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Abstract: Replicators are fundamental to the origin of life and evolvability. Biology exhibits
homochirality: only one of two enantiomers is used in proteins and nucleic acids. Thermodynamic
studies of chemical replicators able to lead to homochirality shed valuable light on the origin of
homochirality and life in conformity with the underlying mechanisms and constraints. In line with
this framework, enantioselective hypercyclic replicators may lead to spontaneous mirror symmetry
breaking (SMSB) without the need for additional heterochiral inhibition reactions, which can
be an obstacle for the emergence of evolutionary selection properties. We analyze the entropy
production of a two-replicator system subject to homochiral cross-catalysis which can undergo SMSB
in an open-flow reactor. The entropy exchange with the environment is provided by the input and
output matter flows, and is essential for balancing the entropy production at the non-equilibrium
stationary states. The partial entropy contributions, associated with the individual elementary flux
modes, as defined by stoichiometric network analysis (SNA), describe how the system’s internal
currents evolve, maintaining the balance between entropy production and exchange, while minimizing
the entropy production after the symmetry breaking transition. We validate the General Evolution
Criterion, stating that the change in the chemical affinities proceeds in a way as to lower the value of
the entropy production.

Keywords: spontaneous mirror symmetry breaking; chiral replicators; entropy production; general
evolution criterion; non-equilibrium thermodynamics; stoichiometric network analysis

1. Introduction

The importance of studying chemical systems subject to various architectures, and capable of
spontaneous mirror symmetry breaking (SMSB), owes to the problem of the origin of biological
homochirality, an outstanding problem in origin of life research [1,2], as well as a crucial factor to take
into account in the design of synthetic systems mimicking primordial processes of life. The current
consensus is that the homochirality of biological compounds: the observed bias in biopolymers made
up from homochiral L-amino acids and D-sugars is a condition associated with life that most likely
emerged through processes of spontaneous mirror symmetry breaking very early on during abiotic
chemical evolution [2]. Homochirality is ubiquitous and present in biological chemistry right from
the outset.

Spontaneous mirror symmetry breaking, or absolute asymmetric synthesis (AAS), refer to the
transformation of achiral or racemizing initial products to final chiral reaction products in detectable
enantiomeric excesses, and in the absence of any chiral polarization or external chiral forces and influences.
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SMSB and AAS involve transformations yielding nonracemic (scalemic) outcomes as non-equilibrium
steady states (NESS) [3–6]. This phenomenon may occur in enantioselective-autocatalytic reaction
networks leading to a bifurcation scenario [7,8]. Within the framework of non-equilibrium non-linear
thermodynamics of irreversible processes [9,10], mirror symmetry breaking can occur for specific system
parameters and only when the system is kept out of thermodynamic equilibrium with its surroundings [3].
The racemic state becomes metastable along the thermodynamic branch and inevitable chiral fluctuations
perturb the system to make a transition to one of two energetically degenerate chiral states: a bifurcation
to ordered states takes place with a consequent decrease in the symmetry and for which the production of
entropy is minimized.

Reaction networks able to lead to SMSB require, as a necessary but not sufficient condition,
nonlinear kinetic dependences of enantioselective autocatalysis. Although a rare reaction in laboratory
chemistry [11,12], it is significant in life, because it sustains self-reproduction (i.e., via replicators)
in the nucleic acids/protein domain. Indeed, replicators are believed to be fundamental to the
origin of life [13], whose survival hinges on the accuracy of their replication and growth efficiency.
Autocatalysis is a basic property of life [14–16]. Thus the emergence of autocatalysis during the
formation of the first replicators represents a crucial stage in chemical evolution. Biological replication
is enantioselective, therefore an SMSB scenario of enantioselective autocatalysis occurring at the
same stage of abiotic evolution, rather than at the stage of the emergence of replicators (pre-RNA- or
RNA-world), is a reasonable hypothesis which has been taken up and developed in [17]. The quest
to understand the origin of biological homochirality in replicator dynamics makes the study of such
chemical networks especially interesting and relevant.

Enantioselective hypercycles enable quadratic (first order) autocatalysis to achieve the enantioselective
behavior of cubic (second-order) autocatalysis, and therefore may lead to spontaneous mirror symmetry
breaking (thus resulting in a chiral final stationary state instead of a racemic one) for specific reaction rate
constants in systems with thermodynamic architectures that maintain them out of equilibrium with their
surroundings [17]. The significance of such a SMSB reaction network is that it does not imply heterochiral
inhibiting reactions, such as those of the Frank-like models, and as a consequence, the emergence of
biological homochirality could already be included, both theoretically and experimentally, in the current
models of the selection and evolution of biological replicators. These results [17] suggest an abiotic scenario
of a simultaneous emergence of biological homochirality during the formation of replicator networks with
catalytic activity (such, as for example, in the RNA-world). Furthermore, such an hypothesis also implies
that the current chiral machinery present in extant living beings, capable of transferring chirality and which
is highly resistant to racemization, is a complex SMSB network which evolved from the primordial ones.

The question of biological homochirality requires an understanding of the non-equilibrium
thermodynamic conditions that may lead to stable deviations from the racemic composition.
The purpose of this work is to place a strong emphasis on the entropic changes and exchanges
associated with SMSB. In so doing we will understand how such chemical dynamical systems
can be conceived and in strict obeyance of the thermodynamic laws. This approach is developed
in detail employing a model of two cross-catalyzed chiral replicators. This may be regarded as
a primitive infrabiological system [13] built out of two coupled (auto)catalytic systems. This will lead
to a description of entropy production, entropy exchange, and the balance of the former and the latter at
a NESS, for non-equilibrium systems in terms of the extreme flux modes, as defined by stoichiometric
network analysis (SNA) [18].

