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Abstract: Immuno-correlated dermatological pathologies refer to skin disorders that are closely as-

sociated with immune system dysfunction or abnormal immune responses. Advancements in the 

field of artificial intelligence (AI) have shown promise in enhancing the diagnosis, management, 

and assessment of immuno-correlated dermatological pathologies. This intersection of dermatology 

and immunology plays a pivotal role in comprehending and addressing complex skin disorders 

with immune system involvement. The paper explores the knowledge known so far and the evolu-

tion and achievements of AI in diagnosis; discusses segmentation and the classification of medical 

images; and reviews existing challenges, in immunological-related skin diseases. From our review, 

the role of AI has emerged, especially in the analysis of images for both diagnostic and severity 

assessment purposes. Furthermore, the possibility of predicting patients’ response to therapies is 

emerging, in order to create tailored therapies. 

Keywords: artificial intelligence; machine learning; skin; autoimmune disease; inflammation;  

atopic dermatitis; psoriasis; vitiligo; alopecia areata; hidradenitis suppurativa 

 

1. Introduction 

Immuno-correlated dermatological pathologies refer to skin disorders that are 

closely associated with immune system dysfunction or abnormal immune responses. 

These conditions involve an intricate interplay between the immune system and the skin, 

leading to various dermatological manifestations. Immuno-correlated dermatological pa-

thologies encompass a broad spectrum of disorders, including autoimmune skin diseases, 

inflammatory skin conditions, and those associated with altered immune responses [1]. 

Examples of immuno-correlated dermatological pathologies include autoimmune blister-

ing disorders such as pemphigus and bullous pemphigoid, inflammatory conditions like 

psoriasis and atopic dermatitis (AD), and connective tissue diseases such as lupus erythe-

matosus. In these disorders, the immune system mistakenly targets components of the 

skin, resulting in inflammation, tissue damage, and characteristic skin lesions. Under-

standing the immune mechanisms underlying these dermatological conditions is crucial 

for developing effective diagnostic and therapeutic strategies. Moreover, advancements 

in the field of artificial intelligence (AI) have shown promise in enhancing the diagnosis, 
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management, and assessment of immuno-correlated dermatological pathologies [2]. This 

intersection of dermatology and immunology plays a pivotal role in comprehending and 

addressing complex skin disorders with immune system involvement. Traditional diag-

noses of dermatological diseases heavily rely on visual inspection and subjective evalua-

tions, lacking precise, objective, and quantitative criteria. Dermatologists, despite their ex-

pertise, are not immune to misdiagnosis. In remote areas with limited access to dermatol-

ogists, non-specialists often handle dermatological diagnoses without extensive 

knowledge or training in the field. Even with dermatology textbooks as references, accu-

rate diagnoses remain challenging. The scarcity of dermatologists and uneven healthcare 

resource distribution further complicate accurate diagnoses in these regions. AI technol-

ogy based on image recognition has emerged as a promising approach for diagnosing skin 

diseases, addressing challenges in areas with limited healthcare resources. AI algorithms, 

trained on extensive datasets of skin images, excel in learning patterns associated with 

various skin conditions. This enables them to provide accurate diagnoses, particularly in 

the early stages of diseases [3]. Through meticulous design and debugging, AI algorithms 

may avoid biases inherent in human diagnoses, offering more objective results. Com-

monly used AI algorithms include machine learning (ML) and deep learning (DL), with 

DL showing superior performance in handling large datasets and complex features [4]. 

ML methods remain valuable in situations with limited data. These approaches find ap-

plication in computer-aided diagnosis (CAD) systems, delivering precise classifications 

for dermatologists and aiding non-dermatologists in minimizing errors due to limited ex-

pertise [2]. The paper explores the evolution and achievements of ML and DL methods in 

diagnosis; discusses segmentation and the classification of medical images; and reviews 

existing challenges in immunological-related skin diseases. By comparing these methods 

and summarizing their limitations, the paper proposes future directions for development. 

