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Abstract: The search for once-habitable locations on Mars is increasingly focused on 

environments dominated by fluvial and lacustrine processes, such as those investigated by 

the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with 

the potential longevity of such systems renders these localities prime targets for the future 

exploration of Martian biosignatures. Fluvial-lacustrine environments associated with 

basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been 

largely overlooked as a field analogue. Such environments are common in Iceland, where 

basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of 

meltwater within an otherwise cold and dry environment. This meltwater can be stored to 

create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and 

proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine 

activity are extensive, with lithologies dominated by basaltic minerals, low-temperature 

alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases 

(basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these 

environments, including their sedimentary deposits and microbiology, within the context of 

utilising these localities for future Mars analogue studies and instrument testing. 
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1. Introduction 

As our search for Martian habitability progresses, so does our understanding of past environments 

and surface processes on Mars. From the “follow the water” approach employed by NASA during the 
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Mars Exploration Rover and Phoenix missions, Mars exploration has since become focused on the 

identification of “habitability” and the detection of potential biosignatures [1,2]. One of the greatest 

shifts in our understanding of Mars surface geology has been the identification of widespread alteration 

minerals through orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars 

(CRISM) and Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) instruments 

[3–5], complimenting pre-existing morphological evidence for hydrological surface activity throughout 

the Noachian and into the Hesperian [6]. The global distribution of these deposits implies that aqueous 

processes and environments were active across much of the planet, resulting from a range of possible 

scenarios including climatic hydrological cycles, punctuated episodes of hydrological activity initiated by 

localised cryospheric melting, release of pressurized subsurface water aquifers, and isolated volcanic 

and impact events [6–8]. The nature of habitability on Mars is therefore underpinned by these processes 

at both spatial and temporal scales, and includes the availability of bioessential elements, metabolic 

redox couples, and stability and longevity of liquid water environments [9,10]. The expansive and 

diverse sedimentary record on Mars ranges from open and closed basin systems to rhythmite deposits 

putatively linked to climatic cycles, all of which have yet to be definitively explained but provide a 

record of potentially habitable palaeoenvironments [11]. Deltaic fan deposits for example, particularly 

those thought to have been deposited within a stable lacustrine setting, such as the Jezero crater open-

basin lake system [12], suggest long-lived liquid water environments. Conversely, recent experimental 

work suggests many delta fans on Mars formed during short, intense episodes of high hydrological 

discharge [13]. Extensive networks of branching fluvial channels (predominantly Noachian terrains) and 

large outflow flood channels (predominantly late Hesperian terrains) also characterize the Martian 

surface [14]. Continued valley formation into the early Amazonian has been identified, with the youngest 

valleys thought to be related to hydrothermalism due to their confinement to volcanic constructs [15]. 

Similarly, alternating episodes of aqueous flooding and volcanism identified at Mangala Valles 

potentially indicate a causational relationship between the two, with evidence for repeated and 

interacting subsurface igneous and hydrological events occurring into the Late Amazonian [16]. 

Recently, [17] demonstrated the potential for short periods of global climatic warming instigated by 

episodic flood volcanism throughout the Noachian and Hesperian, which would result in temporary 

melting of surface ice and snow and the generation of fluvial and lacustrine systems. 

Understanding the cause and characteristics of these aqueous environments for astrobiology is 

challenging, but regardless of their interpretation, the deposits of such fluvial and lacustrine settings are 

currently a major target in continued robotic exploration of Mars, including the continued exploration of 

Gale Crater by Mars Science Laboratory and ongoing site-selection for the ESA ExoMars 2018 rover 

mission. Therefore, identifying which microbial metabolisms are supported by episodic, basalt-hosted 

fluvial-lacustrine systems can inform what biosignatures to search for, and how well rover 

instrumentation fares when deployed on such deposits. Likewise, understanding the preservation and 

detection of organic carbon and other “ingredients” of habitability within phyllosilicate- and sulfate-

bearing sedimentary deposits that are mineralogically and geochemically analogous to those on Mars is 

imperative to continued successful exploration. Clay-bearing lithologies have been identified as 

particularly important targets for the detection of preserved organic matter [18]. On Earth, plate tectonics 

combined with continual surface and suboceanic weathering results in a complex and evolved clay cycle, 

whereby neoformed and inherited clays are deposited within a variety of active- and passive-margin 
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sedimentary basins and subsequently buried, transformed through diagenetic and metamorphic 

processes, and recycled [19]. The lack of plate tectonics on Mars will most likely result in different 

pathways for clay formation and deposition [20], with the dominance of Fe/Mg clay deposits over Al-

rich phyllosilicates consistent with the alteration of basaltic crust at low water/rock ratios [20]. This is 

consistent with basaltic crust being particularly susceptible to alteration and clay mineral formation due 

to the low-temperature instability of basaltic mineral phases, and the amorphous nature of any basaltic 

glass produced via eruptive products at the surface (i.e., lava flows, ash). Therefore, terrestrial environments 

typified by neoformed, authigenic clays (e.g., volcanogenic and hydrothermal clays, and clays directly 

precipitated from solution) and detrital inherited clays that have undergone little thermal transformation 

[19] are useful analogues to clays on Mars. Furthermore, where such clays on Earth form and are 

deposited in association with environments typified by relatively low biomass, there is scope to establish 

how biogenic organic matter may be preserved. 