2. Enantioselective Replicators in Open-Flow Reactors

The so-called hypercycle model [19] solves the problem of how to perform replicator selection,
that is, how to achieve exponential growth dynamics based on quadratic autocatalysis. Recently,
we have shown that the model is also able to yield spontaneous mirror symmetry breaking (SMSB)
in a number of hypercyclic networks of varying complexity, and this means enantiomeric selection
in the case of chiral replicators [17]. The simplest reaction network of hypercyclic enantioselective
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autocatalysis is that involving two chiral replicators 1R, 2R, and is the model we will thoroughly
investigate here:

A + 1RD + 2RD
k1

GGGGGGBFGGGGGG

k2

2 1RD + 2RD A + 1RL +
2RL

k7
GGGGGGBFGGGGGG

k8

2 1RL +
2RL (1)

A + 2RD + 1RD
k3

GGGGGGBFGGGGGG

k4

2 2RD + 1RD A + 2RL +
1RL

k9
GGGGGGBFGGGGGG

k10

2 2RL +
1RL (2)

1RD
k f (5)−→ ∅ 1RL

k f (11)
−→ ∅ (3)

2RD
k f (6)−→ ∅ 2RL

k f (12)
−→ ∅ (4)

∅̄
k f [A]0(13)
−→ A (5)

A
k f (14)
−→ ∅. (6)

The species A represents the achiral resources needed to form the chiral replicators which engage
in homochiral mutual cross-catalysis, Equations (1) and (2). We place these micro-reversible reactions
within an open flow system, Figure 1, which implies the entry of a specific volume of reactant solution
and the exit of the same volume of the actual concentrations (those determined dynamically within
the continuously stirred tank reactor or CSTR) of all the reaction network species. The symbols ∅̄, ∅
represent environments external to the reactor from which chemical species can be input, or flow to,
respectively: see Equations (3)–(6). The reaction rate constants are determined below.

Figure 1. Reaction network for two cross-catalyzed chiral replicators in an open flow reactor.

The resultant fourteen transformations are numbered sequentially as indicated, a convenience
for setting up the stoichiometric network analysis (SNA) [18] that follows. SNA is a systematic and
powerful general approach for treating nonlinear dynamics of chemical reaction mechanisms based on
network stoichiometry. We obtain the stoichiometric matrix ν: the transformations, including both the
reactions and the flows, are represented by the columns, numbered from 1 to 14, whereas the rows,
from top to bottom, represent the five species in this order {Xi}5

i=1 = {A, 2RD, 1RD, 1RL, 2RL}:

ν =


−1 1 −1 1 0 0 −1 1 −1 1 0 0 1 −1
0 0 1 −1 0 −1 0 0 0 0 0 0 0 0
1 −1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 −1 0 0

 . (7)

The chemical pathway structure of the reaction plus flow scheme Equations (1)–(6) is provided
from knowledge of the right null space of ν (and when this null space is intersected with the positive
orthant of a 14-dimensional Euclidean space), and corresponds to the set of all the stationary state
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reaction rates [18]. Knowledge of the stationary, or steady, states reveals the explicit reaction pathways
and the flow patterns and matter currents of the chemical network. This is therefore an ideal tool to
use for exploring SMSB. Carrying out these preliminary algebraic operations (the extreme flux modes,
EFMs, are determined from ν using the freely available program package COPASI [20]) yields a set of
nine vectors, the extreme flux modes (EFM) {Ei}9

i=1, which can be organized as the columns of the
following matrix E:

E =



0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0 0



, (8)

and which satisfies νE = 0. These nine EFM vectors and the reaction pathways they represent are
listed in Table 1. The first four flux modes, E1 to E4, correspond to the internal fluxes describing the
forward and reverse catalytic activity of each one of the enantiomers of the two replicators. The flux
mode E5 corresponds to the flux of the achiral species A traversing the reactor in the absence of any
reaction. The final four flux modes E6 to E9 correspond to the unidirectional transformation fluxes of
A to one of the enantiomers of the two replicators 1R, 2R, followed by the outflow from the reactor of
the given enantiomer.

Table 1. Elementary flux modes Ei, the individual transformations they involve as enumerated in
Equations (1)–(6), and their corresponding reaction subnetworks or pathways. The parity operation P ,
which acts on enantiomers in three dimensional space, induces symmetries on these vectors by relating
pairs of enantiomeric extreme flux modes (EFMs) [21]. These pairs or doublets are E1 ⇔ E4, E2 ⇔ E3,
E6 ⇔ E9, and E7 ⇔ E8. There is one singlet: E5.

EFM: Reactions Subnetwork: Reaction Pathway

E1 (10),(9) 2 2RL + 1RL → A + 2RL + 1RL, A + 2RL + 1RL → 2 2RL + 1RL
E2 (8),(7) 2 1RL + 2RL → A + 1RL + 2RL A + 1RL + 2RL → 2 1RL + 2RL
E3 (2),(1) 2 1RD + 2RD → A + 1RD + 2RD A + 1RD + 2RD → 2 1RD + 2RD
E4 (4),(3) 2 2RD + 1RD → A + 2RD + 1RD A + 2RD + 1RD → 2 2RD + 1RD
E5 (14),(13) A→ ∅, ∅̄→ A
E6 (13),(12),(9) ∅̄→ A 2RL → ∅ A + 2RL + 1RL → 2 2RL + 1RL
E7 (13),(11),(7) ∅̄→ A 1RL → ∅ A + 1RL + 2RL → 2 1RL + 2RL
E8 (13),(5),(1) ∅̄→ A 1RD → ∅ A + 1RD + 2RD → 2 1RD + 2RD
E9 (13),(6),(3) ∅̄→ A 2RD → ∅ A + 2RD + 1RD → 2 2RD + 1RD