2. Results 

2.1. Atopic Dermatitis 

2.1.1. AI Etiopathogenetic Application 

Beyond the extensive interest in the field of allergopathies and immunological disor-

ders, concerning AD and the already emphasized importance of data-driven methods ap-

plied to it, the first applicative evidence of AI using artificial neural networks (ANNs) 

dates to the last decade of the past century [5–9]. Regarding etiopathogenesis, an im-

portant contribution to the understanding of AD was recently offered by explainable AI, 

by which the dysregulation of the inhibitor of nuclear factor kappa B kinase subunit beta- 

nuclear factor kappa-light-chain-enhancer of activated B cells (Ikkb-NF-kB) axis in the 

paired related homeobox-1 (Prx1)+ fibroblastic subpopulation promoting skin inflamma-

tion by the overexpression of eotaxin-1 could be identified as a new unknown etiologic 

factor [10].  

2.1.2. Predictive, Diagnostic, and Classification Performances 

For diagnostic purposes, only within the past decade has the interest in the clinical 

application potential of AI undergone a consistent revival, even more so with the use of 

data augmentation in DL-based approaches, increasing the accuracy of such models [11]. 

In 2015, Ghosh et al., through the use of AD “signature” genes (89 AD Gene Expression 

Signature, “89ADGES”) and the use of a support vector machine (SVM) for data analysis, 

built a final model with an AD predictive accuracy of 98% [12]. An interesting and recent 

extension of this topic comes from the use for classification purposes of ML models to 

identify common and distinct gene expression profiles between lesional areas and, espe-

cially, unique gene signatures between non-lesional areas of AD and those of other in-

flammatory skin diseases [13,14]. It is also intriguing to note how AI is increasingly im-

pacting precision medicine for such disease in recent years, using unsupervised ML ap-

proaches designed to distinguish AD patients into various clusters, based on a different 
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expression profile of multiple cytokines and chemokines, thus paving the way for the en-

dotypic classification of AD and other allergic diseases [15]. Further impetus for the de-

velopment of molecular diagnostics in AD is provided by the exploration of how deep-

representation-learning techniques perform in analyzing large transcriptomic datasets for 

the prediction of phenotypes and, thus, clinical outcomes [16]. Likewise, unsupervised 

clustering approaches using hypothesis-independent statistical techniques for the identi-

fication of AD clinical phenotypes have also been attempted [17]. The latest advances in 

this topic involved the development of an ML classifier which, by employing it as input 

data on intestinal epithelial transcriptome and intestinal microbiome, was able to accu-

rately and automatically classify AD, as well as identify its potential new biomarkers [18]. 

In addition, the attempt at identifying clinically relevant skin chemical biomarkers is 

strengthened by the integration of advanced ML methods to confocal Raman micro-spec-

troscopy, aiming to discriminate between AD subjects and healthy controls [19]. The util-

ity of employing AI in the diagnosis of AD has continued to be increasingly investigated 

over the past 3 years [20–23]. We start from the promising results obtained by employing 

multiphoton tomography (MPT) imaging to train convolutional neural networks (CNNs) 

capable of recognizing living cells, and, through that, arrive at a rapid and operator-inde-

pendent—in a single word, automatic—diagnosis of such a chronic skin condition [24]. 

Concurrently, Wu’s group, proposing a DL-based AI dermatology diagnosis assistant 

(AIDDA), obtained the same promising results with an AD diagnostic accuracy of 92.57%, 

with a specificity of 94.41% and sensitivity of 94.56% [25]. As if that were not sufficient, AI 

by means of CNNs has also approached high-frequency ultrasound skin imaging both 

through the proposal of a deep-transfer-learning-based algorithm able to classify with 

generally good accuracy various dermatoses, including AD, otherwise difficult to distin-

guish ultrasonographically, and by proposing DL-based models for the automated seg-

mentation of skin layers [26–28]. Even more interestingly and recently, ML techniques 

have been employed to build predictive models of AD onset in childhood by analyzing 

large datasets including information related to prenatal exposure to environmental pollu-

tants. The best predictive performance was recorded by the random forest (RF) model [29]. 

