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Abstract: Brain tumor diagnosis is a complex task due to the intricate anatomy of the brain
and the heterogeneity of tumors. While magnetic resonance imaging (MRI) is commonly
used for brain imaging, accurately detecting brain tumors remains challenging. This study
aims to enhance brain tumor classification via deep transfer learning architectures using
fine-tuned transfer learning, an advanced approach within artificial intelligence. Deep
learning methods facilitate the analysis of high-dimensional MRI data, automating the
feature extraction process crucial for precise diagnoses. In this research, several transfer
learning models, including InceptionResNetV2, VGG19, Xception, and MobileNetV2, were
employed to improve the accuracy of tumor detection. The dataset, sourced from Kaggle,
contains tumor and non-tumor images. To mitigate class imbalance, image augmentation
techniques were applied. The models were pre-trained on extensive datasets and fine-tuned
to recognize specific features in MRI brain images, allowing for improved classification
of tumor versus non-tumor images. The experimental results show that the Xception
model outperformed other architectures, achieving an accuracy of 96.11%. This result
underscores its capability in high-precision brain tumor detection. The study concludes
that fine-tuned deep transfer learning architectures, particularly Xception, significantly
improve the accuracy and efficiency of brain tumor diagnosis. These findings demonstrate
the potential of using advanced AI models to support clinical decision making, leading to
more reliable diagnoses and improved patient outcomes.

Keywords: brain tumor; image processing; augmentation; deep learning; transfer learning;
fine-tune; InceptionResNetV2; VGG19; Xception; MobileNetV2

1. Introduction
The human brain is an essential organ that coordinates perception, cognition, emotion,

and behavior. Its billions of neurons form a vast network that transmits complex chemical
and electrical signals. This remarkable organ has several regions that contribute to balance
and coordination, including the cerebral cortex, seat of awareness, and cerebellum [1].

A tumor, scientifically known as a neoplasm, arises as an abnormal collection of cells,
forming a noticeable lump or mass within the body [2]. Tumors are classified as either
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benign or malignant. Benign tumors typically grow slowly and remain localized without
spreading to other parts of the body. However, if they press against vital organs or grow
significantly in size, this can lead to complications [3]. Tumors can develop in various
organs, including the brain, breast, lungs, liver, colon, and skin. In the case of brain tumors,
they may originate from brain tissue or metastasize from other parts of the body [4,5].
Diagnosis often involves imaging techniques such as CT or MRI scans, along with biopsies,
to determine the tumor’s nature. There are numerous types of brain tumors, including
gliomas, meningiomas, pituitary tumors, schwannomas, and glioblastomas.

• Gliomas—originating from the brain’s supportive glial cells, these tumors can manifest
anywhere within the brain, exhibiting varying grades of severity;

• Meningiomas—nestled within the protective layers encompassing the brain and spinal
cord, these tumors typically maintain a benign nature;

• Pituitary adenomas—arising within the pituitary gland, a pivotal hormonal regulator
nestled at the brain’s base, these tumors disrupt hormone production;

• Schwannomas—emerging from Schwann cells responsible for safeguarding nerve
fibers with myelin sheaths, these malignancies pose a threat to nervous sys-
tem integrity;

• Glioblastomas—representing the apex of glioma aggressiveness, these tumors epito-
mize the utmost peril within the brain tumor spectrum.

In the ever-evolving domain of neuro-oncology, the relentless pursuit of knowledge
remains a cornerstone of advancements in diagnostic methodologies and therapeutic
interventions, offering a ray of hope amid the complexities of cerebral pathology. The
integration of cutting-edge technologies such as deep learning and artificial intelligence
(AI) has revolutionized medical image analysis, driving significant progress in the iden-
tification, characterization, and management of various pathologies, including lung and
breast carcinomas [6,7]. This synergy empowers healthcare professionals with enhanced
decision-making capabilities, facilitating precise delineation of pathological entities and
informing tailored treatment regimens to optimize patient outcomes [8,9]. At the forefront
of surgical planning, artificial intelligence has become an indispensable tool, enabling
meticulous segmentation of lesion boundaries and critical brain structures. By leveraging
predictive analytics, AI not only anticipates potential complications but also forecasts
recurrence probabilities and treatment responses, thereby guiding the formulation of per-
sonalized follow-up strategies and refining patient care pathways. Enter transfer learning
(TL) [10,11], a pivotal approach in contemporary machine learning that has garnered signif-
icant attention within the medical community for its ability to leverage pre-trained models
for specialized medical imaging tasks. TL streamlines the model development process by
capitalizing on knowledge distilled from extensive datasets, thereby expediting model de-
ployment while reducing computational overhead. As a key component of medical image
analysis, TL utilizes renowned architectures such as VGG, ResNet, Inception, MobileNet,
and DenseNet, each designed to address specific diagnostic challenges with exceptional
accuracy. Delving into the technical nuances, the fusion of transfer learning with neural
network architectures establishes a sophisticated framework capable of discerning intricate
patterns within medical imagery with unprecedented precision. This synergy extends
beyond conventional methodologies, encompassing a diverse array of specialized models
poised to enhance the diagnostic capabilities of healthcare professionals. The benefits of
transfer learning are evident across the patient care continuum, as early identification
and accurate classification of diseased entities are crucial for the timely initiation of ther-
apies [12]. The ongoing evolution of deep learning, artificial intelligence, and transfer
learning is set to drive a revolutionary transformation in medical image analysis. This dy-
namic relationship has the potential to redefine the standards of patient care and diagnostic
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accuracy. In the present study, we embarked on a rigorous comparative analysis, evaluat-
ing the performance of four prominent transfer learning paradigms—InceptionResNetV2,
VGG19, Xception, and MobileNetV2—in classifying MRI data. The cornerstone of our
contribution lies in the innovative application of transfer learning methodologies, coupled
with fine-tuning techniques, optimize model performance in categorizing and predicting
brain neoplasms with unprecedented precision and efficiency.

• To enhance the performance of transfer learning models by refining them post-
processing and then evaluating their efficacy on benchmark datasets;

• To ensure a valid comparison, by assessing the effectiveness of our refined transfer
learning methodologies in contrast to prior research;

• To enable via transfer learning the utilization of pre-existing models, which is particu-
larly advantageous in situations where there is a scarcity of labeled medical data;

• To demonstrate the efficacy of our transfer learning techniques in categorizing brain
tumors, as well as their capacity to improve diagnostic precision in medical im-
age analysis.

The research paper begins with an Introduction in Section 1 that provides context and
outlines the significance of the research topic, clearly stating the problem, objectives, and
scope, and briefly describing the paper’s structure. A Literature Review follows in Section 2,
summarizing the existing research, discussing relevant theories and models, identifying
gaps in the literature, and presenting the research hypothesis. Section 3 (Materials and
Methods) details the study design, data collection methods, materials used, research proce-
dures, and data analysis techniques. Next, Section 4 (Model Performance and Evaluation
Parameters) describes the models used, defines performance metrics, presents the results of
the model evaluations, and discusses validation techniques. Section 5 (Discussion and Com-
parison) interprets the results in the context of the research objectives, compares findings
with previous studies, discusses theoretical and practical implications, acknowledges study
limitations, and suggests areas for future research. Finally, the Conclusion in Section 6 sum-
marizes key findings, highlights the study’s contributions, discusses practical applications,
and provides final reflections. References and any necessary appendices are included at the
end of the paper to support the research and provide additional information.