The reaction rate monomial corresponding to the j-th transformation (j = 1, 2, ..., 14) in
Equations (1)–(6) can be written as follows, where αji is the stoichiometric coefficient of the ith
species in the jth transformation:

vj(k j, x) = k j

5

∏
i=1

[Xi]
αji . (9)
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Then, from SNA, the most general vector of the stationary state reaction rates vss, whose components
are given by Equation (9) for the stationary concentrations [Xi]ss, can be expressed as a linear
combination of the EFM vectors with nonnegative expansion coefficients ji ≥ 0 [18] as follows:

vss =
9

∑
i=1

ji Ei =
(

j3 + j8, j3, j4 + j9, j4, j8, j9, j2 + j7, j2, j1 + j6, j1, j7, j6, j5 + j6 + j7 + j8 + j9, j5
)
. (10)

Each non-negative parameter ji > 0 represents the magnitude of the current flowing through the
ith flux mode, or pathway: Ei. The virtue of this SNA representation is that all steady state properties
of the full network can be expressed as functions of these flux magnitudes.

A SNA stability analysis of the racemic configuration can be carried out following the
procedure established in [21], and leads to conditions in terms of these flux magnitude parameters ji.
The instability of the racemic state is driven by the initially racemic open flow currents j6 = j9 > 0 and
j7 = j8 > 0. These parameters multiply the EFMs E6 to E9, respectively, which from Table 1, involve
the unidirectional sequences of transformations that drive the net production of the enantiomers via the
forward mutual cross-catalyses. These initially racemic currents drive the instability of the racemic
configuration. These four currents result from (i) the inflow of achiral resource A, (ii) its conversion
into enantiomers of the replicators, and followed by (iii) the outflow of these enantiomers from the
reactor. After SMSB, these racemic flux equalities are broken, indicating that relatively more flux flows
through one of the corresponding flux mode pathway than through its oppositely handed flux mode
pathway. This can be appreciated clearly, in for example, the SMSB bifurcations revealed by the partial
entropy productions for each EFM, see Figures 4 and 5. After SMSB, we have j1 > j4, j2 > j3 and
j6 > j9, j7 > j8: hence all the L-handed fluxes (and hence their partial entropy productions) are greater
than their D-handed counterparts; see Table 1 for the EFMs involved.

By marked contrast, if only the achiral species A is allowed to enter and exit the reactor, but none
of the replicators, then SNA proves that the racemic state is absolutely stable, and for all values of
j1 = j4 > 0, j2 = j3 > 0, j5 > 0. This latter situation corresponds to preventing the enantiomer outflow
Equations (3) and (4) from the reactor; the corresponding stoichiometric matrix then gives rise to only
the first five EFMs listed in Table 1. The latter four EFMs are simply not present. The first four of which
all correspond to closed “unproductive” pathways, while the fifth is the unreactive flow-through of the
resource A. In this case, the non-equilibrium racemic states (which define the thermodynamic branch)
are the only stable outcomes: the equalities j1 = j4 > 0, j2 = j3 > 0 are never broken.

The reaction rate constants in Equations (1) and (2) are constrained by chirality: this implies
k1 = k7 = ka, k2 = k8 = k−a and k3 = k9 = kb, k4 = k10 = k−b. Figure 2, top row, displays
a characteristic example of SMSB for the two-replicator network in a open flow reactor, and for
the rate constants and initial conditions indicated there. The final enantiomeric excesses achieved
for each replicator, see bottom row Figure 2, where ee1(%) = [1RL ]−[1RD ]

[1RL ]+[1RD ]
× 100% etc., is that of

100% homochirality.
There is a relatively long induction period for which both replicators remain close to their initially

extremely low concentration values, followed by a relatively rapid consumption of the shared achiral
species A (the dashed black curves, top Figure 2) which increases the racemic concentrations to
higher levels for each replicator. This increased level of non-equilibrium racemic composition then
becomes unstable leading to a bifurcation in the enantiomeric concentrations. In this example, we have
[1RL] >> [1RD] (top left) and [2RL] >> [2RD] (top right) since we subjected the system to an initial
minuscule perturbation δ[2RL]0 in just one of L-handed enantiomers. The initial minuscule chiral
fluctuation (ee0 = 10−16%) has become amplified to a full 100% homochirality.
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Figure 2. Spontaneous mirror symmetry breaking (SMSB) in a simple two-hypercycle network
Equations (1)–(6) in an open-flow reactor of volume V = 1 L. The two homochiral cross-catalyzed
enantioselective replicators 1R and 2R are fed by a common achiral resource A. The reaction rate
constants are ka = 1× 104, k−a = 1× 10, kb = 1× 103, k−b = 5× 10−1, see text. Initial resource
concentration in the reactor and in the constant input volume ( f = 0.2 µL/s): [A]in = 1× 10−4 mol/L.
Initial replicator concentrations in the reactor [1RL]0 = [1RD]0 = [2RL]0 = [2RD]0 = 1× 10−6 mol/L and
the initial chiral fluctuation is simulated by an incremental concentration of δ[2RL]0 = 1× 10−23 mol/L
in the 2RL enantiomer. Top row: formation of the enantiomers from the initial input concentration of
resource and the symmetry breaking bifurcation. Black dashed curves are [A], blue curves are [RL],
and the red curves are [RD] for each replicator. The SMSB event occurs at approximately t ≈ 2× 108 s.
Bottom row: percent enantiomeric excess (ee%) for each replicator reaches 100% homochirality. The rise
in ee initiates approximately at t ≈ 2× 108 s. Qualitatively similar behavior is obtained when direct
production and autocatalysis of the replicators are included in this scheme, as well as for other
hypercyclic networks involving more replicators, and also for other system architectures [17].

