Statement 2. 

Suppose a decision about the accuracy of a medical test is based on the criterion 

LR(Y) > c      (58) 

Then the likelihood ratio 
(a) maximizes the TPF among all rules with FPF = t, for all )1,0(∈t , 
(b) minimizes the FPF among all rules with the TPF =r, for all )1,0(∈r , 
(c) minimizes the overall misclassification probability 
 FPFTPF )1()1( ρρ −+− , 
where ρ  is the disease rate, and  

(d) minimizes the expected cost, regardless of the costs associated with false negative and false  
positive errors. 

The threshold c above appearing in Statement 2, depends on the objective at hand, but for our 
purposes, the above result implies the ROC curve based on the likelihood ratio is optimal, in the sense 
its area is the largest. The likelihood function is difficult to work with because of the complexity of 
determining its distribution, but, fortunately, the risk score  

RS(Y) = P[D = 1|Y]       (59) 

does not have this disadvantage and has the property that it is a monotone function of the likelihood 
ratio. Simply stated, the risk score assigns a probability of disease to each study subject. 

Statement 3. 

The risk score has the same ROC curve as the likelihood ratio and has the same optimal properties 
as the likelihood ratio. 

Observe that 
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RS(Y) = P[D = 1|Y] 

= P[Y|D = 1]P[D = 1]/P[Y]                                     

                                               = P[Y|D = 1]P[D = 1]/{ P[Y|D = 1]P[D = 1] + P[Y|D = 0]P[D = 0]} 

          = LR(Y)P[D = 1]/{LR(Y)P[D = 1]+P[D = 1]}     (60) 

which shows that the risk score is a monotone increasing function of the likelihood ratio, which 
implies that the ROC curve of risk score is the same as that of the likelihood ratio. For our purposes 
the risk score will be used to measure the accuracy of combined tests, namely, using the area of the 
ROC curve of the risk score. Pepe ([2], pp. 274–275) shows the utility of logistic regression for finding 
the ROC curve of the risk score. Note, that the following statement show why. 

Statement 4. 

Suppose the risk score is expressed as  

    logitP[D = 1|Y] = ),( Yg λγ +       (61)  

where g is a known function, then: 
(a) the parameter λ  can be estimated, even for retrospective designs in which the sampling depends 
on D, and (b) the function g is optimal for determining the ROC curve of the risk function. 

From a practical point of view, logistic regression can be used to determine the ROC curve of the 
risk function, but it should be noted that finding a suitable function g can be challenge. After all, g can 
be a complicated non linear function of λ  and/ or Y, but it would be convenient if g is linear in the 
test scores Y. Of course, a Bayesian approach is taken in order to estimate the logistic regression 
function (10.48). 

The approach taken here is based on the risk score and Pepe ([2], pp. 274–275) gives a good 
account. 

Suppose there are two medical tests with ordinal scores, then for diseased subjects the layout is: 

Table 26. (a) Two medical tests for diseased patients: frequencies and probabilities; (b) 
two medical tests for non-diseased patients: frequencies and probabilities. 

(a) 

Test 1 Test 2=1 Test 2=2 . . . Test 2=k 
1 1111,θn  1212,θn     kkn 11 ,θ  

2 2121,θn  2222,θn     kkn 22 ,θ
 .      
 .      
k 11, kkn θ  22 , kkn θ    kkkkn θ,  
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Table 26. Cont. 

(b) 

Test 1 Test 2=1 Test 2 =2 . . . Test 2=k 
1 1111,φm  1212,φm     kkm 11 ,φ  

2 2121,φm  2222,φm     kkm 22 ,φ
.       
.       
k 11, kkm φ  22 , kkm φ    kkkkm φ,  

 
Thus, there are ijn  diseased subjects with a score of i for test 1 and score j for test 2 and the cell 

probabilities for the diseased are  

                        
jTiTPij === 2,1[θ |D = 1]       (62)  

for the first test, where i, j = 1,2,…,k . 
The non-diseased cell probabilities are  

             
jTiTPij === 2,1[φ |D = 0]       (63) 

Define the ROC area for test 1, the usual way, as: 

 Area1= 2/1211 AA +                    (64) 

where 

   
∑
=

=
∑
−=

=
=

ki

i

ij

j
jiA

2

1

1
).(.11 φθ        (65) 

and the .iθ , i = 1,2,…,k, are the sum of the ijθ  over the missing subscript. 

and  

∑
=

=
=

ki

i
iiA

1
..12 φθ       (66) 

The ROC area for the second test is defined in a similar fashion as 

  Area2= 2/2221 AA +                                                       (67) 
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Our goal is to use the area under the ROC of the risk score as a measure of accuracy of the 
combined tests 1T  and 2T , where the risk scores are determined by logistic regression (if appropriate)  

            
)2,1,()(log TTgijit λγθ +=                                         (68) 

and the unknown parameters γ  and λ  (possibly a vector) are estimated by Bayesian techniques. From 
the logistic regression, the estimated (e.g. posterior means) cell probabilities are employed to estimate 
the area under the ROC curve of the risk score. 

