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Abstract: We propose that the first step in the origin of cellular life on Earth was the self-assembly of
fatty acids with the building blocks of RNA and protein, resulting in a stable aggregate. This scheme
provides explanations for the selection and concentration of the prebiotic components of cells;
the stabilization and growth of early membranes; the catalysis of biopolymer synthesis; and the
co-localization of membranes, RNA and protein. In this article, we review the evidence and rationale
for the formation of the proposed aggregate: (i) the well-established phenomenon of self-assembly
of fatty acids to form vesicles; (ii) our published evidence that nucleobases and sugars bind to
and stabilize such vesicles; and (iii) the reasons why amino acids likely do so as well. We then
explain how the conformational constraints and altered chemical environment due to binding of the
components to the membrane could facilitate the formation of nucleosides, oligonucleotides and
peptides. We conclude by discussing how the resulting oligomers, even if short and random,
could have increased vesicle stability and growth more than their building blocks did, and how
competition among these vesicles could have led to longer polymers with complex functions.

Keywords: origin of life; prebiotic; self-assembly; amphiphiles; fatty acid; vesicle; nucleoside; peptide;
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1. Introduction

How did prebiotic molecules on the early Earth assemble into machinery (proteins) and stores of
information (RNA) surrounded by a membrane? How each of these structures assembled and how
they became co-localized remain unclear. All three structures are composed of simple building blocks
that can be generated by abiotic processes [1]. Therefore any explanation for the origin of cells requires
solving two problems: (1) how were the building blocks selected and concentrated as required for
the formation of the three structures; and (2) how did the membranes, RNA, and protein become
associated with each other?

We have proposed that interactions among the building blocks of the three structures, prior to the
formation of RNA or proteins, can answer both of these questions [2]. The heart of our proposal is that
the building blocks self-assembled into an aggregate with RNA and protein components bound to
a fatty acid membrane, and that this aggregate stabilized the membrane and facilitated the formation
of the two polymers. In more detail, we hypothesize:
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a. Fatty acids self-assembled in water to form a membrane.
b. Components of RNA and protein were selected and concentrated via binding to self-assembled

fatty acid membranes.
c. These bound building blocks stabilized fatty acid membranes against salt-induced flocculation

and increased the rate of vesicle formation.
d. Membranes that were more stable bound more building blocks, leading to

an auto-amplifying system.
e. The resulting aggregate facilitated the formation of nucleosides, oligonucleotides and peptides,

both because of the selection and concentration of building blocks and because of the
conformational constraints and altered chemical environment due to binding.

f. The oligomers, initially composed of random sequences, stabilized membranes and induced
membrane growth more effectively than their unjoined components did, leading to the
accumulation of oligonucleotides and peptides prior to the evolution of their complex functions
in metabolism and information transfer.

This model (Figure 1, filled arrows) offers a simple explanation for the selection and concentration
of the prebiotic components of cells; the stabilization and growth of early membranes; the formation of
the two biopolymers; and—unlike any other scheme we are aware of—the occurrence of membranes,
RNA and protein in a single unit. Indeed, we view this co-localization as a clue to the origin of cells,
rather than as the result of a random event that followed the formation of these three structures. In our
scenario, membranes, protein and RNA emerge together because the prebiotic building blocks for all
three self-assemble into a stable aggregate.
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Figure 1. Proposed scheme for origin of protocells. Conventional (open arrows) and proposed
(filled arrows) paths to a protocell.

This scheme relates to other perspectives on prebiotic chemistry in several ways. It is consistent
with the suggestion that RNA was not the first informational polymer but rather evolved from
an earlier structure with different components. This suggestion stems from the observation that the
sugar, bases and inorganic linker of RNA are remarkably well-suited to the structural requirements
of a self-coding polymer [3,4]. Our scheme would apply equally well to building blocks of any
evolutionary predecessor of RNA, as long as these building blocks, too, co-aggregate with fatty acids.