3. Entropy Production

The entropy production due to k-reversible reactions can be expressed in terms of their
corresponding forward v f and reverse vr reaction rates, employing Equation (9), as follows [10]:

σ = R ∑
k

(
vk, f − vk,r

)
ln
(vk, f

vk,r

)
≥ 0, (11)

where R is the ideal gas constant. For our replicator scheme, when applied to the four reversible
reactions as enumerated in Equations (1) and (2), this leads to

σ/R = (v1 − v2) ln
(v1

v2

)
+ (v3 − v4) ln

(v3

v4

)
+ (v7 − v8) ln

(v7

v8

)
+ (v9 − v10) ln

( v9

v10

)
≥ 0, (12)

where the indicated reaction rates vj are given by Equation (9).
SNA reveals the specific reaction pathways that are responsible for producing entropy [22].

Thus from Equation (10), for any nonequilibrium stationary state (NESS), we find that the entropy
production depends on the following flux mode magnitudes j and in the following way:

σ/R|NESS = j8 ln
( j3 + j8

j3

)
+ j9 ln

( j4 + j9
j4

)
+ j7 ln

( j2 + j7
j2

)
+ j6 ln

( j1 + j6
j1

)
≥ 0. (13)
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Therefore, the entropy production is driven exclusively by the unidirectional extreme flux modes
E6, E7 , E8, and E9, see Table 1, and whose flux magnitudes are specified by the nonnegative coefficients
j6, j7, j8, and j9, respectively. Note each individual term above is positive definite. By contrast, the four
internal closed EFMs E1, E2, E3, and E4 do contribute to the production of entropy—but only and
necessarily in the presence of the open unidirectional modes—and cannot produce entropy of and
by themselves. Note furthermore that the input/output unreactive flow of resource A plays no role
whatsoever in the production of entropy, since Equation (13) does not depend on j5 > 0. At least
one open productive unidirectional pathway must be operative in order that the system produce
entropy [23].

The evolution of the entropy production over the full time range of the simulation is given in
Figure 3. The various time scales that can be appreciated there can be compared with those marking
the evolution of the enantiomers in Figure 2. The production remains relatively low during the initial
induction period 0 < t < 106 s, as there is little transformation of resource A to the enantiomers.
The pronounced production peak near t ≈ 106 s corresponds to the rapid conversion of resource to
enantiomers via the cross-catalysis, which increases the level of the, as yet, racemic concentrations.
Once this conversion process has all but halted, due to the diminished supply of resource, the system
then remains in a new meta-stable racemic configuration: this is seen in the narrow entropy production
“plateau” in Figure 3 and corresponds to the higher racemic concentration profile located in time range
of approximately 107 < t < 108 s. The mirror symmetry breaking bifurcation in the enantiomeric
concentrations (see Figure 2) is accompanied by a drop in the entropy production to its final stationary
value in the homochiral state. The entropy production is minimized in the chiral state, relative to the
entropy production in the prior meta-stable racemic state. Such a qualitative trend has been observed
before for other types of reactions [5,10,24,25].
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6

10
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10
18

0
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2.×10-9

3.×10-9
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K
-
1
s
-
1
l-
1
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Figure 3. The entropy production Equation (11) over the full time range of the simulation of Figure 2.
The first pronounced peak at t ≈ 106 s corresponds to the almost complete conversion of A into both
the enantiomers of each replicator. The production then decreases and levels off to a narrow plateau
corresponding to the unstable racemic state, and then subsequently decreases once more to a final
minimum value, with respect to this former unstable plateau, immediately after the symmetry breaking
bifurcation occurring at t ≈ 2× 108 s. Compare the time scales here to those in the top row of Figure 2.

4. Entropy Production of the Extreme Flux Modes

We can define and calculate the partial entropy productions and exchanges [22] for each individual
irreversible transformation, as indicated in Table 2. This reveals how the entropy production and
exchange are partitioned along all the pathways of a reaction network. The first two transformations
in Table 2 represent the forward and reverse cross-catalysis, with rate constants k+, k−, respectively.
The latter two correspond to a fixed input concentration [X]in, and an output flow of [Y], where [..]eq

denotes the equilibrium concentration of the indicated species. These are the concentrations the system
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would relax to if the reactor, containing the chemical mass of the final NESS, were to be isolated from
the open flow. These equilibrium concentrations are used to define the relative chemical potential [22].
The flow parameter f = q/V, where q is the volume of fluid flowing into and out of the reactor of
volume V.

Table 2. The partial entropy productions per unit volume σ for chemical transformations of the form
A + B + C ⇀↽ 2B + C and for the irreversible pseudo-reactions→ X and Y →, see [22]. The reference
equilibrium concentrations [X]eq, [Y]eq, are those established when the reactor, and with the chemical
mass of the final non-equilibrium stationary state (NESS), is isolated from the open flow; see text.