2. Literature Review
The categorization of brain MRI pictures has been the subject of several investigations.

For example, S. Kumar et al. [13] achieved a remarkable maximum accuracy of 96.3% by
feature extraction using a Deep CNN. In a different study [14], the authors achieved an
remarkable 99% accuracy rate in tumor-grade categorization by recommending the use
of artificial neural networks (ANNs) and other classifiers. Furthermore, extreme gradi-
ent boosting—a type of machine learning model—was applied in [15] to identify brain
tumors with a remarkable 97% accuracy. Researchers used a support vector machine
(SVM) classifier to perform several cross-validations on the feature set in a similar man-
ner [16]. The suggested method’s accuracy was found to be 97.1% in a comparative study.
In [17], scientists developed deep neural networks by combining a CNN with traditional
architecture and a correlation learning mechanism (CLM). Their ground-breaking research
shows that the CLM model attained an remarkable accuracy rate of almost 96%. In [18],
scientists explored the complexities of brain tumor segmentation with the UNet model,
achieving an accuracy of 89%, and they present a novel statistical strategy and machine
learning method that yields an astounding accuracy rate of 98.9%. They also provide
an interactive web application specifically designed to assist those who have survived
brain cancer. A novel combination of deep learning and machine learning methods is
presented in [19] to handle the categorization of hydrocephalus in brain CT pictures, with
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an impressive 98.5% accuracy rate. Achieving an astounding accuracy rate of 98.69%, the
authors in [20] describe a revolutionary deep learning architecture designed especially for
the classification of brain tumor pictures. Additionally, the AlexNet model is used in [21]
to successfully diagnose brain tumors, demonstrating an astounding peak accuracy of
99.04%. Additionally, Ref. [22] explores the challenge of classifying tumor segments to
aid in classifying brain tumors. To accomplish a 98.5% classification accuracy, the authors
utilized a Jaya optimization algorithm (JOA) that is based on a deep autoencoder (DAE).
This study [23] presents DIR-GAN, a deep learning method for brain tumor detection in
MRI images. It uses advanced filtering, segmentation, and feature extraction to enhance
classification accuracy, achieving up to 98.86% accuracy. Moreover, Ref. [24] achieved an
amazing 99% accuracy rate in brain tumor picture classification, being the first to apply
a deep residual network. A unique deep learning technique is offered in a pioneering
initiative described in [25] for the identification and classification of microscopic brain
tumors. Using a 3D CNN architecture, the strategy achieved a respectable accuracy of
92.67%. Moreover, Ref. [26] describes a novel hybrid deep technique that combines the
transformer model with the self-attention unit to classify brain tumors with a previously
unheard of 99.30% accuracy. The BrainMRNet model in [27] was painstakingly created
to classify brain MRI images, reaching an accuracy milestone of 96.05%. Furthermore,
Ref. [28] improves the VGG16 architecture to accomplish remarkable classification and
detection accuracy rates of up to 98.69%. Moreover, Ref. [29] provides a novel convolutional
neural network with a remarkable accuracy of 98.81%, and it is specifically designed for
brain tumor MRI image segmentation. Finally, Ref. [30] introduces a novel model called
Attention–Convolutional–LSTM that is designed especially for brain tumor classification,
which has an amazing accuracy rate of 98.90%.

In [31], the investigators used the VGG16, InceptionV3, and ResNet50 architectures to
leverage three different approaches to transfer learning. Unfortunately, among the three
models, the VGG16 model came out on top with the highest accuracy of 91.58%. Using pre-
trained networks like AlexNet, ResNet18, GoogleNet, and ShuffleNet, the researchers in [32]
explored the depths of deep feature extraction from tumor regions and reached an amazing
accuracy milestone of 98.02%. In the meantime, Ref. [33] offers a novel model with an
unparalleled 99.3% accuracy rate that is specifically designed for brain tumor identification
from MRI pictures. In [34], a thorough five-fold cross-validation methodology is used to
evaluate the following five well-known convolutional neural networks: AlexNet, VGG16,
ResNet18, GoogleNet, and ResNet50. The fluid-attenuated inversion recovery (FLAIR)
MRI method performs exceptionally well, with an accuracy of 98.88%. The authors of [35]
are the first to construct a CNN model that is painstakingly designed to classify different
forms of brain tumors from MR images, with an impressive accuracy rate of 98.32%.

The Brain Tumor Classification-Fast Convolution Neural Network (BTC-fCNN) model
is presented in Ref. [36]. Using five iterations of transfer learning, the model achieves an
impressive average accuracy of 98.63%, with a remarkable 98.86% through retrained five-
fold cross-validation. In [37], researchers implemented a novel endeavor by pre-training
five different versions of EfficientNets, which resulted in an exceptional accuracy of 98.86%
when using the suggested EfficientNet approach. EfficientNetB2 exhibited a very good
performance, achieving an exceptional accuracy of 98.93% by making use of the deep
convolutional neural network (DCNN) architecture VGGNet, which was pre-trained on
large datasets.

The study in [38] enhanced brain tumor diagnosis using a modified ResNet50, achiev-
ing a 97.35% accuracy with strong precision and recall. Leveraging a balanced MRI dataset
and data augmentation, it improves the generalizability and supports radiologists in early
detection and treatment planning. Future work will focus on clinical implementation and
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adaptability. The authors of Ref. [39] propose an intelligent hybrid system for early brain
tumor diagnosis, integrating auto contrast enhancement and deep transfer learning with
Inception V3. The two-phase approach enhances MRI contrast and improves classification
accuracy, achieving 98.89% on a diverse dataset. Compared to state-of-the-art models, it
demonstrates superior robustness and performance, reinforcing its clinical applicability.
Reference [40] utilized the YOLO NAS model for brain tumor classification, leveraging MRI
images from the REMBRANDT repository. Preprocessing with HADF and segmentation
via En-DeNet (U-Net + EfficientNet) enhance the accuracy. The YOLO NAS surpassed
models like DNN and DenseNet-161, showcasing its potential for clinical applications.

Despite significant advancements in brain tumor classification using deep learning
and machine learning models, several research gaps remain. While numerous studies
have achieved high accuracy rates using CNN, ANN, SVM, and hybrid deep learning
approaches, there is a lack of research focusing on optimizing pre-trained models for
MRI-based tumor detection. Most studies apply models such as VGG16, ResNet, and
AlexNet without extensive optimization, which could further enhance performance and
generalizability. Another key gap is the lack of generalization across diverse MRI datasets.
Many models demonstrate impressive accuracy on specific datasets, but their robustness in
real-world clinical settings remains uncertain. Moreover, deep learning models for brain
tumor classification often function as black-box systems with limited interpretability. The
integration of explainable AI (XAI) techniques is necessary to enhance model transparency
and clinical acceptance. While various architectures have been developed, comparative
studies on different deep learning models are still insufficient, leaving uncertainties about
the trade-offs between model complexity, accuracy, and computational cost. Furthermore,
real-time deployment and clinical feasibility studies are underexplored, with limited dis-
cussions on hardware constraints, inference time, and real-time processing capabilities.

3. Materials and Methods
Four well-recognized transfer learning methodologies have been employed in this

study to classify two categories, enabling the scrutiny and evaluation of our proposed
framework. It leverages transfer learning architectures, including InceptionResNetV2,
VGG19, Xception, and MobileNetV2. By utilizing these diverse transfer learning techniques,
our dataset was rigorously examined. The dataset was partitioned into training and testing
subsets based on the data distribution. This partitioning is crucial, as the training subset
facilitates model learning, the validation subset aids in the model’s evaluation with sample
data, and the test subset plays a key role in the comprehensive assessment of the proposed
model. The presented model demonstrates confidence across multiple stages.