Sedimentary systems that exist within polar and high altitude environments are of use to Mars 

analogue research due to the minimal influence from vegetation, organic-rich surface soils, and 

anthropogenic activity. Alluvial fans in the Atacama Desert [21], debris flows in Alaska [22], and impact 

crater lake sedimentation [23] and saline springs [24] within the Canadian High Arctic have similarly 

been used or proposed as Mars analogues, and have provided important constraints as to the nature of 

comparable processes on Mars. However, a fundamental difference between the mineralogical products of 

alteration and weathering and the resulting sedimentary deposits is the relatively evolved, Si-Al rich 

nature of the Earth’s crust compared to the Fe-Mg rich crust of Mars [25] Initial results from the first 

four rocks examined by the NASA Mars Science Laboratory (MSL) rover Curiosity revealed three of 

the four rocks to be volcaniclastic sediments of igneous origin, with a broadly basaltic composition [26], 

while sedimentary rocks at Yellowknife Bay were also derived from sources compositionally consistent 

with basaltic crust [27], including detrital mafic minerals (e.g., Fe-forsterite, plagioclase, pigeonite, and 

augite) within the sediments [28]. This is unsurprising given the largely basaltic composition of the 

Martian crust [29], and likely to be a factor for other fluvial-lacustrine systems beyond those explored 

in Gale Crater. Indeed, some areas of extensive alteration on Mars have been interpreted as long-term 

aqueous interaction with basaltic crust [6] such as through low temperature, neutral pH hydrothermalism 

[30], high temperature acid fumarole alteration [31], or impact-generated hydrothermalism [32]. 

Therefore, when using terrestrial-based analogues for fluvial and lacustrine environments on Mars, it is 

imperative that future instrument testing and biosignature research includes similar basalt-derived 

sedimentary lithologies. For example, the utility of low-temperature alteration assemblages within the 

basaltic Deccan Traps, India, as an analogue for Al-phyllosilicate and Fe/Mg smectite stratigraphy on 

Mars has been previously demonstrated [33]. 

2. Iceland 

The volcanic island of Iceland is unique in that its volcanotectonic setting lies at a juxtaposed mantle 

plume and rift system [34] within a near-arctic location. This volcanotectonic setting results in the crust 

having a broadly basaltic composition (Figure 1), with tholeiitic eruptive products reflecting these two 

main magmatic sources within the active rift zone [35,36]. Overall, the majority of Holocene basalts 

comprise three dominant magma series from tholeiitic, transitional alkalic, to alkalic [35,36], with 
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Pleistocene basalts (predominantly subglacially-erupted pillow lavas and volcaniclastics, and 

interglacial lavas) exhibiting much the same trend [36,37]. This provides excellent examples of 

volcanogenic fluvial–lacustrine terrains, deposits, and environments where the primary crust and 

sediment parent material is basaltic in composition. The combination of Fe-Mg rich and Al-Si poor crust 

with aqueous environments that are locally influenced by elevated sulfur input due to their proximity to 

(or interaction with) volcanic activity make these sites valuable field models for detrital and authigenic 

mineral assemblages and the biosignatures deposited and potentially preserved. 

 

Figure 1. Total Alkali Silica plot adapted from [29] TES = Thermal Emission Spectrometer, 

GRS = Gamma Ray Spectrometer and including MSL Curiosity APXS data (Tables S1–S3, 

from [26]; Table 7 from [27]) and supplementary data (* marked) from [35]. All additional 

data added are 100%-normalised volatile free values. 

Due to the sub-arctic location of Iceland many parts of the country lie within glacial-periglacial-semi-

arid climates, with annual precipitation as low as 400 mm in the interior [38]. As such, an estimated 60% 

of Icelandic glaciers overlie active volcanic systems [38]. This interaction between active volcanism 

along the neovolcanic zone and surface ice over the past 0.8 Ma [34] has resulted in widespread 

volcaniclastic sedimentation, including ubiquitous hyaloclastite/hyalotuff sequences, volcanogenic 

fluvial and lacustrine environments, and crustal hydrothermal alteration (both low and high temperature). 