Note that the area under the ROC curve of the risk score is based on the posterior distribution of the 

2 2k parameters ijθ  and ijφ  for i, j = 1,2,…,k, and this scenario is illustrated with the following 

example, where the area under the ROC curve is given by the usual formulas employed in earlier in 
sections. Of course, in addition the area under the ROC curves for the individual tests will also be 
portrayed and compared to the area under the ROC curve of the risk score. It will be a challenge to 
develop a good logistic regression, however, in some cases it will turn out that the logit is a linear 
function of the two tests 1T  and 2T . The risk score is assigned to each experimental unit and is the 
probability of disease, which is estimated from the raw scores of the two component tests! Note, using 
the risk score is a statistical procedure and will ideally be utilized by the clinician working with  
a statistician.  

When considering the accuracy of two ordinal tests, a paired study is envisioned, where each test is 
applied to each patient and one reader examines the results of both tests. It is important to remember 
that the reader uses the results of both tests for each patient in order to decide what score to assign to  
the patient. 

Our first example involves the MRI and CT determination of the lung cancer risk, where one 
radiologist interprets both images and gives a score from 1–5 for the presence of a malignant lesion 
with the following definition: A score of 1 indicates no evidence of malignancy, while a score of 2 
indicated very little evidence of a lesion. The score of 3 designates a benign lesion, while a score of 4 
indicates there is some evidence of a malignancy, and finally a score of 5 signals that the lesion is 
definitely malignant. This is obviously a paired design in that both images are taken on each patient 
and one would expect a ‘large’ correlation between the scores of MRI and CT images. There are 261 
patients that have lung cancer and 674 who do not, and the gold standard is lung biopsy. 

Table 27. (a) MRI and CT scores for diseased patients; (b) MRI and CT scores for  
non-diseased patients. 

(a) 

CT Scores MRI = 1 MRI = 2 MRI = 3 MRI = 4 MRI = 5 Total 
1 15 10 6 2 1 34 
2 9 21 10 3 2 45 
3 5 6 32 6 3 52 
4 2 0 6 47 2 57 
5 0 1 2 5 65 73 

Total 31 38 56 63 73 261 
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Table 27. Cont. 

(b) 

CT Scores MRI = 1 MRI = 2 MRI = 3 MRI = 4 MRI = 5 Total 
1 92 62 41 8 5 208 
2 58 81 10 8 4 161 
3 38 30 65 31 18 182 
4 16 2 21 35 12 86 
5 5 1 3 11 17 37 

Total 209 176 140 93 56 674 

The above study is hypothetical, but there are many studies that have investigated CT and MRI as 
alternatives to detecting lung cancer, and it should be noted that CT has shown good promise (in 
comparison to X-ray) in a recent national lung cancer screening trial, see Gierada, Pilgrim,  
Ford et al. [21] for additional information.  

With regard to the accuracy of the combined test, the approach is to find the area under the ROC 
curve of the risk score, which is determined by logistic regression, namely, 

][2]3[][1]2[]1[])[(log iTbiTbbithetait ++=                     (69) 

where theta[i] is the probability the i-th patient has disease, 
where i = 1,2,…,N.  

N is the number of patients in the study with 261 with disease (lung cancer) and 674 with no 
disease, and the ][ib  are unknown regression coefficients. From a Bayesian viewpoint, the regression 
coefficients are given vague prior distributions of the form 

)0001,.000(.~][ dnormib                 (70) 

namely, a normal distribution with mean 0 and precision 0.0001. 
Based on generating 45,000 observations generated from the posterior distribution, the Bayesian 

analysis is presented below. 

Table 28. Posterior analysis for MRI and CT of individual ROC areas. 

Parameter Mean SD Error 2 1/2 Median 97 1/2 
area ct 0.6836 0.0188 <0.0001 0.6459 0.6837 0.7198 
area11 0.5931 0.0213 <0.0001 0.5509 0.5931 0.6346 
area12 0.181 0.0057 <0.0001 0.1696 0.1811 0.1921 

area mri 0.6886 0.0183 <0.0001 0.652 0.6889 0.7239 
area21 0.5992 0.0207 <0.0001 0.5581 0.5994 0.6392 
area22 0.1788 0.0049 <0.0001 0.1689 0.1789 0.1883 

The MCMC errors are quite small and show that the presented estimated ROC areas are very 
‘close’ to the actual posterior areas, and the analysis also shows that the two areas are about the same, 
that is the accuracy of the two modalities are essentially the same. The probability of a tie with CT is 
estimated with a posterior mean of 0.181 and 0.1788 with MRI. Thus one would expect the accuracy 
of the combined test, as measured by the ROC area of the risk score, to be about the same value, in the 
area of 0.70. 
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As before, when estimating the ROC area of the risk score, 45,000 observations are generated for 
the MCMC simulation, with the following results. 

Table 29. Posterior accuracy of the combined test.  