3.1. Dataset Description and Splitting

This paper used the Kaggle brain tumor dataset [41] for our analysis, which included
3762 patients’ MRI pictures—both those without brain tumors and those who had been
diagnosed with them. This dataset consists of 2079 MRI pictures classified as non-tumorous
(marked by 0) and 1683 images labeled as tumorous (denoted by 1).

Table 1 presents the numbers of images belonging to the two classes.

Table 1. Numbers of images belonging to the two classes.

Tumor Class Denoted Label Number of MRI Images

Tumorous 1 1683

Non-Tumorous 0 2079
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Table 2 and Figure 1 outline the distribution of images for training, testing, and
validation purposes. In total, there are 3762 images, with 3009 allocated for training, 376
for testing, and 377 for validation. These images encompass both classes 0 and 1. The ratio
of images is as follows: 80% for training, 10% for validation, and 10% for testing.

Table 2. Distribution of the dataset.

Set Denoted Label Number of MRI Images

Training
1 1822

0 1187

Testing
1 138

0 239

Validation
1 119

0 257
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Figure 1. Illustrates the dataset’s distribution, showing the number of MRI images available in each
class (no tumor vs. with tumor). This helps in understanding the balance of the dataset used for the
model’s training.

Figure 2 shows that images depicting no tumor typically reveal a serene landscape of
brain tissue, characterized by uniform intensity and well-defined anatomical structures.
MRI images exhibiting tumors offer a stark contrast. Within these scans, areas of heightened
intensity or irregular masses emerge, signaling the presence of pathological growths.
These tumors may manifest as distinct lesions, irregular masses, or regions of increased
signal intensity, disrupting the otherwise orderly landscape of brain tissue. Notably, the
presence of tumors often induces observable changes in adjacent structures, which may
appear compressed, displaced, or distorted. By discerning these visual cues, healthcare
professionals can effectively differentiate between images with no tumor and those with
tumors, facilitating accurate diagnosis and informed treatment decisions for patients
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Figure 2. Visualization of the two representative MRI image types, with one depicting a healthy brain
(no tumor) and another with a detected tumor, emphasizing the visual differences that the model
needs to learn.

The decision to reduce the images to 150 × 150 was made to balance computational
efficiency and model performance. Deep learning models, require significant computational
resources, and resizing images helps reduce memory usage and processing time while
maintaining essential features for classification. Reducing the image size to 150 × 150
preserves key structural and textural information while making the training process more
efficient, reducing overfitting, and allowing for faster convergence.

3.2. Data Augmentation

By implementing various modifications to the original images, a technique known as
“image augmentation” can be used to enhance a dataset’s diversity and richness. These
adjustments help preserve the semantic meaning of the images while generating new,
slightly altered versions.

One common augmentation technique is rotation, where images are rotated by a
certain degree clockwise or counterclockwise. This helps the model become more robust
to variations in orientation that may occur in real-world scenarios. Another technique is
flipping, which involves horizontally or vertically flipping images to simulate different
viewpoints, enabling the model to recognize objects from multiple perspectives. Addition-
ally, scaling can be applied to resize images to different dimensions, allowing the model to
learn from images of varying sizes. Other augmentation techniques include translation,
where images are shifted horizontally or vertically, and shearing, which distorts images
by shifting pixels along a given axis. These modifications contribute to a more extensive
training dataset, ultimately enhancing the model’s ability to generalize and perform well
on previously unseen data.

Image augmentation is a crucial strategy in image processing that is aimed at reduc-
ing overfitting in machine learning models. It involves modifying the original images in
various ways, thereby adding new copies to the dataset while preserving their semantic
information. By exposing the model to a wider range of conditions and variations, augmen-
tation strengthens its resilience and reduces its tendency to memorize specific elements of
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the training set. By increasing the diversity of the training dataset, augmentation helps the
model learn invariant properties, allowing it to recognize objects in different orientations,
locations, sizes, and lighting conditions. Ultimately, augmentation improves the model’s
ability to generalize learned representations, leading to enhanced performance on unseen
data and mitigating the risk of overfitting. Figure 3 depicts the augmentation techniques
applied to the given datasets.
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Figure 3. Demonstrates the augmentation techniques applied to the dataset, such as rotation, flipping,
and brightness adjustment, to enhance the model’s generalizability and reduce overfitting.

In machine learning workflows, the training, testing, and validation data generators
are essential components for efficiently processing datasets and evaluating a model’s
performance. The training data generator loads batches of training samples and applies
data augmentation techniques to diversify the dataset, thereby improving the model’s
ability to generalize. It also shuffles the training samples to ensure the model learns from a
varied order of data in each epoch. The validation data generator, on the other hand, loads
batches of validation samples without augmentation to assess the model’s performance
on unseen data during training. Lastly, the testing data generator loads batches of testing
samples for final evaluation, providing insight into the model’s ability to generalize to
real-world data. By utilizing these data generators, practitioners can efficiently manage
datasets, enhance model performance, and ensure robustness during deployment.

Algorithm 1 outlines the transformations and operations executed in the implementa-
tion and detailing the logical sequence of the steps.
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Algorithm 1 Data Augmentation and Generator Initialization

Step 1: Define Augmentation Parameter
1. Rescaling:

p′ = p
127.5 , for each pixel, p, in image.

2. Rotation: randomly select an angle θ ∈
[
−30

◦
, 30

◦
]
, for each pixel position (x, y).

3. Width and Height Shifting: Randomly select a shift of θ ∈ [−0.2W, 0.2W], ty ∈ [−0.2H, 0.2H], where W and
H are the width and height of the image. Update pixel positions, as follows:

x′ = x + tx

y′ = y + ty

4. Shear: randomly select shear angle θ ∈ [−0.2, 0.2], and apply the following shear transformation:[
x′

y′

]
=

[
1 tan(∅)

0 1

][
x
y

]
5. Zoom: Randomly select a scaling factor, zxzy ∈ [0.8, 1.2]. Scale the pixel positions as follows:

x′ = zx.x
y′ = zy.y

6. Horizontal Flip: with a probability of 0.5, flip the image horizontally, as follows:
x′ = −x
y′ = y

7. Fill Mode: If transformations create empty regions, fill them using the nearest pixel values.
Step 2: Initialize Training, Validation, and Test Generators
For each dataset (training, validation, and testing), the following steps apply:

1. Input: Directory path D, batch size B, and target size T = (150,150).
2. Transformations:

• Training: apply all augmentations, as follows:
T(I) = Fill(Flip(Zoom(Shear(Rotate(Shi f t(Rescale(I)))))))

• Validation/Test: apply only rescaling, as follows:
I′ = I

127.5 ,
3. Batching: Group N images from directory D into batches of size B. For each batch k, the following applies:

Batchk = {I1, I2, I3, . . . . . . . . . , IB}, Ii ∈ D
4. Label Assignment: Assign binary labels, L = {0,1}, based on the directory’s class structure.

Step 3: Return Generators
The algorithm outputs three generators, each yielding batches of (X, Y), as follows:

1. X: transformed images of shape (B, 150,150, C), where C = 3 for RGB images.
2. Y: corresponding binary labels of shape (B,1).