Furthermore, many deposits and ongoing active environments are relatively undisturbed or reworked by 

vegetation, fauna, or human influence, particularly along the active rift zone (Figure 2B). Moreover, 

these regions are also specific analogues for putative glaciovolcanic landforms on Mars (e.g., [39]), 

which may represent one of the few habitable environments that could have pervaded into the 

Amazonian [39,40]. For more detail on the habitability of such glaciovolcanic habitats, the reader is 

referred to [41,42]. Iceland is a well-known locality for Mars analogue research, including aqueous 

alteration of basaltic crust [43] and gully formation [44]. Volcaniclastic sedimentary terrains and the 
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fluvial-lacustrine processes that modify them have been largely overlooked, although comparisons have 

been made previously between subglacial outflow events (“jökulhlaups”) and flood channels on Mars 

[45], and a study by [46] demonstrated the utility of low temperature alteration phases within Icelandic 

basaltic outwash sediments as a good analogue for detecting similar assemblages on Mars. This paper 

provides a synthesis of example sedimentary fluvial-lacustrine terrains and contemporary active 

lacustrine environments in Iceland, with the view to present these as new and currently underused 

analogues for similar habitats and deposits on Mars, particularly with relevance to habitability and 

biosignature detection. As such, the aim of this paper is not to provide a direct geomorphological or 

formational analogue to specific terrains on Mars, but to expand the current variety of terrestrial localities 

which are of benefit to ongoing and future robotic exploration of Mars. 

 

Figure 2. (A) Map of Iceland showing the location of the sites covered in this paper. The 

active north, east, and western neovolcanic zones are shown (yellow), as well as ice cover 

(white); (B) Corresponding National Land Survey of Iceland (NLSI) infrared satellite image 

of Iceland (IS 50V database/SPOT data), showing the lack of vegetation cover (red) within 

the neovolcanic zones. 

This paper focuses on five sites located within and around the Vatnajökull ice cap (Brúarjökull, 

Grímsvötn, Kverkfjöll, Skaftá, and Skeiðarársandur), and two sites in the south at Gígjökulslón and 

Sólheimajökull, as shown in Figure 2. These sites include examples of subglacial, englacial,  

and proglacial lacustrine environments and sedimentary deposits, and proglacial fluvial sedimentary 

deposits including jökulhlaup deposits, sedimentary fans, and sandur plains. These sites are described 

regarding their sedimentary deposits and processes, microbiology, and potential for future Mars 

analogue research, summarized in Table 1. 
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Table 1. Volcanogenic fluvial-lacustrine environments and sedimentary deposits discussed in this paper and their utility for Mars analogue research. 

Field Sites Mars Analogue Investigations 

Instrument Testing 

Brúarjökull proglacial region  
Kverkjökull sandur  
Skeiðarársandur and Sólheimajökull 

Large-scale field testing of context and close-up imaging instrumentation to positively identify large-scale stratigraphy and  
depositional fabrics, lithofacies, and small scale sedimentary structures, diagenetic features, and associated chemical composition  
(e.g., corroboration with spectroscopic data along a stratigraphic sequence).  
Testing sample acquisition and manipulation for caching or processing for analytical instruments, and spectroscopic, mineralogical,  
and geochemical instrument testing on sediments sourced from basaltic terrains. 

Alteration Mineralogy 

Brúarjökull proglacial region  
Skeiðarársandur and Sólheimajökull  
Gígjökulslón 

Low temperature hydrothermal and pedogenic alteration of primary basalt, particularly investigating authigenic vs. detrital alteration 
minerals within combined fluvial-lacustrine systems, and precipitation of neformed clays from recent (<5 years) basaltic sediments and 
glass-rich volcanic ash. 

Kverkfjallalón 
Low-high temperature hydrothermal alteration of basaltic sediments and resulting hydrated mineral assemblages (e.g., [41], and how 
such alteration phases are fluvially-transported and deposited. 

Biosignatures 

Brúarjökull proglacial region  
Skeiðarársandur and Sólheimajökull  
Gígjökulslón 

Preservation and detection limits of organic biosignatures within clay-poor lacustrine environments, particularly on the influence of age 
and lithification on the preservation of biosignatures.  
Detection limits of trace organic deposition within a short-lived proglacial lacustrine environment. 

Kverkfjallalón 
Preservation and detection limits of isotopic biosignatures within smectite clay-bearing lacustrine sediments, particularly as a 
depositional system for seasonal sulfate-dominated hydrothermal streams [41]. 

Hveragil stream Successive mineralisation of biogenic organic matter within hydrothermal fluvial carbonate deposits. 

Skaftá western and eastern lakes 
Identification of biogenic organic productivity and burial within low-temperature, sulfidic lacustrine systems, and the geochemical 
biosignatures generated through chemotlithoautotrophic metabolisms (e.g., carbon and sulfur stable isotope fractionation patterns),  
and tracing these biosignatures from subglacial microbial communities (source) to deposited sediments (sink). 

Microbiology 

Skaftá western and eastern lakes 
Anaerobic metabolic pathways based on sulfide and CO2, adaption to extremes (oligotrophy, cold temperatures, environment 
instability), and biogeochemical cycling of CHNOPS in lacustrine environments. 

Hveragil stream 
Microbial communities within a seasonal CO2-rich fluvial environment fed by subsurface hydrothermal fluids and glacial meltwater 
from Kverkfjöll volcano. 