The scenario is broader in some respects than other proposals that the membrane was the starting
point or played an active role in the emergence of cells [5–7]. Objections to these proposals have
included the lack of a compelling explanation for how RNA and proteins became associated with
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the membranes, although some progress in this regard has recently been made. Szostak’s group
broke new ground by showing that certain mineral surfaces stimulate membrane formation as well
as increase the polymerization of nucleotides [8,9], but this work did not address how nucleotides
arose or how proteins were incorporated into protocells. Ruiz-Mirazo [10] and Sutherland [11] have
recently advanced the case for a systems chemistry approach to the origin of protocells to replace
the more typical approach of explaining one structure at a time. However, neither of these papers
offer a mechanism to explain the association of amphiphiles with bases, sugars and amino acids.
Deamer and colleagues moved the field forward by showing that a phospholipid matrix can organize
and polymerize mononucleotides [12,13] (with caveats discussed below), and they have described
how functional systems could emerge in hydrothermal pools from hydration-dehydration cycling of
vesicles encapsulating polymers [14].

A key feature of our scenario, unlike the previous membrane-centered proposals, is the focus on
how the components of all three essential protocell structures were brought together. Affinities among
the components in aqueous solution would complement their concentration in evaporating pools.
In addition, differential affinities provide a plausible explanation for the selection of monomers found
in biopolymers, and our scheme highlights the catalytic potential of a fatty acid membrane associated
with RNA and protein building blocks. We propose that such a membrane could catalyze nucleoside
synthesis and facilitate the condensation reactions required for the formation of both peptides and
oligonucleotides; for example, nucleoside formation in this scheme would have resulted from the
joining of ribose and bases bound to a vesicle surface, rather than from reactions between compounds
smaller than bases and sugars as proposed by Sutherland. By identifying an integral role for fatty
acid membranes in the selection, concentration and oligomerization of the building blocks of RNA
and proteins, we strengthen the argument that the pathway to cells began with the self-assembly
of amphiphiles.

The rest of this review is organized as follows. In Section 2, we describe the characteristics
of the building blocks of RNA and protein that would enable them to spontaneously bind to fatty
acid membranes. For each component, we then review the current evidence that such binding does
occur (scenario elements a and b) and that membranes that bind the building blocks are more stable
than membranes composed solely of amphiphiles (scenario elements c and d). We also discuss the
potential for additive or synergistic interactions among building blocks. In Section 3, we discuss how
the binding of RNA and protein building blocks to fatty acid membranes could help explain both
the synthesis of nucleosides and the formation of short oligomers of nucleotides and of amino acids
(scenario element e). This section is more speculative than the previous one, and we suggest how to
pursue these ideas experimentally. In Section 4, we discuss, still more speculatively, how our scheme
could also explain the accumulation of longer oligonucleotides and peptides prior to evolution of their
complex biological functions (scenario element f). At this point, the scenario merges with later stages
in protocell evolution suggested by Szostak (e.g., [15]) and Damer and Deamer [14].

As is the case with most proposed prebiotic chemistry scenarios, this scheme may inadequately
account for the complexity of the early Earth environment. The impossibility of reproducing the full
range of compounds and conditions means that some reactions that proceed in laboratory settings
would not proceed in early-Earth conditions, and vice versa. Nonetheless, the more aspects of the
scheme that we validate experimentally, the stronger the case will be that it describes one possible route
to protocells. Other routes, including those that do not involve lipids at an early stage, are reviewed
in [5,6].

2. Formation and Stabilization of a Self-Assembled Aggregate of Prebiotic Building Blocks

2.1. Amphiphiles

Amphiphiles are molecules with a hydrophilic “head” group and a hydrophobic “tail”. In water,
amphiphiles can spontaneously aggregate into small clusters called micelles or larger structures called
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vesicles (Figure 2). Vesicles are cell-like compartments, composed of an aqueous core separated from
the environment by a bilayer of amphiphiles. Multilamellar vesicles have one or more additional
bilayers inside.
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The first membranes were probably composed of simple amphiphiles such as fatty acids,
which consist of a hydrocarbon chain (the “tail”) of various lengths with a terminal carboxyl group
(the “head” group) (Figure 2) [16,17]. Fatty acids as short as eight carbons spontaneously form vesicles
in water at neutral pH [18]. These molecules are made by abiotic reactions likely to have occurred on
the ancient Earth [17,19], and are found in meteorites [20]. Fatty acid vesicles grow by incorporating
free or micellar fatty acids from the surrounding solution [8,21,22]. Thus prebiotic fatty acids could
have self-assembled into cell-like compartments with the capacity for growth.