3.3. Applied Transfer Learning Models

A model built for one task can be applied to another that is comparable but unrelated
using a machine learning technique known as transfer learning. By using this technique,
the weights of a pre-trained model are adjusted to suit the new task, forming the foundation
of a new model. The idea behind transfer learning is that a model can use features it has
learned from a large dataset to perform a new task. Transfer learning, as opposed to training
a new model from scratch, saves time and resources by utilizing the information from
the pre-trained model. It has achieved success in a wide range of applications, including
speech recognition, image recognition, and natural language processing, enabling cutting-
edge performance even with a small amount of training data. Deep learning applications,
including object detection, tumor diagnosis, and image classification, have benefited greatly
from transfer learning. In our investigation, four transfer learning models, each using fixed-
size (150 × 150) images as input, were used. This produced a matrix structure of (150,150,3).
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3.3.1. InceptionResNetV2

InceptionResNetV2 (Figure 4) stands as a complex convolutional neural network
(CNN) architecture primarily tailored for tasks in image classification and computer vision.
It seamlessly merges the following two prominent CNN designs: Inception, recognized
for its effective feature extraction, and ResNet, esteemed for its ability to tackle training
challenges in deep networks. By integrating Inception modules for feature extraction
and ResNet’s residual connections, Inception-ResNetV2 embodies the strengths of both
approaches. Its architecture comprises stem and grid components, with the stem managing
the initial image processing and the grid housing stacked Inception-ResNet modules.
These modules execute multi-scale feature extraction, amalgamating diverse convolutional
pathways while ensuring robust gradient flows through residual connections.
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The network begins with an input image, represented as a tensor, Xinput, with dimen-
sions of H × W × C, where H and W are the height and width of the image, and C is
the number of channels (e.g., 3 for RGB images). This tensor is passed to the stem block,
which acts as a preprocessing module that extracts low-level features while reducing the
spatial dimensions.

Xinput ∈ RH×W×C

The stem block uses a series of convolutional layers, pooling layers, and activation
functions to transform the input tensor. Each convolution operation applies a kernel, Wi,c,
to extract features for each channel, c, of the input, followed by the addition of a bias term,
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bi, and the application of an activation function, typically ReLU. Mathematically, the output
of the convolution operation for the i-th feature map can be expressed as follows:

Zi = ReLU

(
C

∑
c=1

(Wi,c ∗ Xc) + bi

)

where ∗ represents the convolution operator. Pooling operations, such as max-pooling or
average-pooling, are then applied to reduce the spatial dimensions, as follows:

Zpool = max
k×k

(Z) or meank×k(Z)

where k × k is the pooling kernel size. The output of the stem block is a reduced spatial
tensor, Zstem, that serves as the input to the Inception–Residual blocks.

The Inception–Residual blocks are the core building blocks of the InceptionResNetV2
architecture, designed to extract complex features efficiently while maintaining a smooth
gradient flow through residual connections.

The Inception module processes the input, X, through multiple parallel branches, each
performing different operations. These branches include the following:

I. 1 × 1 Convolutions to reduce dimensionality and extract fine-grained features,
as follows:

Z1×1 = ReLU (W1×1 × X + b1×1)

II. 3 × 3 Convolutions with a reduction step, where a 1 × 1 convolution reduces the
number of channels before applying a 3 × 3 convolution, as follows:

Z3×3 = ReLU(W3×3 × (ReLU(Wr × X + br)) + b3×3)

III. 5 × 5 Convolutions decomposed into two sequential 3 × 3 convolutions for computa-
tional efficiency, as follows:

Z5×5 = ReLU(W3×3b × (ReLU(W3×3b × X + b3×3b)) + b3×3b)

IV. Pooling followed by 1 × 1 convolutions, where pooling reduces the spatial dimensions,
and a 1 × 1 convolution is applied for feature compression, as follows:

Zpool = ReLU
(

Wpool × (Pool(X)) + bpool

)
The outputs of the parallel branches are concatenated along the channel dimension,

as follows:
ZInception =

[
Z1×1, Z3×3, Z5×5, Zpool

]
The residual connection improves the gradient flow by adding the input, X (scaled by

a weight Wr), to the output of the Inception module, as follows:

ZRes = ZInception + WrX

This ensures that the network can learn to identity mappings, which helps mitigate
the vanishing gradient problem.

To manage the computational complexity and memory usage, reduction blocks are
placed between groups of Inception–Residual blocks. These blocks downsample the feature
maps through strided convolutions and pooling operations, as follows:

I. Strided Convolutions:

Zreduce = wreduce × Xinput + breduce
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II. Pooling, further reduces spatial dimensions, as follows:

Zreduce = Pool(Zreduce)

The reduction block outputs a feature map, Zreduce, with smaller spatial dimensions
but a larger number of channels.

The output of the final Inception–Residual block is flattened into a 1D vector,
as follows:

Z f latten = Flatten
(

Z f inal

)
where Z f inal ∈ RH f ×W f ×C f and the flattened vector Z f latten ∈ RH f .W f .C f

This vector is passed through one or more fully connected layers, as follows:

Zdense = Wdense . Z f inal + bdense

where Wdense and bdense are the weights and biases of the dense layer.
The final layer applies a softmax activation function to map the logits to probabilities,

as follows:

P(yi|X) =
exp(Zi)

∑N
j=1 exp

(
Zj
)

where Zi is the logit for class i, N is the number of output classes, and P(yi|X) is the predicted
probability for class i.

3.3.2. VGG19

Renowned for its simplicity and depth, the Visual Geometry Group at the Univer-
sity of Oxford created the convolutional neural network architecture known as VGG19
[Figure 5]. VGG19, which consists of a total of 19 layers—16 convolutional layers and
three fully connected layers—has become well-known for its performance in demanding
image recognition applications. The convolutional layers of the design use 1-pixel stride
3 × 3 filters, which are padded to preserve spatial dimensions. Max-pooling layers with
a 2 × 2 window and a stride of 2 pixels are inserted between the convolutional layers to
enable spatial downsampling while maintaining important features. Beyond the convo-
lutional layers, VGG19 features fully connected layers with 4096 neurons each, enabling
the network to learn high-level representations from the extracted features. The output
layer, equipped with a softmax activation function, produces class probabilities for the
1000 classes in the ImageNet dataset. Despite its simplicity, VGG19 achieved exceptional
performance on image classification tasks, setting benchmarks in the field. However, its
extensive parameter count renders it computationally demanding, limiting its deployment
in resource-constrained environments. Nonetheless, VGG19 remains a foundational model
in the evolution of convolutional neural networks, inspiring subsequent architectures with
its clear and scalable design principles.

In the VGG19, first, the images A, B, and C are preprocessed to ensure they are in the
correct format (resize, normalize, etc.).

Let IA, IB, and IC be the raw input images with dimensions H × W × 3 (height, width,
and 3 color channels).
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Each image is preprocessed, as follows:

I′A = resize(IA)

I′B = resize(IB)

I′C = resize(IC)

Each image is normalized, as follows:

I′A = I′A − µ

I′B = I′B − µ

I′C = I′C − µ

where µ is the mean vector of the image dataset.

• Layer 1: Conv1-1

Convolution of image I′A with filter W1
1 and bias b1

1, as follows:

F1
A = σ

(
W1

1 ∗ I′A + b1
1

)
For B and C, apply as follows:

F1
B = σ

(
W1

1 ∗ I′B + b1
1

)
F1

C = σ
(

W1
1 ∗ I′C + b1

1

)
where ∗ represents the convolution operation, and σ is the ReLU activation function.

• Layer 2: Conv1-2

Convolution of image I′A with filter W1
2 and bias b1

2, as follows:

F1
A = σ

(
W1

2 ∗ I′A + b1
2

)
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For B and C, the following equations are applies:

F2
B = σ

(
W1

2 ∗ I′B + b1
2

)
F2

C = σ
(

W1
2 ∗ I′C + b1

2

)
• Max Pooling (after Conv1-2)

Apply max-pooling, as follows:

F
1pooled
A = maxpool

(
F2

A

)
F

1pooled
B = maxpool

(
F2

B

)
F

1pooled
C = maxpool

(
F2

C

)
Each subsequent block of the VGG19 architecture will apply a similar set of convolu-

tional layers followed by ReLU activations and max-pooling. After the final convolutional
block, flatten the pooled feature maps to 1D vectors.