Kverkfjallalón  
Galtarlón  
Grímsvötn 

Adaption to extremes including oligotrophy, seasonal ice-cover, and biogeochemical cycling of CHNOPS within young and transient 
lacustrine environments.  
Elucidation of viable metabolic redox couples and their response to limiting CHNOPS. 
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3. Lacustrine Environments 

Lakes in glacial settings can form as a direct result of volcanic activity, where ice is converted to 

water by an increase in geothermal heat, forming englacial (glacier-bound), supraglacial (occurring at 

the glacier surface), and subglacial (occurring beneath the glacier) lakes. Because glacier margins 

themselves can also be sites of lacustrine activity (e.g., proglacial lakes), there is a complex 

interrelationship between volcanic episodes, lake evolution, and the resulting sedimentary products [47]. 

The volcanogenic glaciolacustrine environments detailed here result from the direct interaction between 

either a central volcano or hydrothermal vents and overlying ice [48]. They range from active subglacial 

lakes at Grímsvötn and Skaftá, and englacial hydrothermal lakes at Kverkfjöll, to glaciolacustrine 

sedimentary deposits north of Brúarjökull. 

3.1. Subglacial Lakes 

Vatnajökull ice cap overlies several active or dormant central volcanic systems within the neovolcanic 

zone [49]. Of these volcanic systems, Grímsvötn has been regularly active, producing recent eruptions 

in 1996 (Gjálp), 1998, 2004 and 2011. The eruption observed in 1996 at Gjálp was entirely subglacial, 

resulting in meltwater ponding beneath the ice cap [50]. This process is common at volcano-ice 

interaction sites, with ongoing heat flux often maintaining a subglacial meltwater lake in between 

eruptions [51]. Several investigations have been conducted into the biogeochemical environment and 

indigenous microbiology of the subglacial lakes at Grímsvötn and at the nearby Skaftá lakes beneath 

Vatnajökull. In 2004 [52] sampled the subglacial lake confined within the Grímsvötn crater ~300 m 

beneath the ice surface and identified a viable microbial community residing within the lake. Results 

showed the −0.2 °C, oxic, mildly acidic (pH 4.87–5.13) lake supported a community of psychrotolerant 

bacteria, distinct from bacterial communities within the surrounding ice and snow, that was well adapted 

to a glacial environment. In contrast, the nearby geothermal subglacial lake at Western Skaftá forms a 

warmer (3.5–6 °C) anerobic environment within its bottom waters, with a measureable input of 

hydrothermal fluids into the lake [53]. As such, the microbial communities indigenous to the subglacial 

anoxic bottom waters here are dominated by obligate or facultative anaerobes including members of 

Acetobacterium, Thermus, Paludibacter, Sulfuricurvum, Pseudomonas, and Sulfurospirillum species, 

forming a microbial ecosystem potentially driven by sulfide oxidation, sulfate reduction, and hydrogen 

oxidation [54] utilizing the available CO2 and sulfide within the lake environment (Figure 3). A similar 

geochemical environment (Figure 3) and microbial community was identified at the Eastern Skaftá 

subglacial lake, with anoxic water characterized by mean dissolved H2S of 16 ppm and CO2 of 105 ppm 

[55] and a microbial population dominated by Acetobacterium, Geobacter, Sulfurospirillum, 

Sulfuricurvum and Desulfosporosinus species. 

Further investigation into a jökulhlaup outflow along the Skaftá river and a subaerial englacial lake 

(Kverkfjallalón—discussed in the next section) has shown that certain taxonomic groups here share a 

high level of genetic similarity with those in the subglacial Western Skaftá and Eastern Skaftá lakes, 

suggesting these systems are fed by a deeper crustal biosphere interconnected via groundwater 

circulating within the permeable basaltic crust beneath Vatnajökull, with differences in community 

composition controlled by local environmental conditions [55]. The chemolithoautotrophic sulfur oxidizing 
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bacterium Sulfuricurvum in particular was found across all environments [55]. Such interconnected 

subsurface microbial habitats driven by episodic volcanogenic hydrothermal input, are analogous to 

habitable environments that feasibly may have existed on Mars [40], particularly at sites where direct 

volcano–ice interaction has been identified, such as Arsia Mons [39,40]. 

 

Figure 3. Proportion of dissolved CO2 (77–1300 ppm), H2S (0.03–36.9 ppm), and SO4
2− 

(1.03–42.1 ppm) within East (A1–B4, data from [55]) and West (06-SKJ04, data from [53]) 

Skaftá subglacial lakes, and within the river Volga (Volga-C-1) and Hveragil (H-1 and H-4) 

outflows at Kverkfjöll (data from [55]. Upper plot shows total concentration for each 

respective site. 

3.2. Englacial Lakes 

Ice-bound englacial lakes sustained by hydrothermal activity provide a subaerial counterpart to the 

subglacial lakes detailed above, which are more readily accessible for sampling and research. 