Transformation Partial Entropy Production/Exchange

A + B + C → 2B + C σ(A + B + C → 2B + C) = R k+[A][B][C] ln
( k+ [A]

k− [B]

)
2B + C → A + B + C σ(2B + C → A + B + C) = R k−[B]2[C] ln

( k− [B]
k+ [A]

)
→ X σ(→ X) = R f [X]in ln

( [X]eq

[X]

)
Y → σ(Y →) = R f [Y] ln

( [Y]
[Y]eq

)
All the individual transformations in Equations (1)–(6) belong to one of these four forms listed in

Table 2. Then the entropic contributions corresponding to each extreme flux mode vector Ei can be
defined and calculated [22] using Tables 1 and 2, and which results in weighted linear combinations of
partial entropy productions due to both the chemical reactions and the exchange fluxes. Carrying this
out yields the partial entropies corresponding to the individual EFM vectors as follows:

σ(E1) = σ(2 2RL +
1RL → A + 2RL +

1RL) +
1
2

σ(A + 2RL +
1RL → 2 2RL +

1RL) (14)

σ(E2) = σ(2 1RL +
2RL → A + 1RL +

2RL) +
1
2

σ(A + 1RL +
2RL → 2 1RL +

2RL) (15)

σ(E3) = σ(2 1RD + 2RD → A + 1RD + 2RD) +
1
2

σ(A + 1RD + 2RD → 2 1RD + 2RD) (16)

σ(E4) = σ(2 2RD + 1RD → A + 2RD + 1RD) +
1
2

σ(A + 2RD + 1RD → 2 2RD + 1RD) (17)

σ(E5) = σ(A→ ∅) +
1
5

σ(∅→ A) (18)

σ(E6) =
1
5

σ(∅̄→ A) + σ(2RL → ∅) +
1
2

σ(A + 2RL +
1RL → 2 2RL +

1RL) (19)

σ(E7) =
1
5

σ(∅̄→ A) + σ(1RL → ∅) +
1
2

σ(A + 1RL +
2RL → 2 1RL +

2RL) (20)

σ(E8) =
1
5

σ(∅̄→ A + σ(1RD → ∅) +
1
2

σ(A + 1RD + 2RD → 2 1RD + 2RD) (21)

σ(E9) =
1
5

σ(∅̄→ A) + σ(2RD → ∅) +
1
2

σ(A + 2RD + 1RD → 2 2RD + 1RD). (22)

As these are defined for each elemementary flux mode (EFM), they generally involve combinations
of partial entropy productions associated to either a forward or reverse internal transformation and
entropy exchange contributions coming from one or more of the input/output fluxes. Therefore,
they can have have, in principle, any sign: either positive or negative. The relative weights for each
partial entropy contribution are a consequence of the network stoichiometry. These weights simply
count the number of times a given transformation occurs in the set of all the EFM pathways of the
network. They must be included to avoid the multiple counting of any specific partial contribution.
The partial entropy associated to each EFM pathway is obtained by dividing the partial entropy of the
ith reaction (if it appears in that pathway) by the number of nonzero entries appearing in the ith row
of the matrix E in Equation (8). Then, summing over the entropic contributions due to all nine extreme
flux mode vectors yields the important identity [22]
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9

∑
i=1

σ(Ei) = σ− σe =
dS
dt

(23)

establishing the intimate connection (first equality on the left) between the entropies of the extreme
flux modes (pathways) and the balance equation (the second equality) [10] involving the entropy
production, Equation (11), and the exchange entropy σe [22]:

σe = R ∑
k

f (ck,in − ck) ln
( ck

ck,eq

)
. (24)

The reference concentrations ck,eq are determined from detailed balance and mass conservation:
they correspond to isolating the reactor, having the chemical mass of the final NESS, from the open
flow. In our case, they correspond to the species concentrations of the racemic state. The change in
total system entropy is dS

dt . The first equality in (23) resolves the entropy balance between production
and exchange in terms of the individual entropic contributions coming from each elementary pathway
within the reaction network. At a NESS the entropy production is balanced by the entropy exchanged
with the environment: σ = σe ⇔ dS

dt = 0. Thus, the sum of the partial entropies over all EFMs
vanishes identically at a NESS: ∑9

i=1 σ(Ei) = 0, underscoring the importance of all the pathways,
both productive and unproductive, open and closed, in contributing to this balance.