F f lattened
A = f latten

(
F

Lpooled
A

)
F f lattened

B = f latten
(

F
Lpooled
B

)
F f lattened

C = f latten
(

F
Lpooled
C

)
where Lpooled refers to the last pooling layer’s output. Pass the flattened feature maps
through fully connected layers.

For each fully connected layer, i, apply the following:

Fi
A = WiF f lattened

A + bi

Fi
B = WiF f lattened

B + bi

Fi
C = WiF f lattened

C + bi

For the aforementioned equation, the following definitions are made

• Wi is the weight matrix for the i-th fully connected layer;
• bi is the bias vector for the i-th fully connected layer.

After passing through the fully connected layers, apply the softmax function to obtain
the class probabilities. For each image A, B, and C, the softmax function is applied to the
final output, Ff , from the last fully connected layer, as follows:

PA = so f tmax
(

F f
A

)
PB = so f tmax

(
F f

B

)
PC = so f tmax

(
F f

C

)
The softmax function is defined as follows:

Pc =
eFc

∑K
k=1 eFk
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For the aforementioned equation, the following definitions are made:

• Pc is the probability of class C;
• Fc is the score for class C;
• K is the number of classes.

3.3.3. Xception

Xception (Figure 6), an advanced neural network architecture developed by re-
searchers at Google, stands out for its innovative incorporation of depthwise separable
convolutions. Departing from traditional convolutional layers, Xception introduces a novel
concept where Inception modules serve as a transitional step, connecting standard convo-
lution with depthwise separable convolution operations. This perspective views depthwise
separable convolutions as Inception modules expanded with numerous towers, leading to
the proposal of a new convolutional neural network design inspired by the Inception model.
In Xception, data flows through the entry, middle, and exit flows, with the middle flow
iterated eight times. Notably, batch normalization is applied after each Convolution and
SeparableConvolution layer, ensuring stable and efficient training throughout the network.
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Depthwise separable convolution, a pivotal component in modern neural network
architectures, involves two distinct operations: depthwise convolution and pointwise
convolution. In depthwise convolution, individual filters are applied independently to
each channel of the input feature map, capturing spatial information within each channel.
This step effectively reduces computational complexity by processing spatial features inde-
pendently across channels. Following depthwise convolution, pointwise convolution is
employed to mix and transform the output channels using 1 × 1 convolutional filters. Un-
like traditional convolutional layers, where filters span across all input channels, pointwise
convolution allows the network to learn linear combinations of the features extracted by
the depthwise convolution. By separating spatial and cross-channel information, depth-
wise and pointwise separable convolutions significantly reduce the computational cost
of standard convolutions while preserving representational capacity. This architectural
innovation [Algorithm 2] has proven instrumental in developing efficient and scalable
neural network models, particularly in resource-constrained environments such as mobile
and embedded devices, for which computational efficiency is paramount.

Algorithm 2 Steps for Xception Neural Network Architecture

Step-1 Initial Convolution Layer
Y1 = σ(BN(Conv2D(X, W1, b1, s = 2)))

Step-2 Each Depthwise Separable Convolution Follows:
Y = σ(BN(DepthwiseConv2D(X, Wd, s)))
Y = σ

(
BN
(

PointwiseConv2D
(
Y, Wp

)))
Yres = Conv2D(X, Wres, bres, s = 2)

Y = Y + Yres

Step-3 For i = 1 to 8:
Y = σ(BN(DepthwiseConv2D(X, Wd)))

Y = σ
(

BN
(

PointwiseConv2D
(
Y, Wp

)))
Step-4 Exit Flow

Y = σ(BN(DepthwiseConv2D(X, Wd, s = 2)))
Y = σ

(
BN
(

PointwiseConv2D
(
Y, Wp

)))
Y = σ(BN(DepthwiseConv2D(X, Wd, s = 1)))

Y = σ
(

BN
(

PointwiseConv2D
(
Y, Wp

)))
Step-5 Global Average Pooling

YGAP = 1
N

N
∑

i=1
Yi

Step-6 Fully Connected Layer

Youtput = So f tmax
(

W f ·YGAP + b f

)
Note the following:

• X is the input (150 × 150 × 3);
• W1 are convolution filters;
• b1 is the bias;
• BN is batch normalization;
• ReLU is the activation function;
• Wd are depthwise convolution filters;
• Wp are pointwise convolution filters;
• W f is the weight matrix;
• b f is the bias vector.
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3.3.4. MobileNetV2

A notable development in convolutional neural network topologies for mobile and em-
bedded devices with constrained computational resources is represented by MobileNetV2
(Figure 7). Released in 2018, MobileNetV2 is a project by Google researchers that expands
on the framework of MobileNetV1 while incorporating novel design ideas to boost effi-
ciency and performance. At its core, MobileNetV2 leverages inverted residuals and linear
bottlenecks to achieve these goals. The concept of inverted residuals involves employing
bottleneck layers with low-dimensional representations between expanded layers, reducing
computational complexity while maintaining representational capacity. Additionally, linear
bottlenecks further enhance efficiency by reducing the number of channels in feature maps
before subsequent convolutional operations. MobileNetV2 also incorporates depthwise
separable convolutions and global average pooling to streamline computation and produce
final predictions. With its balance of efficiency and accuracy, MobileNetV2 has become a
popular choice for a wide range of computer vision tasks on mobile devices, IoT devices,
and embedded systems.
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3.3.5. Adapted Methodology

The methodology begins by acquiring the brain tumor dataset from Kaggle, a well-
known platform for sharing data in various domains. Once the dataset is acquired, it is split
into the following three parts: training, validation, and testing sets. This split is crucial in
deep learning to ensure that the model can generalize well to unseen data. Mathematically,
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the dataset, N, is divided such that 80% of the data are allocated for training, 10% for
validation, and 10% for testing. This can be represented as follows:

Ntrain = 0.80 × N

Nval = 0.10 × N

Ntest = 0.10 × N

Here, the training set is utilized to train the model, the validation set is employed
for tuning hyperparameters and assessing intermediate performance, and the test set is
reserved for the final evaluation, ensuring unbiased model performance assessment.

To enhance the diversity of the training data and address the issue of overfitting—a
scenario in which the model performs well on training data but poorly on unseen data—
image augmentation is applied using an Image Data Generator. Image augmentation
introduces randomness into the training process by transforming the images through
operations like rotations, zooms, and flips. These transformations expand the dataset’s
artificially without adding new images, making the model more robust. The images are
resized to 150 × 150, 150 × 150, 150 × 150 pixels to match the input size expected by
pre-trained convolutional neural networks (CNNs). During training, batches of 32 images
are fed into the network, and since the problem is binary (tumor vs. non-tumor), the class
mode is set to ‘binary’.

Next, several state-of-the-art pre-trained CNN architectures are loaded. These ar-
chitectures include InceptionResNetV2, VGG19, Xception, and MobileNetV2, which are
renowned for their high performance in computer vision tasks. These models have al-
ready been trained on massive datasets like ImageNet, so their initial layers can effectively
capture general features from the images. Transfer learning is applied here, where the
knowledge gained by these models from prior tasks (e.g., recognizing thousands of objects)
is transferred to the new task of classifying brain tumors. The mathematical formulation of
transfer learning can be expressed as follows:

y = f (Wbase + Wnew(X))

where Wbase are the weights from the pre-trained network that capture generic image
features, Wnew are the newly learned weights tailored to the brain tumor classification task,
and X represents the input MRI image.