Hydrothermal input into these lakes includes active hot springs and fumaroles within and around the 

shore of the lake [56]. At the Kverkfjöll volcano on the northern margin of Vatnajökull, the ~300 m 

diameter englacial hydrothermal lake Kverkfjallalón, locally also named Gengissig, is sustained by 

geothermal heating in between periodic drainage events, the most recent of which occurred in August 

2013, producing a small jökulhlaup following a phreatic event [57]. Geothermal heating of this lake 

keeps it seasonally ice-free (Figure 4a), with summertime (June 2011) temperatures between 10–20 °C 

at the lake shore [41]. The microbiology from one sample taken at 4 m depth within this lake was found 
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to be dominated almost entirely by the aerobic betaproteobacterium Xenophilus, a microorganism 

common to glacial environments [55]. However, for elucidating comparable metabolisms that could have 

operated within Martian lacustrine environments, where only anaerobic metabolisms are likely to have 

been feasible, englacial subaerial lakes such as Kverkfjallalón benefit from hydrothermal input, which 

results in localized anoxia or reduced dissolved oxygen (DO) at points of direct hydrothermal interaction 

or mixing, contrasting with the oxic areas of the lake. For example, DO at the lake edge measured in 

2011 ranged from 0.8–3.9 mg/L [41]. Coupled with the availability of dissolved sulfate [41] (Figure 3), 

this provides a natural laboratory within which to investigate anaerobic chemolithotrophy within a 

lacustrine setting as a model for past Martian ecosystems. Indeed, glaciovolcanic landforms at Arsia 

Mons suggest that such an englacial lake was sustained through volcanic heating, potentially for hundreds 

to thousands of years [39]. Adjacent to Kverkfjallalón is a younger ice-dammed lake (locally termed 

“Galtarlón”). This clear blue lake (Figure 4c) has not yet been investigated with regards to its resident 

biota, but the clarity of the lake water suggests this environment will be highly nutrient limited, similar 

to supraglacial lakes observed on Greenlandic ice sheets [58]. These lakes represent low temperature 

hydrothermal lacustrine environments, with geochemical inputs driven by passive leaching of 

bioessential dissolved ions (e.g., Si, Ca, Na, Fe, Mg) from the underlying basaltic bedrock, mixing with 

hydrothermal fluids draining into the lake [41,53], and by active volcanic degassing of CO2, H2S, and 

H2 [56]. One major factor that may have differed between englacial lakes on Earth and lacustrine 

environments on Mars is the potential presence of sustained ice cover on Martian lakes, and the effect 

of this on sunlight and delivery of exogenous nutrients. However, given that phototrophy has not been 

identified as the primary means of production within the indigenous microbial communities present 

within Kverkfjallalón [55], and that both Kverkfjallalón and nearby Galtarlón typically lose their ice-

cover predominantly during summer months (and some years not at all, Figure 4c,d), which has the 

benefit of improving accessibility for sampling, this difference does not detract from the value of these 

sites as a suitable microbial analogue. 

Sediments sampled from Kverkfjallalón and nearby lake shore areas in June 2011 were found to 

comprise of detrital plagioclase and pyroxene sourced from the underlying basalt, and alteration phases 

including smectite clays, gypsum, jarosite, pyrite, heulandite, and quartz [41]. This combination of 

unaltered basaltic minerals and low temperature alteration phases is analogous to sediments (although 

not the depositional environment) explored by the MSL Curiosity rover at Yellowknife Bay, which 

included detrital basaltic minerals, smectites, calcium sulfates, iron oxide or hydroxides, iron sulfides, 

and amorphous material [28]. Englacial lake sediments can be emplaced in the sedimentary record via 

repeated jokulhlaup events, such as the jokulhlaup sandur deposits identified in the proglacial region of 

Kverkfjöll [59] and described in Section 4 below. Over long time scales, englacial hydrothermal lake 

sediments deposited either via jökulhlaups or through deposition by a receding glacier would be 

identifiable by the presence of mineral assemblages that include pyrite and other sulfur-bearing alteration 

minerals, including jarosite and gypsum [41]. Such sediments therefore provide a test environment for 

tracing the local environmental history and available metabolic redox couples. 
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Figure 4. Examples of lacustrine environments and deposits. (a) Subaerial lake 

Kverkfjallalón (2011) surrounded by sulfate and smectite-rich sediment [41]; (b) Hillshaded 

terrestrial laser scanner image of the sediment fan at Gígjökulslón, 2010 following the 

eruption of Eyjafjallajökull (image credit: Stuart Dunning) [60]; (c) Galtarlón, ice free, July 

2007 (image credit: Katherine Joy), lake approximately 300 m across at its widest point; (d) 

Galtarlón, ice covered, June 2011 (image credit: Barry Herschy); (e) Oblique view of the 

Gígjökulslón sedimentary fan looking towards the fan source, marked by black star (image 

credit: Stuart Dunning, [60]). 