Parameter Mean SD Error 2 1/2 Median 97 1/2 
auc 0.7246 0.0192 <0.0001 0.6858 0.725 0.7616 

b [1] –2.952 0.2162 <0.0001 –3.381 –2.949 –2.533 
b [2] 0.3562 0.0752 <0.0001 0.2089 0.3562 0.504 
b [3] 0.3392 0.0723 <0.0001 0.1965 0.3391 0.481 

beta [1] 0.2412 0.0053 <0.0001 0.2309 0.2412 0.2516 
beta [2] 0.1385 0.0127 <0.0001 0.1136 0.1385 0.1638 

precy [1] 53.13 2.904 0.0143 47.59 53.1 58.92 
precy [2] 28.79 2.528 0.0122 24.08 28.71 33.99 

       The auc parameter is the ROC area of the risk score and is estimated as 0.7246(0.0192) with the 
posterior mean, and the median is about the same value indicating very little skewness in the posterior 
distribution. The implication is that the combined test has an accuracy is somewhat larger the accuracy 
of the individual tests, see Table 27 which portrays the individual area as approximately 0.68. Of 
course, this is not surprising because the individual ROC area for CT and MRI are essentially the 
same, thus, one would expect the accuracy of the combined test to be about the same as the  
individual values.  

Note, that the b’s are the regression coefficients for the logistic regression, and the beta’s are the 
regression coefficients in the normal regression for the ROC area of the risk score. The logistic 
regression is linear in the two test variables 1T  and 2T , but I did add the squares and cross product of 

the two and the ROC area remained the same, thus, the linear association appears to be adequate for 
estimating the risk score for the combined test. The risk scores are not normally distributed, but can be 
transformed to normality approximately via the log transformation, however, when this is done the 
ROC area remains at about 0.72.  

Of course there are examples, where the ROC area of the risk score is much greater than that of the 
component tests. A good example is one for a pancreatic cancer study analyzed by Pepe [2, p9]] who 
investigated the effect of two biomarkers on the disease incidence.  The first biomarker is CA19-9 and 
the second biomarker is CA125. On the original scale the mean(sd) of CA19-9 is 18.03(20.81) for the 
51 control patients and 1715(3681) for the cancer patients, whereas for the CA125 marker, the 
mean(sd) for the control patients are 21.81(30.29) and 55.04(138.8) for the diseased. 

The median for the first biomarker is 10 for the control and 249 for the cancer patients, and for the 
second biomarker, the medians are 11.4 versus 21.8 for the control and diseased patients respectively. 
Note the large variability of both biomarkers, but based on the difference in the means and medians 
between the diseased and non-diseased patients, one would expect a high value for the ROC area of 
CA19-9. Note that 1T  is the CA19-9 biomarker, 2T  is CA125. In order to determine the accuracy of 

the combined test, the Bayesian analysis is executed with 45,000 observations, and the results reported 
in Table 30. 
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Table 30. Bayesian analysis for accuracy of the combined test. 

Parameter Mean SD Error 2 1/2 Median 97 1/2 
auc 0.9127 0.0227 <0.0001 0.8625 0.915 0.951 

beta [1] 0.3568 0.0223 <0.0001 0.3129 0.3567 0.4015 
beta [2] 0.4361 0.0368 <0.0001 0.3633 0.4362 0.5084 

Using the risk score (which is determined with a logistic regression that regresses the disease status 
on the logs of the two biomarkers 1T  and 2T ) a ROC area with posterior mean 0.912 implies very 
good accuracy for the combined test. This is to be compared to an ROC area of 0.8733(0.0275), based 
on CA19-9, and 0.6786(0.0438) for CA125.  

Bayesian Methods for determining the accuracy of combined tests can easily be extended to other 
situations and the reader is referred to Broemeling [1]. 

7. Comments and Conclusions 

The article has described some of the Bayesian methods that are available for determining the 
accuracy of medical tests and began with the basic measure of accuracy including the true and false 
positive fractions and the positive and negative predictive values. For ordinal and continuous test 
scores, Bayesian methods for estimating the ROC area were introduced. The review was continued by 
considering more specialized scenarios, including studies where verification bias is present and where 
an imperfect reference standard is used, and for each scenario the methodology was illustrated with 
interesting examples that occur in cancer and other diseases. 

Other scenarios were not considered but nevertheless are important topics for Bayesian methods of 
medical test accuracy. One important topic not covered is the subject of multiple observers, each 
providing an estimate of test accuracy. Consider the case where two radiologists are interpreting the 
same mammograms for diagnosing breast cancer, then how does one resolve any differences in 
interpretation and to what degree do the observers agree in their interpretation? This topic is studied 
from a Bayesian viewpoint in some detail by Broemeling [23], where the various analyses are executed 
with the WinBUGS package. Another area not presented in this review is that of Bayesian 
nonparametric inference, thus, the reader is referred to Erkanli et al. [24] and Hanson et al. [25] for 
additional information on this approach to medical test accuracy. Also absent from this review are 
certain aspects of the design of accuracy studies, therefore, for a good introduction refer to  
Dendukuri et al. [26] and Cheng et al. [27]. 
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