One concern regarding an early role for fatty acids in protocell membranes has been that the
short-chain species that probably predominated [23] form vesicles only at relatively high concentrations.
This concern is reduced by the recent finding that small percentages of long-chain fatty acid species
substantially increase vesicle formation [24]. Moreover, concentrations either at surfaces or in
evaporating pools would have been much higher than in the prebiotic ocean as a whole [14].
Experimentally, decanoic acid is generally used as a prototypical prebiotic fatty acid because it is long
enough to form vesicles readily [25] and short enough to have been found in high abundance [20].

Two additional problems have weakened the case for an early role of fatty acid vesicles in the
emergence of protocells: First, they flocculate in the presence of low concentrations of divalent ions or
moderate (~0.3 M) concentrations of NaCl [26]. Long-chain alcohols and glycerol monoesters stabilize
vesicles under these conditions [18,27,28], but the prebiotic availability of these compounds is uncertain.
A fresh water origin for protocells has been proposed as another solution [14]. Second, as noted in
Section 1, other proposals emphasizing a primary role for fatty acids have lacked a compelling
explanation for how RNA and proteins became associated with prebiotic membranes. Our proposed
scenario, in which the building blocks of RNA and protein spontaneously bound to and stabilized
fatty acid aggregates and subsequently oligomerized, solves both of these problems. The remainder of
Section 2 presents the rationale and evidence for the association of RNA and protein building blocks
with fatty acid membranes. In both this section and Section 3, the focus is on associations with the
surfaces of fatty acid aggregates, whether unilamellar vesicles, micelles or multilamellar structures as
indicated, rather than on entrapment of solutes in the aqueous space inside vesicles.

2.2. Bases

RNA is composed of a ribose-phosphate backbone with one of four nitrogenous heterocyclic bases
attached to each ribose (Figure 3). In this section we present the rationale and evidence for the binding
of bases to fatty acid surfaces, and in Section 2.3 we address the binding of ribose.

The nucleobases (the bases found in RNA and DNA) have been identified in meteorites [29]
and/or are generated by plausibly prebiotic reactions [1]. Their structural features suggest how these
bases might interact with a lipid bilayer. They share structural characteristics of planarity and of both
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hydrophobicity and hydrophilicity. Planarity could enable the insertion of bases into a lipid bilayer
without excessive disruption of the packing of the hydrocarbon tails. The simultaneous hydrophobicity
and hydrophilicity of the bases [30] would enable them to interact with both the headgroups and the
hydrocarbon core of a fatty acid membrane.
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Figure 3. Structure of RNA. The organic building blocks of RNA are the sugar (ribose) and four bases
(adenine, guanine, uracil and cytosine).

To test whether nucleobases do in fact interact with fatty acid membranes, we employed
three independent assays [2]. Our most compelling result was that nucleobases are retained
with decanoic acid micelles in a filtration-based assay. In this assay, unbound compounds pass
through a filter that retains the micelles and micelle-bound components. The nucleobases were
generally retained to a greater extent than related bases that are not incorporated into RNA (Figure 4).
In a second assay, we found that adenine dialyzes more slowly in the presence of decanoic acid vesicles
than in the presence of acetic acid, which is too short to form vesicles. In the third assay, we found that
including adenine in the aqueous solution below a monolayer of stearic acid in a Langmuir trough
altered the surface pressure of the monolayer, even though adenine alone is not surface active.
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Figure 4. Decanoic acid micelles selectively bind heterocyclic nitrogenous bases. The solution to
which bases were added contained 180 mM decanoic acid, pH 8.25. Reproduced from Reference [2].
Scatchard analysis of additional data for adenine suggests two modes of binding, one with a Kd of
about 11 µM and one with much lower affinity [2].