Fine-tuning is a crucial phase in transfer learning, where specific layers of a pre-trained
deep learning model are selectively updated to adapt the model to a new domain, such as
MRI brain tumor classification. This step is essential because pre-trained models, such as
InceptionResNetV2, VGG19, Xception, and MobileNetV2, are originally trained on large-
scale datasets like ImageNet, which contain general image features such as edges, textures,
and object shapes. However, MRI brain images have domain-specific patterns, such as
tumor textures, contrasts, and intensities, which are not entirely represented in the original
pre-trained dataset. Fine-tuning ensures that the model retains the useful generic features
learned from ImageNet while adapting to the unique characteristics of MRI scans

During fine-tuning, instead of freezing all pre-trained layers, layers from the 100th
onward are “unfrozen”, allowing their weights to be updated during training. This can be
expressed as follows:

Wtrainable = W100
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where W100 represents the trainable parameters from the 100th layer onward. The earlier
layers (below the 100th) remain frozen because they contain low-level features such as
edges and textures, which are transferable across different datasets.

The network is then trained using the Adam optimizer, which is a variant of stochastic
gradient descent that adapts the learning rate based on the first and second moments of
the gradients. The learning rate is initially set to α = 0.0001, which controls how much
the model’s weights are updated during training. The loss function employed is binary
cross-entropy, which is suitable for binary classification problems. This loss function is
defined as follows:

L = − 1
N

N

∑
i=1

[yilog(ŷi) + (1 − yi)log(1 − ŷi)]

Here, yi represents the true label for each image (1 for tumor, 0 for non-tumor), and
ŷi is the model’s predicted probability that the image contains a tumor. The loss function
penalizes incorrect predictions, with larger penalties for confident yet incorrect predictions.
Once fine-tuning is complete, the model is retrained using the same binary cross-entropy
loss function and Adam optimizer. The final evaluation of the model is performed using
the test set, which has been kept separate from the training and validation processes
to ensure an unbiased assessment of the model’s true performance. The accuracy and
other performance metrics, such as precision and recall, are compared across the four
architectures (InceptionResNetV2, VGG19, Xception, and MobileNetV2) to determine
which model performs best in classifying brain tumors. This approach demonstrates how
transfer learning, combined with fine-tuning and robust optimization techniques, can
significantly enhance the accuracy of brain tumor diagnosis.

Fine-tuning allows the pre-trained model to adapt to domain-specific patterns in MRI
images while preserving useful features from ImageNet. By unfreezing only the top layers,
using a reduced learning rate, and applying regularization, the model is trained efficiently
without overfitting, ensuring optimal performance for brain tumor classification. Table 3 is
represent the hyperparameter of all the transfer learning models.

Table 3. Hyperparameters of all exploit transfer learning models.

Metric Metric Value

Batch size 32

Optimizer Adam

Epochs 30

Learning rate 0.0001 For TL and 0.0001/10 for fine tunning

Criterion Binary cross-entropy

Figure 8 shows that the following layers are added:

• Flatten Layer: Flattening is the process of reducing data to a one-dimensional collection
for further processing. In this work, a single lengthy feature representation is produced
by flattening the output of the convolutional layers. Additionally, it is linked to the
last classification model, commonly referred to as a fully connected layer.

• Dense Layer: A “dense layer” is a basic layer of neurons where each neuron is con-
nected to all neurons in the layer before it, providing information to all of them.
Utilizing the outcome of convolution layers, features are identified using dense layers.
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• Drop out Layer: A method of eliminating neurons from a neural network or neglecting
them during development is called dropout. Stated differently, individual neurons
have just been removed from the network.
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4. Model Performance and Evaluation Parameter
Adam Optimizers: The Adam optimizer, an enhanced form of stochastic gradient

descent, might be used in a variety of computer vision algorithms such as computer
vision applications processing. The Adam optimizer in deep learning involves several
mathematical operations to update the parameters of a neural network during training. At
each iteration t, the algorithm calculates the gradient of the loss function J(θ) with respect
to the parameters θ. These gradients are denoted as gt = ∇θ J (θt−1), where θt−1 represents
the parameters at the previous iteration. Then, Adam maintains two moment vectors,
mt and vt, which are exponentially decaying averages of the gradients and the squared
gradients, respectively. These are updated using the following equations:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

where β1 and β2 are the exponential decay rates for the moment estimates.
To address bias in the moment estimates, Adam calculates bias-corrected moment

estimates, as follows:
m̂t =

mt

1 + βt
1
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v̂t =
vt

1 + βt
2

Finally, the parameters, θ, are updated using the bias-corrected moment estimates and
the learning rate, α, as follows:

θt = θt−1 −
α√

v̂t + ϵ
m̂t

where ϵ is a small constant added for numerical stability.
Cross-Entropy Loss Function: The Cross-Entropy Loss Function measures the dis-

crepancy between the actual likelihood distribution among the classes and the anticipated
probability distribution, and it is often utilized in artificial intelligence and deep learn-
ing classification tasks. It is particularly well-liked in scenarios in which the results are
shown as the probability for several classifications. Cross-entropy may be determined in
classification model when the number of categories, M, equals two, as follows:

−(ylog (p) + (1 − y) log(1 − p))

If M > 2 (multiclass categorization), estimate a loss with each target class per observa-
tion separately and add the results.

−
M

∑
c=1

yo,c log(Po,c)

Accuracy: How successfully a model uses the input or training data to identify patterns
and correlations among parameters in a dataset is what determines the model’s accuracy.

ACC =
TP + TN

TP + TN + FP + FN

Based on these metrics, we can make the following observations:

# Xception has the highest training accuracy (0.9611), indicating that it learns the training
data well. It also has the lowest training loss (0.0925), suggesting that it minimizes
errors during training;

# VGG19 has the second-highest training accuracy (0.9246) and lowest training loss
(0.1852). However, its validation accuracy (0.8511) and validation loss (0.3495) are
comparatively lower and higher, respectively, suggesting that it may not generalize as
well to unseen data;

# InceptionResNetV2 and MobileNetV2 have similar validation accuracies and loss
values, with InceptionResNetV2 having a slightly higher accuracy but also a slightly
higher loss.

The strengths of a Fine-Tuned Transfer Learning Xception Deep Learning model
include the following:

• High Performance: Xception is a state-of-the-art deep convolutional neural network
(CNN) that has demonstrated exceptional performance in various computer vision
applications, including object detection and image classification. Its advanced archi-
tecture, which replaces traditional convolutional layers with depthwise separable
convolutions, significantly enhances computational efficiency without compromising
accuracy. When fine-tuned for a specific task in mathematics education, Xception’s
strong feature extraction capabilities allow it to identify patterns in mathematical
symbols, equations, and diagrams with high precision, making it a powerful tool for
educational AI applications.
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• Effective Feature Extraction: One of Xception’s key strengths is its ability to capture
hierarchical features from input images efficiently. The model processes data through
depthwise separable convolution layers, which independently analyze spatial and
depthwise information. This design enhances its ability to learn rich representations
of complex patterns within mathematical content, including handwritten equations,
geometric shapes, and structured graphs. As a result, Xception can accurately distin-
guish between similar-looking symbols and notations, improving recognition tasks in
mathematics-related applications.