The year 2023, by itself, saw a flurry of work regarding the application of AI for improving 

AD expertise, starting with the proposal of new and efficient AD predictive models, such 

as bSRWPSO-FKNN by combining swarm intelligence algorithms (binary enhanced par-

ticle swarm optimization; bSRWPSO) with well-known supervised ML techniques (fuzzy 

K-nearest neighbor; FKNN) [30]. Following this, the introduction of DL models for the 

accurate classification of skin conditions, including AD, through the automatic extraction 

of lesions and segmented images of skin areas, enabled the creation of an image dataset 

useful for the performance enhancement in CAD of multiple skin conditions [31]. In this 

context, interestingly, the application of ML methods (with the optimal model represented 

by Extreme Gradient Boosting; XGB) is increasingly gaining ground for achieving an ac-

curate diagnosis of AD by using biomarkers such as pyroptosis-related genes (PRGs) [32].  

2.1.3. A New Concept of AD Severity Scoring 

In the wake of personalized dermatology and precision medicine, the most recent 

advancements have resulted both through ML-gradient boosting models for the identifi-

cation of major AD-severity-associated factors and in the design of a Bayesian-ML-based 

probabilistic predictive model of the daily evolution of AD severity scores in the individ-

ual patient, thus optimizing the type and timing of treatment and, thereby, disease control 

[33–35]. The latest frontier of AI applied to Raman imaging for such a disorder has in-

volved the use of DL analysis for the noninvasive quantification of the inflammatory re-

sponse [36]. In the framework of better-defining the skin barrier function, a recent obser-

vational study employed an SVM model to classify eczema from data indicating the 

amount of three major natural skin-moisturizing components, thus enabling the formula-

tion of a new quantitative index, the Eczema Biochemical Index (EBI), useful for staging 

disease severity [37]. Concerning the latter, very promising is the attempt to arrive at an 
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automatic definition of AD severity by using CNNs being trained with brightness-ad-

justed clinical images to achieve a scoring accuracy of erythema, papulation, excoriation, 

and lichenification severity comparable to that of dermatologists [38]. Computational ap-

plicative advances in this direction have led to the more recent design of Automatic SCOR-

ing Atopic Dermatitis (ASCORAD) [39]. Even more, AI application attempts for classify-

ing AD and subclassifying its severity have also been tested with encouraging results for 

more recently introduced dermatologic imaging methods, such as 3D Raster-Scanning 

Optoacoustic Mesoscopy (RSOM), demonstrating a high predictive accuracy in classifying 

AD for CNNs, but not as accurate for the severity subclassification compared to the RF 

model [40]. An emerging application thread of AI calls into play its use in assessing how 

external risk factors are related to the clinical worsening of AD. In this regard, in their 

observational study, Patella et al,. using an ANN for data analysis, found a proportionality 

between the increased SCORing Atopic Dermatitis (SCORAD) score and increased air pol-

lutant concentration and total pollen count [41]. AI application developments in the past 

year also involved the evaluation of the outperformance of CNNs, trained with multi-

evaluator datasets, in staging AD severity [42].  

2.1.4. AI in Therapeutic Frontiers in Personalized Medicine 

Not only for diagnostic and staging purposes, but also for the assessment of the ther-

apeutic efficacy and therapeutic advancement of AD, even considering the effectiveness 

of suggested word-embedding-based ML approaches for the new eligibility of existing 

drugs (drug repositioning), thus paving the way for patient-centered care in the frame-

work of personalized dermatology, AI has revealed its potential through the proposal of 

a new algorithm that, by integrating actigraphy data with the use of recurrent neural net-

works, has proven effective in the detection and quantization of nocturnal scratching 

movements [43–45]. Analogous advances have also been attempted in murine models [46]. 