3.3. Proglacial Lacustrine Environments 

Unlike subglacial and englacial lakes, proglacial lakes can be the focus of significant sediment 

deposition, but may lack the hydrothermal input required to sustain a variety of chemolithotrophic 

metabolisms. A recent example of lacustrine fan deposition occurred at the 20–30 m deep proglacial 

lake Gígjökulslón following the 2010 eruption of Eyjafjallajökull [61]. Here, a volcanogenic jökulhlaup 

sequence was dominated by two large outburst floods totalling 57 × 106 m3 of water [60]. Meltwater 

stored within the glacier drained sub- and supra-glacially into Gígjökulslón, producing two prograding 

ice-contact sediment fans (Figure 4b,e). Further outbursts of meltwater occurred, completely infilling 

Gígjökulslón, followed by >140 smaller outburst floods, attributed to continued subglacial melt at the 

eruption site and beneath Gígjökull glacier [60]. Together, these events resulted in a depositional fan of 

varying steepness emanating from a bedrock gorge (Figure 4e). The jökulhlaups were sediment rich, 
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draining much of the subglacially-erupted volcanic material [61] with the majority of deposition 

estimated to occur over a short time frame of ~48 h [60]. Such deposits provide an example of primary, 

organically-poor basaltic sediment fans that have undergone little aqueous alteration or transport. 

The emplacement of volcanic edifices and subsequent localised increase in elevation can also lead to 

the natural damming of glacial meltwater and subsequent formation of a proglacial lake during glacial 

retreat. An example of this can be seen in the Pleistocene sedimentary record within the proglacial region 

of Brúarjökull. Here, a palaeolake damned by the subglacially erupted pillow basalt and volcaniclastic 

edifice of Kárahnúkar became progressively in-filled with lacustrine and deltaic sediments during 

deglaciation in the Quaternary [62]. These proglacial lacustrine sediments at originated from subaqueous 

fan and low-angle delta environments, and are now partly exposed along the Jökulsá á Brú from the 

current margin of Brúarjökull. Following deposition of these lacustrine sequences, fluvial channels have 

since cut into these sediments, thought to result from the lake dam being breached [62]. Lacustrine and 

glaciofluvial sedimentary sequences formed during glacial retreat also exist along the nearby Fljótsdalur 

and Jökuldalur valleys in East Iceland [63], which channelled ice flow over successive glaciations [64]. 

This process of sedimentation forms a temporal contrast to the rapid sediment formation and deposition 

observed during jökulhlaup release into a lake, as observed at Gígjökulslón. These sites therefore contain 

a sedimentary record depicting a range of depositional lacustrine environments. There is an absence of 

a clay component here, even within the fine-grained sediment units [63]. While this limits this site for 

analogue work focusing on those lacustrine environments on Mars that exhibit phyllosilicate spectral 

signatures, it is more applicable to the majority of paleolake systems on Mars that do not show this 

evidence for alteration minerals [65]. 

4. Fluvial Environments 

Volcanogenic fluvial processes are common in Iceland, where volcano-ice and geothermal-ice 

interaction can result in the sudden drainage of large volumes of stored glacial meltwater (jökulhlaups) 

and continual low-discharge meltwater release in between jökulhlaup events [51]. Moreover, geothermal 

and meltwater dissolution of glass-rich basaltic tephra releases elements into these meltwaters, enabling 

the delivery of biologically-limiting elements (e.g., phosphorous and iron) into the surrounding 

proglacial environment [66]. For example, the 1996 jökulhlaup originating from the subglacial eruption 

at Gjálp had an estimated dissolved volatile and element load of 1 million tonnes [67,68], with suspended 

sediments comprising fresh glass, palagonite (amorphous primary product of basaltic glass alteration), 

alteration minerals (such as zeolite and calcite), plagioclase, augite, and olivine, and rock fragments [67]. 

This meltwater generated by the Gjálp eruption had a pH ranging between 3 and 8 at the eruption site, 

with the resulting flood water pH ranging from 6.88 to 7.95 [68]. Jökulhlaups from Mýrdalsjökull and 

Vatnajökull in 2011 were also found to have alkaline-neutral pH waters [66], with increased levels of 

dissolved organic carbon, formate, and acetate observed within the Mýrdalsjökull jökulhlaup, which 

suggests microbiological activity was present within the subglacial meltwater stored beneath 

Mýrdalsjökull prior to its catastrophic release [66]. This is consistent with the observation of viable 

microbial communities within subglacial lakes at Grímsvötn and Skaftá cauldrons beneath Vatnajökull 

[52,54,55], and highlights the potential for subglacial meltwater release as a mechanism of transport and 

deposition of biogenic organic matter within volcanogenic fluvial and lacustrine fan sediments. A 
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contemporary example of this process is provided by the multiple jökulhlaups (at least 40 since 1955 

[48]) that have occurred along the Skaftá river, draining the Western and Eastern Skaftá subglacial lakes 