Mirror symmetry breaking lifts the degeneracy in the values of the partial entropy productions
associated with the EFM pair σ(E1), σ(E4) and also with the pair σ(E2), σ(E3), respectively, see Figure 4.
From Table 1 the indicated EFM vectors represent enantiomeric pairs of internal closed reaction
pathways; namely, the elementary pathways formed by the forward and reverse cross-catalyses for
each enantiomer. Likewise, the pairs of partial entropies associated with the unidirectional open-flow
pathways σ(E6), σ(E9) and σ(E7), σ(E8), respectively, also undergo bifurcations: see Figure 5.
These latter open flow pathways involve contributions coming from the forward cross-catalyses
together with the input/output flows, and their partial entropies can take on either positive or negative
values. In all these initially mirror symmetric entropy productions, after SMSB the greater partial
production is along the pathways involving the L-enantiomers (as we perturbed the initial racemic
state with a slight excess of 2RL). The sum of the entropy contributions over all the EFM vectors
vanishes identically at any NESS: see Figure 6, confirming that production and exchange over all
pathways are perfectly balanced both at the final chiral NESS, as well as at the prior meta-stable
racemic state, as predicted by Equation (23). In networks with M EFMs, the sum is extended over
M. We evaluate this sum to cover the time range subsequent to the large production peak in Figure 7.
Note after this peak this sum is identically zero everywhere except at the SMSB transition itself, located
approximately at t ≈ 2× 108 s, since the transition is a dynamic event. This tiny “spike” can be
appreciated quite clearly examining a zoom of the temporal derivative of the entropy production itself:
see the right hand graph in Figure 7.
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Figure 4. Bifurcation in the partial entropy productions σ(Ei), in units of J K−1s−1L−1, associated with
the enantiomeric pairs of extreme flux modes. Left: upper (red) branch σ(E1), lower (blue) branch
σ(E4). Right: upper (red) branch σ(E2), lower (blue) branch σ(E3). See Table 1 and Equations (14)–(17).
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Figure 5. Bifurcation in the entropy productions σ(Ei), in units of J K−1s−1L−1, associated with the
enantiomeric pairs of extreme flux modes. Left: upper (red) branch σ(E6), lower (blue) branch σ(E9).
Right: upper (red) branch σ(E7), lower (blue) branch σ(E8). See Table 1 and Equations (19)–(22).
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Figure 6. The sum of the partial entropies over all the extreme flux modes, in units of J K−1s−1L−1.
See Table 1 and Equations (14)–(22). Same parameters as employed in Figure 2. This sum vanishes
at the final stable chiral non-equilibrium stationary state (NESS), as well as at the prior metastable
racemic state, indicating that the entropy production exactly balances the exchange entropy σ = σe:
see Equation (23). See text for behavior of the minuscule “spike” at t ≈ 2× 108 s.

0.01 100.00 10
6

10
10

10
14

10
18

-6.×10-15

-4.×10-15

-2.×10-15

0

2.×10-15

4.×10-15

time (s)

ⅆ
σ

ⅆ
t

(J
K
-
1
s
-
2
l-
1
)

5×107 1×108 5×108 1×109

-1.×10-17

-8.×10-18

-6.×10-18

-4.×10-18

-2.×10-18

0

time (s)

ⅆ
σ

ⅆ
t

(J
K
-
1
s
-
2
l-
1
)

Figure 7. Left: the temporal derivative of the entropy production starts off positive, increasing in the
vicinity of the production peak, and subsequently goes negative and then to zero during the metastable
racemic phase and is also zero after SMSB as the system approaches the final stable chiral NESS.
The small negative “spike” at approximately 2× 108 s (right hand graph) shows the derivative at the
SMSB transition itself. Compare this derivative to the entropy production curve in Figure 3. We can
resolve the total derivative into two independent contributions [10]: dσ

dt = dFσ
dt +

dJ σ
dt , Equation (26),

to test validity of the GEC: see Figure 8.
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Figure 8. Blue curve: the change in the entropy production with respect to changes in the chemical
forces F (the affinities), which is negative definite thoughout the entire time course and reaches
zero at the final stable chiral NESS, and thus obeys the general evolution criterion (GEC) [9,10];
and Equation (A18). Red curve: the change in the entropy production with respect to changes in the
flows J starts off positive then becomes negative after SMSB and then reaches zero from below on the
approach to the final stable chiral NESS.

5. Role of the Chemical Forces: The General Evolution Criterion

The entropy production Equation (11) can be written as a product over forces Fk times flows
Jk [26,27]. For chemical reactions, the forces are proportional to the chemical affinities Ak, and the
flows are differences in the corresponding reaction rates [10]:

σ = ∑
k

Fk Jk =
1
V ∑

k

Ak
T

dξk
dt

{
Fk = Ak/T = R ln

( vk, f
vk,r

)
forces : chemical affinities

Jk =
1
V

dξk
dt = (vk, f − vk,r) flows

(25)

Now, the General Evolution Criterion (GEC) [26,27] states that the derivative of the entropy
production with respect to the time-variation of the forces dFσ/dt = ∑k(dFk/dt)Jk obeys the inequality:
dFσ/dt ≤ 0, (and vanishes = 0 at the NESS). The total time derivative of σ receives two contributions
which are generally independent in the nonlinear regime of non-equilibrium thermodynamics:

dσ

dt
=

dFσ

dt︸︷︷︸+dJσ

dt
GEC :

dFσ

dt
≤ 0 (= 0 at NESS) (26)

Note: the derivative of the entropy production with respect to the time-variation of the flows J:
dJσ/dt = ∑k Fk(dJk/dt), by marked contrast, satisfies no such theorem. The proof of the GEC generally
assumes time-independent boundary conditions and a variety of external physical forces can be taken
into account [9,26,27], such as closed chemical systems and even certain types of open chemical
systems [10]. We are interested in chemical reaction systems subject to input/output volumetric
open-flow configurations, and thus seek the proper expression of the GEC valid for time-dependent
open flow system architectures, not contemplated, to our knowledge, in the earlier demonstrations.
A derivation of dFσ/dt for chemical reactions subject to time-dependent open flows is given in the
Appendix A. An important point worth mentioning is that for open-flow systems, the chemical affinities
(the forces) depend on both the internal reversible reactions and on the irreversible pseudoreactions,
or matter fluxes, that maintain the system out of equilibrium. This explicit dependence is made
manifest, see Equation (A18). We thus evaluate this expression for our model and confirm its validity
and the compliance of the GEC over the full time range of our simulation.