Far beyond drug repositioning, AI, by employing CNNs, has shown encouraging results 

in identifying the novel inhibitory molecules (such as caffeoyl malic acid) of AD’s pivotal 

therapeutic targets [47]. Interestingly, an ML-based analysis has been employed to iden-

tify alterations in keratinocyte transcriptomic programs in AD and the impact on them of 

various drugs including Dupilumab, for which ML analysis has been shown to predict 

indicators of nonresponse using clinical-demographic data as well as enabling a large-

scale investigation regarding the impact of sleep-related adverse reactions to such a bio-

logical drug [48–50]. Regarding the therapeutic aspect, meanwhile, alongside recently re-

viewed applications of multiple ML models, an important contribution to precision med-

icine is offered by the most recent advances regarding the use of new DL-based models 

capable of generating new drug candidate molecules by employing disease-specific gene 

expression profiles [51,52]. An aspect entirely in step with the times of self-information 

and self-management, AI, through platforms such as Chat Generative Pre-Trained Trans-

former (ChatGPT) and specific mobile health apps, has also begun to play a key role in 

offering patients access to clinically accurate and inclusive information about this condi-

tion, however, not without psychopathological implications, especially in parents of chil-

dren with AD [53–56].  

 

- AI, by revealing specific epigenetic dysregulations, has begun to contribute to a better 

etiopathogenetic understanding of AD [5–10]. 

- AI demonstrated a good performance in predicting disease using both epigenetic 

data and exposure to environmental factors [15–19]. 

- The most widely investigated AI application field in AD concerns diagnosis through 

image recognition and the differential diagnosis with other dermatoses of similar 

clinical presentation [20–28]. 

- ML models have been extensively used with a good predictive performance of dis-

ease severity, even on a daily baseline [37–41]. 
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- ML and DL models have been used with promising results in the therapeutic setting 

for various purposes, including drug repurposing, the eligibility of new drugs, and 

the prediction of the therapeutic response to biologic drugs [48–50]. 

2.2. Psoriasis 

2.2.1. Image Analysis 

Psoriasis is a chronic autoimmune skin disorder characterized by the abnormal pro-

liferation of skin cells, considered a T-cell-mediated inflammatory disease. The immune 

system mistakenly activates T cells which, in turn, stimulate the skin cells to undergo 

rapid proliferation. This results in the formation of thickened, red patches of skin covered 

with silvery scales. AI, and more specifically ML, can play a crucial role in the assessment 

and diagnosis of skin diseases by automatically interpreting skin images. This also in-

volves the capacity to recognize a psoriasis lesion in an image, distinguish it from other 

skin conditions, outline the contours of the lesion, and assess the severity and extent of 

psoriasis based on the image. On this topic, Shrivastava et al. have conducted studies fo-

cusing on classifying skin images from psoriasis patients as either healthy or diseased, 

achieving an accuracy of approximately 99% after extracting feature information like tex-

ture, color, and redness from the images [57–59]. Other research groups have concentrated 

on differentiating psoriasis from images depicting various common skin disorders, in-

cluding those often mistaken for psoriasis such as AD or seborrheic dermatitis [11,60–62]. 

For instance, Zhao et al. employed CNNs to classify 8021 images of nine common disor-

ders from a Chinese hospital’s patients, achieving a superior performance compared to 25 

Chinese dermatologists when tested on 100 new images [60]. In the same context, other 

authors have explored the application of dermatoscopic images, in addition to skin im-

ages, for AI-based diagnosis, using a DL model. A novel diagnostic method was devel-

oped to distinguish between scalp psoriasis and seborrheic dermatitis, which reached a 

higher accuracy compared to dermatologists trained with dermoscopy [63]. Other re-

search groups have integrated skin computed tomography and confocal laser scanning 

microscopy with AI algorithms for examining psoriasis. The results indicated a high spec-

ificity and sensitivity for features like psoriasis-like hyperplasia and Munro microabscess, 

providing valuable diagnostic clues, especially in pediatric cases [64].  