Thus nucleobases bind to fatty acid membranes as proposed in element b of our scenario. Do they
also stabilize vesicles as proposed in element c? As noted above, NaCl at 0.3 M flocculates decanoic acid
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vesicles [2,26]. We found that adenine virtually eliminates this flocculation (at ě32 ˝C) [2]. Other bases
also reduce flocculation, and the magnitudes of the inhibitory effects correlate with the extent to which
the bases bind decanoic acid aggregates in the filtration assay [2]. Elements b and c of our scenario
therefore hold true for nucleobases.

Another possible interplay between fatty acid vesicles and bases, which we have not yet explored,
is formation of Watson-Crick pairs within the membrane or between the lamellae of multilamellar
vesicles. Neither bases nor nucleosides (e.g., adenosine and uridine) pair in aqueous solution [3,30],
but base pairing between monomers has been detected in nonaqueous media [31]. Interactions with
a fatty acid bilayer (or bilayers in the case of a multilamellar vesicle) could confine and align the bases,
thereby allowing base pairs to form. If such base pairing stabilizes vesicles, this phenomenon would
help explain how bases that are capable of pairing were selected by protocells.

2.3. Sugars

Ribose and related sugars were probably available prebiotically. These compounds are generated
by the formose reaction, which starts with simple prebiotic compounds [32]. The products tend to react
with each other rather than remaining in solution and ribose is not typically a major product. However,
interaction with borate preserves the products, particularly ribose [32,33]. Alternately, ribose may
have been delivered to the prebiotic Earth via interstellar ice grains. A recent study demonstrated
that sugars including ribose form when analogs of interstellar ice are irradiated, apparently through
a formose-type reaction [34].

A distinguishing feature of sugars is an abundance of hydroxyl groups. The aldehyde of a linear
aldose and one of the hydroxyl groups can react to generate a ring with a new hydroxyl group,
at the “anomeric” carbon, that increases the conformational complexity since it can point up or
down (in Haworth projections) (Figure 5). We speculate that the hydroxyl groups of a sugar can
hydrogen-bond with the carboxyl head groups of a fatty acid vesicle, and if so, it is likely that some
configurations of hydroxyl groups hydrogen-bond more strongly than others. These interactions
could stabilize the vesicle, as proposed in element c of our scheme. Consistent with this idea,
glycerol esterified with a fatty acid stabilizes fatty acid vesicles, possibly due to interactions between
the two free hydroxyls of the glycerol and the carboxyl headgroups of the fatty acids [27,28,35].
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Figure 5. Interaction between sugars and fatty acid vesicles. The green arrow indicates the anomeric
carbon. The pyranose rather than furanose forms and α rather than β anomers are shown to emphasize
the potential for hydrogen bonding with a surface. The addition of ribose to a solution of decanoic acid
vesicles inhibits salt-induced flocculation of vesicles more effectively than addition of glucose or xylose.
The sugars were added to solutions containing 80 mM decanoic acid/100 mM bicine/pH 7.9; NaCl was
added to 300 mM. Graph reproduced from Reference [2]; structures provided by Sarah L. Keller.

To determine whether sugars do stabilize fatty acid vesicles, we tested whether they inhibit
salt-induced flocculation as described in Section 2.2. We found that a number of sugars do inhibit
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flocculation of decanoic acid vesicles. Ribose is more effective than glucose and even xylose,
a diastereomer of ribose (Figure 5). The difference in efficacy between closely related sugars suggests
that the inhibition of flocculation is due to binding rather than merely to an effect on the bulk properties
of the solution; the latter would not be expected to vary with minor differences in the sugars’ structures.