We first consider the total derivative of the entropy production dσ/dt, displayed in Figure 7
(left hand panel). It starts off positive and becomes negative after the large entropy production peak,
and remains negative (or zero) both before and after SMSB, indicating that stability of the final chiral
NESS is achieved after the symmetry breaking. The momentary SMSB event itself can be appreciated
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clearly in the blow-up shown in the right-hand graph. The derivative is zero both during the prior
metastable racemic interval as well as for the subsequent final chiral NESS. The small negative peak
is the derivative of the racemic to chiral “step” in Figure 3. Thus the curves in Figure 7 represent
faithfully the full time derivative of the entropy production Figure 3 over the entire time course of
the evolution of this replicator system. Hence, since dσ/dt ≤ 0 after SMSB, fluctuations about this
chiral NESS decay in time, and the entropy production is minimized at this chiral NESS, and in the
non-linear regime of non-equilibrium thermodynamics.

This complete time dependent behavior is resolved into two important contributions [10]: (i) one
is due to the changes in the forces F (affinities) with respect to time (Figure 8, blue curve), and (ii) the
other one is due to temporal changes in the flows or currents J (Figure 8, red curve). The general
evolution criterion (GEC) [9,10] states that the changes in the forces (here, the chemical affinities)
proceeds in such a way as to lower the value of the entropy production. There is however no general
criterion (in the non-linear regime) yielding information about either the sign or the magnitude of
the changes induced by the flows J. Here, we find the change in the flows J also becomes negative
after the large production peak (Figure 8, red curve), thus also lowering the value of the entropy
production. Both the force F and flow J contributions vanish on approach to the final chiral NESS.
The GEC by itself is not a sufficient condition for SMSB: it does not imply dσ/dt ≤ 0, which is the
condition required for stability of a NESS. For the stability of any putative non-equilibrium stationary
state (NESS), the changes in the flows J in the vicinity of the NESS must be bounded in absolute
value by the changes in the forces F (by GEC these are negative definite): that is, dJ σ

dt ≤ |
dFσ
dt | in the

neighborhood of a stationary state in order that dσ/dt → 0. Such is the case here, and so the final
chiral NESS is stable, and the entropy production is minimized.

We conclude from this analysis that the increase of the entropy production along the
non-equilibrium racemic thermodynamic branch (see Figure 3) can lead to an instability in the
case of SMSB. Chiral fluctuations can tip the system towards one of two degenerate non-racemic
configurations, each one having a lower value of the entropy production relative to the previous
unstable racemic branch.

6. Discussion

We have analyzed entropic pathway features underlying spontaneous mirror symmetry breaking
for two chiral cross-catalyzed replicators. We have underscored the role of the open elementary flux
modes (EFM), as defined by stoichiometric network analysis, for driving transitions from the unstable
racemic thermodynamic branch to the branch of organized scalemic states, e.g., from racemic to
homochiral, which takes place in the non-linear regime of non-equilibrium thermodynamics.

In our chiral replicator network, the EFMs can be organized into three distinguishable classes.
Namely (i) internal closed pathways (E1, E2, E3, E4) given by the four reversible pairs of cross-catalyses,
(ii) open pathways (E6, E7, E8, E9) composed by the ordered sequence: inflow of resource A, then the
forward cross catalysis of an enantiomer, followed by the outflow of the enantiomer product of the
prior forward cross-catalytic step, and (iii) the unreactive inflow/outflow of A through the reactor: E5.
SNA indicates that the open flux modes in (ii) are essential for entropy production, and the magnitude
of this production is controlled by the nonnegative values of the respective convex parameters ji > 0,
Equation (13), representing the matter flow through each respective EFM [18] and valid for any
stationary state. The closed pathways (i) cannot and do not produce entropy by themselves. Finally,
the nonreactive flow-through (iii) cannot produce entropy, in spite of being an open pathway traversing
the reactor.

Numerical simulation of the differential rate equations associated with the scheme
Equations (1)–(6) shows that the entropy production evolves to a minimum value, with respect
to the prior metastable racemic state, and this minimization is coincident with the symmetry breaking
transition. The EFMs shed light on how the entropy production and entropy exchanges are partitioned
among all the pathways of the chemical network while maintaining the crucial balance at any NESS.
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The initial mirror symmetric degeneracy in the values of the enantiomeric flux pairs in the racemic
configuration becomes lifted during SMSB. After SMSB, the partial entropy production is greater for
the L-handed EFMs than for the R-handed EFMs. The sum of partial entropic contributions over nine
EFMs goes to zero at the final chiral NESS, indicating the delicate balance Equation (23) between
entropy production and exchange with the external environment, a fundamental thermodynamic
condition for stationary open systems.

The GEC states that the generalized forces (here, the chemical affinities) evolve in such a way
as to lower the entropy production. In open flow systems, the affinities depend on both the internal
reversible reactions and on the irreversible matter fluxes. We derive this dependence Equation (A18)
and calculate the GEC based on this analytic result, it agrees identically with the calculation of the
GEC from the numerical simulation of the rate equations. This confirms the dependence of GEC on the
matter fluxes and shows how the lowering of the entropy production predicted by GEC is achieved
and consistent with the interdependence of the chemical reactions and the matter fluxes into and out
from the reactor.

The EFM approach to entropy production, entropy transport and total entropy balance described
here applies to any mass-action chemical reaction network in an open system and under a variety
of system architectures. The usefulness of this SNA approach is the identification of the specific
unidirectional matter fluxes responsible for the production of entropy and the role of external controlling
factors, such as the input/outflow flows and their representation as pseudo-reactions. SNA leads to
the expression for the rate of change of the total entropy (density) of the system dS/dt as the sum of the
partial entropy productions over all the extreme flux modes (EFM), both the internal closed pathways
and the open unidirectional ones. This yields insight into the coupling between chemical reactions and
the input/output matter fluxes. At a NESS, the sum over all EFMs vanishes identically, and implies
the balance between entropy production and entropy exchange. The entropy production is minimized
at the final chiral NESS.