2.2.2. AI-Assisted Severity Scores and Comorbidities 

After psoriatic lesion identification, the next step was to evaluate the gravity score of 

psoriasis based on skin images, to better choose the tailored therapy for the patients. The 

Psoriasis Area and Severity Index (PASI), Body Surface Area (BSA) and Physician Global 

Assessment (PGA) systems are scores used worldwide to grade the severity of psoriasis. 

These grading systems entail the clinical evaluation of lesion erythema, scaliness, and in-

duration. ML techniques have been utilized to automatically assess erythema and scali-

ness from images and detect changes in scaliness over time in a series of images, achieving 

a good accuracy for erythema and scaliness evaluation [65–68]. BSA is another quantita-

tive metric assessed by dermatologists during the evaluation of psoriasis patients, tradi-

tionally conducted through a full-body skin examination. ML researchers are actively 

working on automating the estimation of BSA, achieving an accuracy of over 90% in the 

images analyzed, with automated area estimates differing from physicians’ estimates by 

an average of 8.1% [69]. Furthermore, total body imaging systems are being developed to 

generate more comprehensive images for automatic PASI and BSA measurements [70]. 

Collectively, the information derived from ML-automated severity and area grading can 

be utilized for the automatic risk stratification of psoriasis lesions. Some studies suggested 

that psoriasis can be subject to sudden flares, regardless of the severity of the disease and 

patient’s characteristics, in the presence of triggers, such as infections or vaccinations. 

Therefore, the development of AI methods to predict such flares can be of significant im-
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portance [71]. AI programs have also been utilized in early detection studies of comorbid-

ities in psoriasis, including psoriatic arthritis (PsA), cardiovascular disease, and diabetes 

[72,73]. Other studies utilized ML models based on blood immune profiling and serum 

proteomics to distinguish between PsA and psoriatic patients. These models contributed 

to the development of a predictive model for minimal disease activity, with global pain, 

disease impact (PsAID), patient global assessment, and physical function being significant 

variables [74]. Beyond PsA, patient records were examined to identify top predictors of 

noncalcified coronary plaque burden in psoriasis, including obesity, dyslipidemia, and 

inflammation factors [75].  

2.2.3. AI-Based Therapies and Efficacy Prediction 

The subsequent step of AI was to tailor psoriasis treatment based on individual clin-

ical phenotypes, which is a crucial but unmet need with the potential aim to significantly 

enhance patients’ quality of life and functional capabilities [76]. Predicting the effective-

ness of drugs can play a key role in developing and implementing personalized treatment 

schedules. On this topic, Tomalin et al. utilized statistical and ML techniques to forecast 

drug efficacy in psoriasis, creating a classifier that predicts whether a patient will respond 

favorably to tofacitinib or etanercept treatment after 12 weeks [77]. This prediction was 

based on blood samples detecting 92 inflammation-associated proteins and 65 proteins 

associated with cardiovascular disease. Similarly, an Italian study developed an ANN 

model to assess the so-called “fast responder” profiles among psoriatic patients treated 

with secukinumab, an inhibitor of interleukin (IL)-17A, achieving an overall accuracy of 

91.88% [78]. In addition to blood samples, other studies explored various predictors to 

forecast treatment efficiency, revealing factors like secukinumab dosage, prior anti-tumor 

necrosis factor (TNF) treatment, methotrexate usage, baseline enthesitis, PsA disease du-

ration, and PASI score [79,80]. Conversely, other researchers also investigated the use of 

ML to predict the “long-term responses” to biologics, finding that generalized linear mod-

els (GLMs) outperformed other models in terms of accuracy and computational efficiency 

[20]. Finally, in the perspective of enhancing psoriasis treatment outcome, the develop-

ment of new drugs is crucial [81]. Being a multifactorial genetic disorder with about 70% 

of its susceptibility attributed to genetic factors, psoriasis makes it mandatory to under-

stand its genetic basis to unravel the disease’s biology, to identify clinical biomarkers, and, 

above all, to discover new drug targets, with the final aim being to advance toward per-

sonalized medicine [82]. An alternative, a cost-effective strategy is drug repurposing, 

which involves identifying drugs with potential applications beyond their original uses 