• Transfer Learning Advantage: By leveraging a pre-trained Xception model on large-
scale datasets such as ImageNet, valuable knowledge from extensive image classifi-
cation tasks can be transferred to the domain of mathematics education. Fine-tuning
the model allows it to adapt to specific mathematical datasets, reducing the need for
extensive labeled data. This transfer learning approach accelerates training conver-
gence, improves performance, and enhances the model’s ability to generalize to new
mathematical problems with minimal computational overhead.

• Scalability: Xception’s architecture is inherently scalable, meaning it can process
images of various sizes and resolutions without requiring significant modifications.
This flexibility is particularly beneficial for mathematical applications, where input
data may range from simple equations and arithmetic problems to complex graphs,
geometric diagrams, and multi-step problem visualizations. The ability to handle
diverse mathematical content without extensive preprocessing makes Xception a
highly adaptable model for educational AI solutions.

• Robustness to Variations: Mathematical expressions, diagrams, and visual content
often appear in different layouts, orientations, and formats. Xception’s depthwise
separable convolutions allow it to capture spatial correlations across different regions
of an image, making it highly robust to variations in scale, rotation, and occlusion. This
robustness ensures consistent performance even when mathematical content appears
in handwritten notes, scanned textbooks, or digital whiteboards, making it a reliable
model for real-world educational applications.

While fine-tuned transfer learning models, such as those based on Xception architec-
ture, offer significant advantages, they may also present certain weaknesses or challenges
in future work, as follows:

• Overfitting: Overfitting can occur when a model is fine-tuned using a particular
dataset, particularly if the dataset is limited or not representative of the target popu-
lation. As a result, the model may perform well on training data but badly on fresh,
untested data. Regularization strategies, data augmentation, or gathering more varied
training data may be necessary to address overfitting.

• Domain Shift: The source domain, where the pre-trained model was trained, and
the target domain in mathematics education may be very different. The fine-tuned
model may perform worse as a result of this domain shift since it may find it difficult
to adjust to the subtleties and variability seen in educational data. Techniques for
do-main adaption or gathering domain-specific data for optimization may be used to
mitigate domain shift.

• Limited Generalization: Transfer learning may restrict the model’s capacity to general-
ize to completely new problems or domains within mathematics education, even while
it can speed up learning by using information from the source domain. Optimized
models may perform well on tasks that are similar to the ones they were trained
on, but they might not perform well on tasks that call for new ideas or methods of
problem solving.
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• Model Interpretability: It can be difficult to understand the decision-making processes
of deep learning models, especially refined transfer learning models, as they are
frequently viewed as “black boxes”. The absence of model interpretability may be a
major obstacle to adoption and comprehension in educational settings, where openness
and interpretability are essential for confidence and acceptance.

• Data Bias and Fairness: Large-scale datasets used to train pre-trained models may
contain biases that the models are unable to detect, which can result in unjust out-
comes or biased predictions, particularly for underrepresented groups. The process of
fine-tuning such models using biased data has the potential to increase achievement
gaps and disparities by perpetuating or exacerbating pre-existing biases in mathemat-
ics education.

• Computational Resources: Large-scale datasets and high-performance GPUs or TPUs
are necessary for fine-tuning deep learning models, especially those with complicated
architectures like Xception. In educational contexts, access to these materials can
be restricted, which would make it more difficult to create and implement transfer
learning models that are optimized.

5. Discussion and Comparison
Medical imaging encompasses a diverse array of variations, underscoring the signif-

icance of image detection in their interpretation. Our focus was on utilizing MRI scans
for the detection of brain tumors. MRI serves as a common modality for both detecting
and categorizing brain tumors. In our study, we opted to employ fine-tuned transfer
learning models to aid in the identification of brain tumors due to their ability to make
precise predictions regarding tumor cells. Figures 9–12 display graphical representations
of the base model combined with transfer learning operations, and Table 4 presents the
corresponding findings. Figures 13–16 illustrate the epoch-by-epoch progress of the pro-
posed model, with Table 5 summarizing the associated results. We present a comparison
in Table 6 of this study, contrasting the existing research with our proposed approach.
Figures 17–20 represent the prediction of the model in terms of tumor or non-tumor. The
model, named Fine-Tuned Transfer Learning Xception, achieved the highest accuracy of
0.9611, as indicated in the table.

This research signifies a significant advancement in the field of medical image analysis,
particularly in the realm of brain tumor detection and prediction using magnetic resonance
imaging (MRI) data. The contribution of this research lies in its meticulous exploration
and evaluation of several cutting-edge deep learning architectures—InceptionResNetV2,
VGG19, Xception, and MobileNetV2—within the context of a fine-tuned transfer learning
framework.

Firstly, the utilization of deep learning architectures like InceptionResNetV2, VGG19,
Xception, and MobileNetV2 represents a sophisticated approach to feature extraction and
representation learning from MRI images. These architectures are highly regarded for
their ability to extract complicated patterns and characteristics from large amounts of data,
which makes them ideal for jobs involving the interpretation of medical images. To further
improve the models’ generalization and resilience, this study uses augmentation strategies.
In order to artificially improve the variety in the training dataset, augmentation entails
performing different transformations, such as rotation, scaling, flipping, or adding noise, to
the input data.

Secondly, the integration of these architectures within a fine-tuned transfer learning
framework is crucial. Transfer learning allows leveraging knowledge gained from pre-
trained models on large datasets (typically non-medical) and adapting it to the specific
task at hand—brain tumor detection and prediction in this case. Fine-tuning involves
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retraining the pre-trained models on a smaller dataset of MRI images, thereby customizing
the learned features to better suit the characteristics of medical images.
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Table 4. Performance matrices for base model + transfer learning.

Model
Training Validation

Accuracy Loss Accuracy Loss

InceptionResNetV2 + Added Layer 0.9226 0.1919 0.9016 0.2872

VGG19 + Added Layer 0.9146 0.2181 0.8298 0.4668

Xception + Added Layer 0.9435 0.1450 0.8910 0.3190

MobileNetV2 + Added Layer 0.9322 0.1560 0.9043 0.2980
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Table 5. Performance matrices for fine-tuned transfer learning model.

Model
Training Validation

Accuracy Loss Accuracy Loss

Fine-Tuned Transfer Learning
InceptionResNetV2 0.9226 0.1919 0.9016 0.2872

Fine-Tuned Transfer Learning
VGG19 0.9246 0.1852 0.8511 0.3495

Fine-Tuned Transfer Learning
Xception 0.9611 0.0925 0.9096 0.2771

Fine-Tuned Transfer Learning
MobileNetV2 0.9448 0.1467 0.9069 0.2751

Table 6. Comparison with other state-of-art model.