The hypercycle model involving solely the mutual cross catalyses was chosen for the purposes of
illustrating in detail the methods and techniques. Naturally, more chemical realism can be built into
the model by adding in the direct uncatalyzed synthesis of the replicators (e.g., from templates) [17].
This takes us from 9 to 25 EFMs. If we also add in the first-order enantioselective autocatalytic steps [17],
and allow for two distinct achiral sources, then the number of EFMs will increase to 50. Including
more replicators will also lead to more EFMs. Nevertheless, nothing qualitatively essential, from the
non-equilibrium thermodynamic perspective, is gained from the increase in algebraic complexity and
pathway diversity: the same basic qualitative features will emerge, similar in all important respects to
those reported here.
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Appendix A. GEC for Chemical Reactions in Open-Flow

Consider r pairs of reversible transformations (w = 1, 2, ..., r) obeying mass action kinetics and
for n species:

n

∑
u=1

β+
uwXu

k+w
GGGGGGBFGGGGGG

k−w

n

∑
u=1

β−uwXu, (A1)

subject to the irreversible “pseudo-reactions” (volumetric open-flow terms) for u = 1, ..., n:

kin,u [Xu ]in→ Xu, (inflow) (A2)

Xu
kout,u→ (outflow). (A3)

The effective reaction rate constants are kin,u = q/V = kout,u, where q = l/s is the volume l of fluid
entering/exiting the reactor of volume V per second s, and [Xu]in is the fixed concentration of species
u flowing into the reactor (across the system boundary). These flows maintain the system volume V
constant. Inflows and outflows need not exist in matched pairs: that is, a given species can flow out of
the reactor (say as a product) without necessarily flowing into it, etc. A species flowing in at a fixed
input concentration can however flow out of the reactor with an instantaneous concentration that will
generally be distinct from its fixed input value.

The forward and reverse reaction rates for the pairs of reversible reactions in Equation (A1) are:

r±w = k±w
n

∏
u=1

(xu)
β±uw , xu = [Xu]. (A4)

In the following νuw denote the elements of the n× r stoichiometry matrix corresponding to the
reversible reactions only (A larger stoichiometric matrix encompassing the reversible reactions and
the pseudoreactions, by regarding all the one-way transformations as irreversible, is also possible,
see Section 2 and [21]):

νuw = (β−uw − β+
uw). (A5)

The changes in the concentrations depend on the open-flows and reversible reactions as follows
(ξ is the extent of reaction):

V dxu = [dφe,in
u − dφe,out

u ] + ∑
w

νuw dξw, (A6)

The rate equations for the concentrations can be split into two contributions, deXu
dt are the changes

in the concentration due to transport processes (volumetric flows, pseudoreactions) and a part due to
reversible chemical reactions: diXu

dt . The latter can be written in terms of the stoichiometric matrix for
the r-reversible reactions, and the open flow terms, represented by the pseudo-reactions, as follows:

dxu

dt
=

(dexu

dt

)
+
(dixu

dt

)
, (A7)

dxu

dt
= [

dφe,in
u

dt
− dφe,out

u
dt

]/V +
r

∑
w=1

νuw
dξw

Vdt
, (A8)

dxu

dt
=

(
kin,u[Xu]in − kout,u xu

)
+

r

∑
w=1

νuwvw. (A9)

For steady states (ss) we have dxu
dt = 0 so that

(
kin,u[Xu]in − kout,u [Xu]ss

)
= −

r

∑
w=1

νuwv̄w. (A10)
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For open flow, the affinities are functions of both the extents of reaction ξ and the input/output fluxes:

Ak = Ak({ξ}, {φe}), (A11)

⇒ ∂Ak
∂t

=
r

∑
j=1

∂Ak
∂ξ j

dξ j

dt
+

n

∑
i=1

∂Ak
∂φe

i

dφe
i

dt
, (A12)

=
r

∑
j=1

∂Ak
∂ξ j

dξ j

dt
+

n

∑
i=1

∂Ak

∂φe,in
i

dφe,in
i

dt
+

n

∑
i=1

∂Ak

∂φe,out
i

dφe,out
i
dt

. (A13)

where

∂Ak

∂φe,in
i

= −RT
νik
xi

, (A14)

∂Ak

∂φe,out
i

= +RT
νik
xi

, (A15)

hence, when substituted into (A13), leads to

∂Ak
∂t

=
r

∑
j=1

∂Ak
∂ξ j

dξ j

dt
− RT

n

∑
i=1

νik
xi

[
dφe,in

i
dt
−

dφe,out
i
dt

]. (A16)

At a NESS, we prove the temporal derivative of the affinities vanishes (hu = 1/[Xu]ss):

∂Ak
∂t |NESS =

r
∑

j=1

(
− RT

n
∑

u=1
νukνujhu

)dξ j

dt
− RT

n
∑

i=1
νikhi[−

r
∑

w=1
νiw

dξw

dt
]

= 0,
(A17)

the partial derivatives of the affinities with respect to the extents is given in [22].
Finally, the derivative of the entropy production with respect to changes in the forces (chemical

affinities) in the presence of open-flow is given by (set V = 1):

dFσ

dt
=

r

∑
k=1

( r

∑
j=1

1
T

∂Ak
∂ξ j

dξ j

dt
− R

n

∑
i=1

νik
xi

[
dφe,in

i
dt
−

dφe,out
i
dt

]
)dξk

dt
≤ 0, (A18)

and is the extension of the GEC [9,10,26,27] to chemical reactions in open-flow.
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