[83]. On this topic, Patrick et al. devised a system to pinpoint drugs suitable for repurpos-

ing in psoriasis treatment [43]. Using word embedding to summarize information from 

over 20 million articles on drugs and applying ML to model drug–disease relationships, 

the approach successfully identified budesonide and hydroxychloroquine as potential 

candidates. However, the data at our disposal are still limited to propose, from a clinical 

standpoint, the use of these drugs in patients who, nonetheless, may benefit from medi-

cations already on the market and whose efficacy has already been proven. In conclusion, 

ML has considerable potential to improve various aspects of psoriasis management, in-

cluding diagnosis and treatment. In diagnostics, ML can automate tasks like identifying 

psoriasis-affected areas in photos, differentiating psoriasis from other skin disorders, and 

quantifying disease severity, thus helping dermatologists’ tasks, especially in high-vol-

ume practices. In therapy and management, ML is crucial for preventing complications. 

For example, ML predictions of characteristics associated with a higher risk of cardiovas-

cular complications can guide the targeting of preventive cardiology services. Moreover, 

ML enhances psoriasis treatment by automating lesion evaluation. A high PGA computed 

by ML can prompt dermatologists to consider more intensive systemic treatment or pho-

totherapy instead of topicals. ML also predicts long-term treatment responses, identifies 

potential drug interactions, and anticipates new therapies for psoriasis.  
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- ML is a new tool for the diagnosis of psoriasis, with a high accuracy in classifying 

skin images [57–59]. 

- ML techniques are actively involved in automating the assessment of psoriasis sever-

ity using established metrics like PASI and BSA [65–70]. 

- ML is being tested for the early detection of comorbidities associated with psoriasis, 

through blood immune profiling and serum proteomics [72–74]. 

- ML plays a pivotal role in tailoring psoriasis treatment based on individual clinical 

phenotypes. This personalized approach aims to enhance treatment outcomes and 

improve patients’ quality of life [77–80]. 

2.3. Alopecia Areata 

Alopecia areata (AA) is an autoimmune disorder characterized by the sudden onset 

of non-scarring hair loss in localized or widespread areas on the scalp, face, or body. In 

individuals with AA, the immune system mistakenly attacks the hair follicles, leading to 

hair loss. This condition can manifest as small, round patches of hair loss (AA), complete 

loss of scalp hair, alopecia totalis (AT), or total loss of body hair, alopecia universalis (AU) 

[84]. The precise cause of AA is not fully understood, but it is believed to involve a com-

bination of genetic, environmental, and immunological factors. The condition is diag-

nosed clinically and dermoscopically, even though AI is gaining an increasing role. In 

2021, a framework was developed to distinguish between healthy hair and AA through 

image classification, using healthy hair images and AA images, and applying image pre-

processing and feature extraction. Using SVM and k-nearest Neighbor (KNN) classifica-

tion techniques, a reported accuracy of 91.4% for SVM and 88.9% for KNN was achieved. 

These findings highlight the potential for improved prediction capabilities in the field of 

dermatology [85]. AI has been also tried in the severity assessment of AA through a DL 

framework, specifically targeting the Severity of Alopecia Tool (SALT) score. Dermatolo-

gists’ naked-eye assessments were compared to the model, called AloNet, with a strong 

agreement between the dermatologists’ evaluation and the model. Notably, the model ex-

hibited a superior performance in cases of patchy or multifocal alopecia and effectively 

rejected irrelevant structures in predicting regions of interest [86]. These, although they 

are the initial data, confirm the ability of AI in diagnostic support for dermatologists in 

the trichology field. AI has also been used for prognostic purposes. On this topic, a study 

focused on identifying biomarkers associated with the progression of AA to the subtypes 

of AT or AU, through bioinformatics analyses on human scalp skin biopsy specimens and 

the subsequent identification of key genes in AA tissues, particularly in AT and AU sub-

types. The findings suggest the importance of these models in guiding the clinical man-

agement for different AA patients [84]. Moving to therapy, the challenge of determining 

the most effective therapeutic approach for each patient is particularly pronounced across 

various diseases. In the realm of autoimmune diseases like AA, different Janus kinase 