2.4. Amino Acids and Dipeptides

Ten amino acids (glycine, alanine, valine, leucine, isoleucine, proline, serine, threonine, aspartate
and glutamate) and even some dipeptides (Figure 6) are generally considered to have been prebiotically
available [36,37]. The designation of prebiotic is based on various lines of evidence including
identification in meteorites and synthesis under plausibly prebiotic conditions such as the Miller-Urey
sparking experiments [1,38,39].
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Amino acids and dipeptides could interact with a fatty acid membrane in at least five ways:
(1) amine groups could hydrogen bond with fatty acid carboxyl groups; (2) if protonated, amines could
bond electrostatically to the carboxyl groups; (3) the carboxyl group of the amino acid or dipeptide
could hydrogen bond with a fatty acid carboxyl group; (4) the hydrophobic sidechain (R1 and R2 in
Figure 6) of an amino acid such as leucine could interact with the hydrocarbon core of the membrane;
and (5) the hydrophilic sidechain of an amino acid like serine or threonine could interact with the fatty
acid carboxyl groups.

Several studies suggest the plausibility of such interactions. Decylamine, composed of an amine
group attached to a chain of ten carbons, stabilizes decanoic acid vesicles at both high and low pH,
suggesting that the amine, whether or not protonated, interacts with the fatty acid carboxyl groups [40].
A hydroxyl group attached to a chain of ten carbons dramatically stabilizes decanoic acid vesicles [18].
As noted in Section 2.3, the free hydroxyl groups of a glycerol monoester increase vesicle stability.
Finally, lysine (albeit not a prebiotic amino acid) associates with palmitic acid to form a foam [41].

To our knowledge, there are no published studies of whether single amino acids or unmodified,
prebiotic dipeptides interact with fatty acid bilayers. Two studies did show interaction between
fatty acid vesicles and dipeptides that included a nonprebiotic amino acid (phenylalanine or
O-methyltyrosine) and that had the ends blocked by acetylation of the amine and amidation of
the carboxyl group [42,43], and the interaction of nonprebiotic amphipathic peptides with oleic acid
vesicles has been reported [44]. Other studies have demonstrated interactions between phospholipid
membranes (which are not considered prebiotic) and hydrophobic peptides, again containing
a nonprebiotic amino acid and blocked ends [45,46]. Separately, Pohorille has modeled longer peptides
interacting with phospholipid membranes [47].

These studies, along with the analysis of possible modes of interaction and the studies with
compounds related to amino acids, support our proposal that prebiotic amino acids and dipeptides can
interact with a fatty acid bilayer. In addition to such direct interactions, association with nucleobases
or sugars bound to the membrane would increase the number of ways in which amino acids and
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dipeptides could bind to a vesicle. To investigate whether unmodified prebiotic amino acids and
dipeptides do in fact bind to and stabilize fatty acid aggregates, we propose employing the same
methods used to demonstrate interactions with nucleobases and sugars.

2.5. Simultaneous Binding of Multiple RNA and Protein Building Blocks to Fatty Acid Membranes

Just as bound bases and sugars could increase amino acid and dipeptide binding, the inverse
is also possible, and indeed a key feature of our scenario is that more than one type of molecular
building block binds to a fatty acid membrane at a time. In support of this proposition, we found
that the inhibition of salt-induced flocculation of decanoic acid when both adenine and ribose are
present is greater than the inhibitory effects of either alone, and consistent with the sum of their
independent inhibitory effects. This finding suggests that the two compounds do bind to fatty acid
vesicles simultaneously [2].

3. Formation of Oligomers

Section 2 addressed how the building blocks of fatty acid membranes, RNA, and protein might
have become co-localized in a stable aggregate. In this section, we discuss how this co-localization
could have facilitated the formation of the two biological polymers (element e of our scheme).