[48], some of which are known to be inhabited by chemolithotrophic bacterial communities [54,55]. A 

study by [69] showed high levels (nearly 9 g·L−1) of suspended fine-grained sediment (up to ~60% 

sediment 0·002–0·02 mm in particle size) was transported during a jökulhlaup here in 1997, together 

with increased concentrations of chloride and fluoride, consistent with geothermal input into the 

meltwaters [69]. Such repeated deposition of subglacially-sourced sediment provides a contemporary 

analogue to the transport and burial of subglacially-sourced organics derived from the geothermally-

driven microbial communities present with the subglacial caldera lakes. While the vast majority of 

fluvial sediments on Mars are not jökulhlaup deposits, the utility of these Icelandic sites for Mars 

analogue research lies in their connectivity to lacustrine environments typified by chemolithotrophic 

and/or oligotrophic microbial communities, mafic mineralogy and related alteration phases, and 

subsequent deposition within cold and dry basaltic terrains. 

Further to the south of Vatnajökull, the Skeiðarársandur proglacial sediments form the largest active 

outwash plain in the world [38], and as such record an extensive history of fluvial-lacustrine sedimentary 

deposition throughout the Holocene. An assemblage of fluvial and lacustrine sediments [70] is revealed 

along the Gígjukvísl River (Figure 5a), cut by the jökulhlaup in 1996. The section exposed here is ~240 

m long with a maximum height of over 20 m (Figure 5d), and contains seven lithofacies, of which three 

are identified as fluvial, and four as lacustrine, forming a succession of depositional environments 

including a shallow ice-marginal braided river, proglacial braided river gravel bed, glaciolacustrine 

deposits, a high energy subaqueous flow, and finally a jökulhlaup event [70]. This outcrop therefore 

provides a variety of continuous sedimentary lithofacies for investigating biosignature deposition across 

a range of environments, and testing of future robotic instrumentation (Table 1). Sedimentary structures 

within the different fluvial lithofacies range from horizontally stratified or channelized sand layers within 

the ice marginal shallow braided stream, to well-sorted and cross-bedded gravels in the braided river 

gravel bed. Glaciolacustrine lithofacies encompass interbedded silts and fine sand and rippled silt layers. 

Finally, the jökulhlaup deposit encompasses the coarsest sediments with cross-cutting scours cutting into 

poorly sorted gravels, with well-developed imbrication [70]. Sediments exposed along the Gígjukvísl river 

have already been used for Mars analogue work investigating the utility of hand-lens imager type datasets 

(e.g., similar to data produced by the Mars Hand Lens Imager (MAHLI) on NASA’s MSL Curiosity 

rover) in characterizing sedimentary grain size and morphology, from which fluvial palaeoflows and 

processes can be interpreted [71]. Fluvial conglomerates comprising of cemented rounded pebbles have 

since been identified on Mars by the MSL Curiosity rover, providing the first in situ evidence of fluvial 

sedimentary deposition, most likely as part of a distal alluvial fan deposit [72]. 

Successions of fluvial sedimentation can also be found at Sólheimajökull (a small outlet glacier of 

the larger Mýrdalsjökull ice cap) and Kverkjökull (a small outlet glacier near Kverkfjöll, on the northern 

margin of Vatnajökull). At Sólheimajökull (Figure 5b), a jökulhlaup occurred in 1999 following volcanic 

activity at Katla subglacial volcano, and included meltwater transport both supraglacially, and along the 

glacier bed, and temporary meltwater storage within ice-marginal basins [73]. Jökulhlaup sedimentation 

within the glacier produced esker ridges and a large fan at the glacier snout [73] and deposits of fine 

(clay–silt or finer) sediment on the glacier surface. Glacial retreat since the event has exposed an esker 

bearing two depositional units: well-sorted cross-stratified gravels and a poorly sorted boulder unit [73]. 
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Glaciofluvial eskers have been proposed to explain many of the sinuous ridges on Mars [74], potentially 

in association with glaciaolacustrine deposits [74]. At Kverkjökull (Figure 5c), there are a number of 

active fluvial environments and associated sedimentary and mineralogical deposits. Within the 

proglacial region of Kverkjökull, 3 km of sedimentary sections within a fluvially-incised sedimentary 

fan records at least six volcanogenic jökulhlaup events [59]. This sandur comprises several distinctive 

lithofacies, including (in order of decreasing grainsize) poorly sorted clast- and matrix-supported 

boulder-gravel facies, a clast-supported gravel unit that dominates the sedimentary section, a pebble-

granule-gravel facies with well-defined bedding planes, and finally a sand facies comprising thin (<1 

cm) sand layers which form boundary layers between gravel beds [59]. As with the sedimentary sections 

at Gígjukvísl, these deposits provide an ideal site for testing robotic instrumentation and biosignature 

preservation on basaltic sediments within a largely vegetation-free terrain (Figure 5c). The Kverkjökull 

proglacial environment also includes the river Volga, a meltwater stream of subglacial origin with 

variable hydrothermal input from the Kverkfjoll high temperature geothermal areas [56]. This CO2-

sulfate fluvial environment contrasts to the CO2-sulfide dominated subglacial lacustrine environments 

under Vatnajökull (Figure 3). Similarly, to the east of Kverkfjöll lies the geothermal river Hveragil, a 

CO2-rich carbonate-depositing neutral-alkaline stream [41,56]. 