(JAK)/STAT inhibitors have shown efficacy in clinical trials, each exhibiting distinct re-

sponse rates. The AI found its application in the study of the variability in patient re-

sponse. A computational model predicted the likelihood of response for specific patient–

drug pairs by integrating the inferred mechanism of action data and gene regulatory net-

works. This integration incorporates insights from an independent patient cohort, align-

ing with baseline patient data before the initiation of treatment [87]. In conclusion, AI in 

AA is finding increasing application both in diagnostics, through the analysis of specific 

patterns for accurate diagnosis, and in the selection of the most effective treatment for the 

patient, thus creating personalized therapy. Furthermore, it plays a role in assessing prog-

nosis.  

- AI plays a role in diagnosis with image classification [85]. 

- AI is playing a pivotal role in tailoring treatment strategies for AA patients [87]. 
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2.4. Vitiligo 

Vitiligo is a chronic skin disorder characterized by the loss of melanocytes, resulting 

in white patches on the skin. The exact cause is unclear, but factors such as genetics, auto-

immunity, and environmental triggers may play a role. Melanocyte destruction, poten-

tially due to autoimmune reactions, leads to depigmentation [88]. In vitiligo, AI has been 

applied both for diagnosis, prognosis, and therapeutical choice. To assess the severity of 

vitiligo, AI systems have been developed by comparing them with traditional assessment 

methods used by dermatologists. The AI models demonstrated an impressive accuracy in 

assessing the severity of vitiligo, and the comparative analysis with scores assigned by 

dermatologists showed a good agreement between the scores assigned by human evalua-

tors and the AI model. This evidence suggests that AI models have potential as an objec-

tive tool for vitiligo assessment, offering a valid alternative or complement to human as-

sessment in clinical practice and research [89,90]. The use of AI in vitiligo has found ap-

plication also in phytotherapy, the branch of medicine that uses plants in their entirety or 

their components for medical purposes to treat or prevent several diseases [91]. Wang et 

al. proposed a systematic framework for discovering potential therapeutic targets and un-

derstanding the mechanism of kaempferide, a major ingredient from Vernonia anthelmin-

tica, for vitiligo. Transcriptome and protein–protein interactome data were collected, and 

a combination of RF and greedy articulation points removal (GAPR) methods was em-

ployed. The RF model demonstrated a good performance, leading to the prioritization of 

722 important transcriptomic features, while the network analysis identified 44 articula-

tion proteins in the vitiligo network as potential therapeutic targets using the GAPR 

method. Integrating these results with the proteomic profiling of kaempferide revealed a 

multi-target strategy for vitiligo, including the suppression of the p38 mitogen-activated 

protein kinase (MAPK) signaling pathway and modulation of cellular redox homeostasis. 

This approach provides a novel perspective for discovering drug candidates and potential 

therapeutic strategies for vitiligo, demonstrating the utility of the proposed framework in 

complex disease research [92].  

- AI models, when compared with traditional assessment methods used by dermatol-

ogists, demonstrated an impressive accuracy [89,90]. 

- A multi-target strategy for vitiligo assessment is an object of study [92] 

2.5. Hidradenitis Suppurativa 

Hidradenitis suppurativa (HS) is a chronic skin condition characterized by the for-

mation of painful nodules, abscesses, and tunnels beneath the skin, primarily in areas 

where skin rubs together, such as the armpits, groin, buttocks, and under the breasts [93]. 