Source Methodology Dataset Accuracy

[46] Faster R-CNN with Transfer
Learning - 0.9300

[47] Dense Fused Maxout Network BraTS and Figshare 0.9200

[48] CNN BraTS 2018 0.9267

[30] VGG16, InceptionV3, and
ResNet50 - 0.9158

[49] VGG-19 CE-MRI 3064 images
from 233 patients. 0.9482

[50] Custom CNN architecture, BAT
Algorithm BraTS2015 0.9200

[51] U-Net architecture GANs TCGA-GBM and
TCGA-LGG 0.8882

[52] Stack autoencoder in DL BraTS 2015 0.9500

[53] DNN BraTS2014 0.9310

[54] Pre-trained CNN CE-MRI 0.9458

[55] Active DNN BraTS2018 0.9250

[56] NS-CNN TCGA-GBM 0.9562

[57] BRAIN-TUMOR-net - 0.9367

[58]
XG-Ada-RF (Ensemble of

Extreme Gradient Boosting,
Ada-Boost, and Random Forest)

Figshare 0.9590

[59] VGG16 + RESNET
Kaggle, Figshare,

SARTAJ,
Br35H

0.9200

Proposed Fine-Tuned Transfer Learning
InceptionResNetV2 Kaggle 0.9226

Proposed Fine-Tuned Transfer Learning
VGG19 Kaggle 0.9246

Proposed Fine-Tuned Transfer Learning
Xception Kaggle 0.9611

Proposed Fine-Tuned Transfer Learning
MobileNetV2 Kaggle 0.9448
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The comparative analysis of the brain tumor detection models highlights the varying
performance of different architectures based on methodology and dataset. Traditional
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deep learning models such as a CNN (92.67% on BraTS 2018) and a DNN (93.10% on
BraTS 2014) have shown strong results, while pre-trained architectures like VGG-19 (94.82%
on CE-MRI) and Pre-trained CNN (94.58% on CE-MRI) have further improved accuracy
by leveraging transfer learning. More advanced hybrid approaches, such as NS-CNN
(95.62%) and XG-Ada-RF (95.90%), utilize ensemble techniques to enhance classification
performance. The proposed fine-tuned transfer learning models demonstrate competitive
and superior performances compared to prior studies. Among them, Xception achieves
the highest accuracy of 96.11%, surpassing even ensemble-based techniques. This can be
attributed to its depthwise separable convolutions, which optimize feature extraction while
reducing computational complexity, making it highly effective for MRI-based classification.
Additionally, MobileNetV2 (94.48%), VGG19 (92.46%), and InceptionResNetV2 (92.26%)
further validate the effectiveness of fine-tuned transfer learning.

Despite these promising results, model robustness remains a key concern. The fine-
tuned Xception model achieves a 96.11% accuracy, outperforming several state-of-the-art
architectures, indicating its superior feature extraction capability. Robustness is further
ensured through transfer learning, where pre-trained weights from large-scale datasets
enhance the model’s ability to generalize across different types of brain tumors. To prevent
overfitting and improve generalization, the model incorporates data augmentation tech-
niques such as rotation, flipping, and contrast adjustments, ensuring it learns meaningful
features rather than memorizing specific patterns. Additionally, regularization techniques
like dropout and batch normalization are applied to stabilize training and mitigate vari-
ance issues.

By integrating these deep learning architectures within the transfer learning frame-
work, this research aims to achieve several key objectives, as follows:

• Enhanced Detection Accuracy: By leveraging the learned representations from pre-
trained models and fine-tuning them on MRI images, the aim is to improve the
accuracy of detecting brain tumors. The diverse architectures offer different perspec-
tives on the data, potentially capturing a broader range of tumor characteristics and
improving the overall detection performance.

• Improved Prediction Performance: Beyond simple detection, the research also focuses
on predicting aspects of the tumors, such as their growth patterns, malignancy, or
response to treatment. By harnessing the capabilities of these deep learning archi-
tectures, the goal is to develop more accurate predictive models that aid in clinical
decision making and treatment planning.

• Robustness and Generalization: The evaluation of multiple architectures allows for a
comprehensive assessment of their performance across different datasets and scenarios.
This helps in identifying which architectures are most effective for brain tumor analysis
and understanding their generalization capabilities across various imaging modalities
and patient populations.

The clinical applicability of the proposed model lies in its high accuracy, generalizabil-
ity, and efficiency in brain tumor detection, making it a valuable tool for medical diagnosis.
With the Xception-based model achieving a 96.11% accuracy, it demonstrates a strong
potential for assisting radiologists in identifying brain tumors from MRI scans with high
precision and minimal error rates. This can significantly reduce diagnostic time, aiding in
early detection and treatment planning.

The computational cost and inference speed are crucial factors for real-world deploy-
ment, as deep learning models require significant processing power, which may limit
their usability in low-resource clinical settings. While our proposed models achieve high
accuracy, their feasibility in real-time applications depends on optimizing computational
efficiency. Future research can focus on model pruning, quantization, and knowledge
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distillation to reduce model size and inference time without compromising performance.
Additionally, leveraging hardware accelerators, like GPUs, TPUs, or edge computing de-
vices, can enhance the processing speed, making rapid diagnosis more practical. To further
improve clinical applicability, integrating optimized models into cloud-based diagnostic
platforms or AI-assisted MRI analysis systems can facilitate real-time tumor detection.
Conducting real-world trials in hospitals and benchmarking against lightweight architec-
tures like MobileNet and EfficientNet will ensure scalability and efficiency for broader
medical adoption.

6. Conclusions
This research marks a significant advancement in medical image analysis, particularly

in brain tumor detection and prediction using MRI data. A key contribution is the thorough
evaluation of state-of-the-art deep learning architectures—InceptionResNetV2, VGG19,
Xception, and MobileNetV2—within a transfer learning framework. These architectures
enable the extraction of intricate patterns from complex MRI images, while augmentation
techniques enhance model robustness and generalization. Fine-tuning allows the models
to adapt pre-trained knowledge to brain tumor detection, refining learned features for
improved performance. Among the evaluated models, Xception demonstrated the highest
accuracy and lowest training loss, indicating strong learning capabilities, while VGG19,
InceptionResNetV2, and MobileNetV2 showed competitive validation performance. In
terms of practical implications, the proposed models can aid radiologists in automated
tumor detection, reducing diagnostic time and enhancing decision making in clinical
settings. To facilitate hospital adoption, future work will focus on optimizing computational
efficiency for real-time deployment, integrating the model into cloud-based diagnostic
platforms, and ensuring compatibility with hospital imaging systems. Additionally, further
improvements will include refining data augmentation strategies, enhancing generalization
across diverse patient demographics, and validating model performance on larger, multi-
center datasets. These advancements will help bridge the gap between research and real-
world medical applications, ultimately improving early diagnosis and patient outcomes.
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14. Woźniak, M.; Siłka, J.; Wieczorek, M. Deep Neural Network Correlation Learning Mechanism for CT Brain Tumor Detection.
Neural Comput. Appl. 2021, 35, 14611–14626. [CrossRef]

15. Walsh, J.; Othmani, A.; Jain, M.; Dev, S. Using U-Net Network for Efficient Brain Tumor Segmentation in MRI Images. Healthc.
Anal. 2022, 2, 100098. [CrossRef]

16. Nath, G.; Coursey, A.; Li, Y.; Prabhu, S.; Garg, H.; Halder, S.C.; Sengupta, S. An Interactive Web-Based Tool for Predicting and
Exploring Brain Cancer Survivability. Healthc. Anal. 2023, 3, 100132. [CrossRef]

17. Rub, S.A.A.; Alaiad, A.; Hmeidi, I.; Quwaider, M.; Alzoubi, O. Hydrocephalus Classification in Brain Computed Tomography
Medical Images Using Deep Learning. Simul. Model. Pract. Theory 2023, 123, 102705. [CrossRef]

18. Mehnatkesh, H.; Jalali, S.M.J.; Khosravi, A.; Nahavandi, S. An Intelligent Driven Deep Residual Learning Framework for Brain
Tumor Classification Using MRI Images. Expert Syst. Appl. 2023, 213, 119087. [CrossRef]

19. Mehrotra, R.; Ansari, M.A.; Agrawal, R.; Anand, R.S. A Transfer Learning Approach for AI-Based Classification of Brain Tumors.
Mach. Learn. Appl. 2020, 2, 100003. [CrossRef]

20. Siva Raja, P.M.; Rani, A.V. Brain Tumor Classification Using a Hybrid Deep Autoencoder with Bayesian Fuzzy Clustering-Based
Segmentation Approach. Biocybern. Biomed. Eng. 2020, 40, 440–453. [CrossRef]
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