Several challenges arise in explaining the abiotic formation of RNA and protein. Association of
their building blocks with a fatty acid membrane helps overcome all of these challenges. (i) How
building blocks were concentrated sufficiently to react with each other is plausibly solved by their
binding to a membrane. Even low energy binding of reactants to a soft interface is sufficient to increase
reaction rates, as demonstrated in emulsified water droplets [48]; the authors of this study note that
“the process is based on an interfacial reaction-diffusion mechanism that is expected to be quite general”;
(ii) Indiscriminate incorporation of all possible prebiotic bases, sugars and amino acids into polymers
would have impeded the formation of reproducible, functional sequences. The selective binding of
building blocks to a fatty acid membrane would eliminate this problem; (iii) Even with sufficient
concentrations of a limited number of reactants, polymerization would have required catalysts to
bring the reactants together and to constrain their conformations in ways that favored the formation
of specific covalent bonds. Both the hydrophobic core and hydrophilic surface of an amphiphilic
bilayer plausibly fulfill these functions. In addition, membranes could incorporate components such
as dipeptides (as discussed in Section 2.4) which could have contributed to the catalytic activity of the
bilayer. In support of this idea, plausibly prebiotic dipeptides catalyze at least two reactions important
for protocells, the stereospecific synthesis of sugars [49] and the aminoacylation of an RNA [50];
(iv) Finally, the formation of both phosphodiester and peptide bonds requires the generation of
a water molecule, and the reactions are not thermodynamically favored in an aqueous environment.
Amphiphilic bilayers and multilamellar structures provide an environment with reduced water activity,
which may lessen this barrier [51].

Most of these potential roles of membranes have been noted by others in various contexts [52].
Several experiments, which will be discussed in Sections 3.1 and 3.2, have indeed found that
membranes can increase the formation of oligonucleotides from mononucleotides and of peptides
from activated amino acids. However, in these experiments neither the monomers nor, in most cases,
the amphiphiles employed were plausibly prebiotic. Below we describe in more detail the status of
efforts to produce the two biological polymers by plausibly prebiotic mechanisms, and the critical role
a bilayer composed of prebiotic amphiphiles and prebiotic building blocks of RNA and protein could
have played.

3.1. RNA

The first step in explaining the origin of RNA is understanding the formation of nucleosides
(Figure 7), and much work has been devoted to possible abiotic mechanisms. Since the bases
and ribose are confirmed or likely prebiotic compounds, as discussed in Section 2, the simplest
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explanation for the formation of nucleosides is that a reaction occurred between preformed bases
and preformed ribose. However, the requisite glycosidic bond forms inefficiently under all prebiotic
conditions tested over the past 40 years [53–55]. Recent efforts have succeeded in synthesizing
pyrimidine [56] and purine [57] nucleosides by starting with compounds smaller than bases and sugars,
although the prebiotic plausibility of the sequences of reactions employed has been questioned [58].
Nonbiological nucleosides are easier to synthesize [59–62], and they offer a further solution if there is
an evolutionary path from them to the biological molecules.
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Our scheme focusses on the possibility of formation of the glycosidic bond by a reaction between
a membrane-bound base and membrane-bound ribose. This possibility is of particular interest because
it would help to explain the selection of the bases and sugar in RNA and the co-localization of RNA
with membranes. As reviewed by Sutherland in detail [54], there are several reasons why formation
of the glycosidic bond is difficult. Taking adenine and ribose as example reactants, the tautomers
of the two compounds that favor the reaction are relatively minor. Moreover, while protonation of
the anomeric hydroxyl of ribose makes it a better leaving group, the acidic conditions required for
its protonation make the adenine less nucleophilic. We suggest that the observed binding of adenine
and ribose to fatty acid vesicles [2] could solve these problems by inducing favorable conformations;
the reactants could bind either to apposing surfaces in a multilamellar vesicle or to the same membrane
surface. Interaction of the adenine and/or ribose with other components such as amino acids and
dipeptides could also affect the frequency of the required tautomers. To test for glycosidic bond
formation in the presence of fatty acid vesicles, we propose incubating a mixture of adenine, ribose and
decanoic acid over a range of temperatures, pHs and salt concentrations, with or without dehydration.