 

Figure 5. Examples of proglacial fluvial environments and sedimentary deposits. (a) 

Skeiðarársandur, yellow box highlights the location of the fluvial-lacustrine sedimentary 

succession described in [70], and shown in (d); Image credit: SPOT5/Google Earth; (b) 

jokulhlaup sediments and channels at Sólheimajökull (adapted from [73]). Image credit: 

SPOT5/Google Earth; (c) National Land Survey of Iceland (NLSI) infrared satellite image 

(IS 50V database/SPOT data) of the Kverkjökull sandur described in [59]; (d) Cross section 

(approx. 240 m long) of fluvial-lacustrine sediments exposed along the Gígjukvísl river [70] 

at the location marked on (a), image credit Philip Marren. 
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5. Conclusions 

The environments and depositional settings detailed within this paper can both sustain and potentially 

preserve evidence of Mars-analogue psychrophilic or chemolithotrophic microbial communities. These 

basaltic sedimentary lithologies produced through fluvial and lacustrine action, much of which is 

volcanogenic itself, can serve as a broad analogue for fluvial and lacustrine sedimentary terrains on 

Mars, particularly where discrete sedimentary deposits containing alteration phases lie within 

predominantly basaltic terrain. In addition, these sites also act as specific glaciolacustrine and 

glaciofluvial systems. 

With relevance to the preservation and detection of organic material within fluvial-lacustrine 

sediments, the glaciovolcanic lacustrine systems outlined here can serve as a model as to how well 

organic matter can be preserved within environments with low biological productivity, and, at least for 

the active systems, where primary production is predominantly driven by chemolithoautotrophy rather 

than phototrophy. In addition, given the necessity to confidently distinguish between authigenic and 

detrital clay (and other alteration) minerals via in situ exploration [20], such sites can be used to test the 

interpretation of data products acquired from future prototypes and breadboard instruments, where both 

authigenic (e.g., glaciovolcanic hydrothermal lakes) and detrital alteration minerals (e.g., fluvial 

sediments) can be investigated within a connected system (i.e., tracing mineral formation and transport 

from source to sink). A summary of site-specific analogue science is summarized in Table 1. For 

example, the sedimentary stratigraphic exposures at Gígjökulslón, Brúarjökull proglacial region, and 

Kverkjökull lend themselves well to field-testing imaging instrumentation in particular, where the 

scientific objectives are to incorporate geological context and palaeoenvironmental interpretation of 

lithologies from wide-angle, high resolution, 2D and 3D image data. This is especially true when 

geomorphological features are important in assessing past habitability, such as grain size, roundness, 

and sorting (e.g., [72]). Likewise, the assessment of palaeohabitability from rover- or lander-based 

remote sensing datasets such as those produced by Pancam/Mastcam, MAHLI, and ChemCam 

instruments [75] can be fine-tuned at such sites where specific stratigraphic horizons may need to be 

targeted (e.g., when searching for biosignatures) within sedimentary exposures comprising different 

lithofacies. For example fluvial sediments deposited along the Skaftá river during the periodic 

catastrophic draining of the Skaftá subglacial lakes would be an ideal target to test for the preservation 

of organic carbon fixed by the chemolithotrophic communities residing within the subglacial lakes of 

Vatnajökull, while glaciolacustrine and fluvial stratigraphy within the Brúarjökull proglacial region and 

the Fljótsdalur and Jökuldalur valleys can be used for testing spectroscopic instrumentation and the 

detection of discrete mineralogical horizons. To this end, given the range of grainsize, sedimentary 

fabrics, and mineralogy present within different fluvial and lacustrine lithofacies sourced predominantly 

from basaltic protoliths, the preservation of organics as a function of depositional time (i.e., rapid, slow), 

grainsize (i.e., fine or coarse), and mineralogy (i.e., detrital basalt or alteration phases) warrants 

investigation. The same applies to inorganic biosignatures, such as stable isotope fractionation values of 

sulfur produced through microbial sulfur reduction and preserved by sedimentary pyrite grains within 

lacustrine sediments [41]. 

Finally, the range of coarse to fine-grained lithologies at all these sites make these them suitable for 

testing sampling and sample manipulation instrumentation (such as corers, scoops, drills, grinders, sieves 
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and crushers), particularly where instruments have to cope with a local mixture of different grainsize 

and matrix components. In this sense, large-scale sites at Gígjökulslón and the proglacial regions of 

Brúarjökull and Kverkjökull that incorporate a variety of fine to coarse-grained lithofacies can be used 

not just for discrete instrument testing, but also for testing mission operations and payload deployment. 
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