Explaining the prebiotic polymerization of nucleosides to form RNA is as challenging as
explaining the generation of nucleosides [3,4,55,58,63]. After nucleosides are formed, the next step is
the addition of phosphate as a linker; phosphate may have been derived prebiotically from the mineral
schreibersite [64]. In order to polymerize with regiospecificity, the resulting nucleotides must be
oriented properly [63]. Certain mineral surfaces apparently fulfill the need for orientation, but virtually
all studies to date in this area have employed artificially activated (i.e., not prebiotically plausible)
nucleotides [65]. A more promising approach employs repeated drying and rehydration of a solution
of nucleotide monophosphates with phospholipids [12,62] or salts [66]. Strikingly, drying adenosine
monophosphate in the presence of a multilamellar phospholipid matrix organizes the monomers
between lamellae in a way that appears to facilitate polymerization [67]; a caveat to this finding is that
the combination of low pH and high temperature employed can lead to loss of some bases from the
phosphate-ribose backbone [68].

We hypothesize that the orientation of nucleotides required for polymerization could also occur
on the surface of a fatty acid vesicle or between the lamellae of a multilamellar fatty acid vesicle, due to
interactions of hydroxyl groups on the sugar with the headgroups of fatty acids. Such interactions
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and/or the presence of plausible prebiotic catalysts such as amino acids and dipeptides may eliminate
the need for low pH. We also suggest that once a polymer formed in this way, it would be positioned to
serve as a template for a complementary strand. This suggestion is plausible because when nucleosides
covalently attached to fatty acids form a monolayer at an air-water interface, they are capable of base
pairing with nucleosides in the aqueous phase [69,70]. Thus aggregation with fatty acids provides
sufficient structural scaffolding to align free nucleosides. Whether free nucleosides and/or nucleotides
bind directly to fatty acid aggregates could be investigated by the methods used to demonstrate
binding by nucleobases. To test for the polymerization of mononucleotides in our proposed system,
we suggest using methods similar to those employed in the studies with phospholipids [12,68].

3.2. Proteins

Proteins are chains of amino acids joined by peptide bonds. These bonds result from
a condensation reaction between amine and carboxyl groups (Figure 6). Peptide bonds form under
putative prebiotic conditions ranging from dry heat to cold eutectic solutions [38,71–74]. An alternative
pathway toward proteins involves depsipeptides, which form more easily than peptides [75].

Our proposal that binding of amino acids to a bilayer facilitates peptide bond formation is
supported by work with nonprebiotic systems. Several studies have shown that phospholipid
membranes increase peptide bond formation between nonprebiotic amino acids [45,46,76].
A conceptually related study demonstrated peptide bond formation at an air-water interface,
with an esterified form of the amino acid [77]. More relevant to our proposal, Adamala and Szostak
showed that an oleic acid membrane increases the Ser-His-catalyzed formation of a peptide from
amidated leucine and esterified acetyl-phenylalanine. They speculate that the reactants may “partition
to the membrane, which allows the reaction to occur at the solvent-lipid bilayer interface, or even
within the bilayer, and thereby minimize ester hydrolysis”. They also note that “membrane localization
of [the amino acid substrates] may . . . decrease the pKa of the N-terminal amino group, and so
enhance its reactivity by increasing the fraction of nucleophilic deprotonated amine” [42]. In another
study with a fatty acid system, Murillo-Sanchez et al. present evidence for acid-base catalysis of
peptide formation between amidated leucine and an activated tyrosine-like compound [43]. Finally,
Furuuchi et al. reported that decanoic acid vesicles increase synthesis of di- and triglycine from glycine
in high-pressure chambers at temperatures above 100 ˝C [78].

These studies, together with the general consideration of the catalytic potential of membranes
found at the beginning of Section 3, support our hypothesis that prebiotic lipid vesicles can facilitate
peptide bond formation between unmodified prebiotic amino acids. To test this hypothesis, we propose
incubating such amino acids with decanoic acid over a range of temperatures, pHs and salt
concentrations, with or without dehydration.

4. From an Assemblage of the Components to an Evolving Protocell

How did assemblies composed of a membrane, nucleobases, sugars, amino acids, and short
oligomers become evolving protocells? A major step in the pathway to protocells would have been
the emergence of polymers sufficiently long to carry out such functions as replication, acquisition of
additional building blocks, and cell division. In the final element of our scheme, we propose that this
step could have been accomplished as follows:

A Some short oligomers catalyzed condensation (i.e., covalent linkage) between building blocks to
form new oligomers, including at least some copies of itself.

B The presence of oligomers increased the stability, growth or division of vesicles to a greater extent
than monomers.

C Vesicles bearing catalytic oligomers would have a higher overall concentration of oligomers,
and would accumulate fatty acid and biopolymer building blocks at the expense of vesicles that
lack catalytic oligomers.
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D If the condensation mechanism joined short oligomers as well as single building blocks,
longer oligomers would accumulate (assuming the reaction was faster than hydrolysis).

Several lines of experimental evidence support the first three points above, and point D follows
logically. With respect to point A, the demonstrated ability of dipeptides to catalyze organic reactions
is discussed in Section 3. In support of point B, Szostak and colleagues have shown the following:
(i) Oligonucleotides are retained within fatty acid vesicles and can osmotically stress them such
that they grow at the expense of unstressed vesicles [15]; (ii) An acetylated, amidated hydrophobic
dipeptide (acetyl-phenylalanine-leucine-amide) that inserts into the bilayer can increase vesicle growth
at the expense of vesicles lacking this peptide [42]; (iii) Oxidized di-cysteine induces pearling of
filaments in multilamellar vesicles, giving rise to daughter vesicles [79,80]; (iv) An enzyme that
catalyzes formation of a certain fatty acid derivative inside fatty acid vesicles can thereby stabilize
the vesicles against Mg2+ [81]. Regarding point C, the Ser-His dipeptide catalyzes formation of the
dipeptide acetyl-phenylalanine-leucine-amide, just mentioned, that increases vesicle growth [42].
The extent to which a dipeptide that catalyzed condensation between two amino acids would have
to prefer synthesis of itself in order to propagate is beyond the scope of this review; a sophisticated
treatment of the analogous problem for a self-replicating RNA has been published by Higgs and
colleagues [82].

Once polymers accumulated that were sufficiently long to carry out complex functions such as
replication, acquisition of additional building blocks, and cell division, then Darwinian evolution could
begin. As others have argued [37], the first polymers with evolved complex functions must have been
RNAs or molecular predecessors of RNA that could propagate by template-directed replication, and the
coding of protein sequences by RNA was presumably a later development. A distinct implication
of our scheme, stemming from its emphasis on the potential of even random peptides to increase
vesicle stability and growth, is the following: RNAs that facilitated the production even of noncoded
peptides would have conferred a selectable advantage on protocells. One way an RNA could increase
peptide production is to activate amino acids by acylation. The subsequent evolution of RNAs that
aligned their activated amino acid with other, similarly activated amino acids by base-pairing at
a distal site with a “guide” RNA could have led to coded protein synthesis. As described by Damer
and Deamer [14], the emergence of such activating and template RNAs in a small number of fatty acid
vesicles (or possibly only one) is conceivable given the vast number of vesicles that can form in even
a small volume of water.

5. Conclusions

The concept of a self-assembled fatty acid membrane binding the building blocks of RNA
and protein helps answer two fundamental questions regarding the origin of protocells: how the
components of the polymers were selected and concentrated, and why the polymers emerged together
in a membranous package. Experimental evidence shows that nucleobases and sugars bind to and
stabilize fatty acid membranes, and that there are sound reasons to predict that amino acids and
dipeptides do so as well. These associations of the building blocks with a fatty acid bilayer could have
overcome barriers to abiotic formation of oligonucleotides and peptides, which in turn led to more
competitive vesicles and ultimately to the package of two polymers and a membrane that took over
the world.
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