This condition involves the inflammation of hair follicles and apocrine sweat glands. The 

exact cause of hidradenitis suppurativa is not fully understood, but factors like genetics, 

inflammation, and hormonal influences may contribute to its development. AI is finding 

a plethora of applications in HS, including diagnostic support, monitoring and manage-

ment, patient education and support, and, finally, predictive analysis, helping healthcare 

providers anticipate disease progression and tailor treatment plans accordingly. The ma-

jor application of AI is the aim to overcome the inter-variability in the assessment of the 

patient’s disease stage. On this topic, to overcome the International Hidradenitis Suppu-

rativa Severity Score System (IHS4), which is time-consuming and subject to variability, 

the Automatic International Hidradenitis Suppurativa Severity Score System (AIHS4) is 

introduced, using a DL model, Legit. Health-IHS4net, for lesion detection. The results in-

dicate that the AIHS4 can assess the severity of HS in a manner comparable to expert cli-

nicians, suggesting its potential implementation in CAD systems. This evidence high-

lights the utility of AI in evidence-based dermatology, offering a potential tool to em-

power dermatologists in daily practice and clinical trials [94].  

- AIHS4 can evaluate the severity of HS like expert clinicians, indicating its potential 

integration into CAD systems [94]. 
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2.6. Acne 

Traditionally, patients seeking an acne diagnosis must physically visit a dermatolo-

gist, where the expert assesses affected areas either visually or with a dermatoscope. The 

diagnostic process heavily relies on the dermatologist’s expertise and experience [95]. 

However, the scarcity of dermatologists in various regions forces many patients to endure 

long journeys or extended wait times. Recent strides in smartphone technology, embraced 

by approximately 3.2 billion people globally, have paved the way for innovative 

healthcare solutions. One notable example is teledermatology, which allows patients to 

receive remote consultations via smartphones, eliminating the need for in-person visits 

and saving valuable time [96]. Especially after the COVID-19 pandemic, teledermatology 

is proving beneficial for individuals living in rural or distant areas, enhancing access to 

dermatological care [97,98]. Simultaneously, the ongoing research in the development and 

integration of highly precise, automatic skin image analysis algorithms aims to assist doc-

tors in expediting diagnoses and furnishing valuable information to patients [99]. These 

algorithms have the potential to streamline the diagnostic process, enhancing both effi-

ciency and accuracy. The intersection of these advancements in dermatology and teleder-

matology signifies a dynamic field of exploration. The goal is to harness the benefits of 

smartphone-based solutions, making dermatological care more accessible, particularly for 

those in underserved or remote communities [96,99]. Numerous skin image analysis al-

gorithms, specifically designed for acne analysis, have emerged as part of this ongoing 

research and technological evolution. On this topic, AI-powered acne-grading systems 

that incorporate lesion identification and assess its performance compared to physician 

image-based scoring have been tested, with the AI severity-grading system showing a 

good agreement with the true label. Moreover, the integration of lesion identification into 

severity assessment improved agreement, suggesting potential clinical decision support 

effectiveness [100]. To address the challenges associated with existing acne-grading meth-

ods, such as variability among raters and time-consuming lesion counting, new automatic 

acne lesion counting programs have been developed and optimized to characterize the 

subtypes of acne. The AI-based programs demonstrated favorable results in the sensitivity 

and positive predictive value for papules, nodules, pustules, and whitehead comedones 

when compared to manual counting by an expert dermatologist. The findings suggest the 

usefulness of the automatic lesion-counting program in efficiently assessing acne lesions 

[101]. The performance of AI was also observed in the evaluation of acne severity. The AI, 

trained on images, demonstrated a high correlation with the assessments made by clini-

cians following the Investigator’s Global Assessment (IGA) scale. This marks the first case 

where AI has directly classified acne patients according to the IGA ordinal scale with a 

high accuracy, eliminating the need for human intervention [102,103]. The results demon-

strated the potential of AI and large datasets for the automated analysis and classification 

of clinical images, offering a standardized approach to assessing acne severity. Since the 

complexity of skin lesions often limits the effectiveness of conventional image-processing 

methods, numerous algorithms for analyzing skin images have been developed [104,105]. 

The introduction of DL techniques, particularly CNNs, has significantly advanced the 

field of computer vision in skin image analysis. Recent studies have explored the applica-

tion of DL to improve upon the limitations of traditional image-processing approaches in 

acne analysis, through the development of models capable of successfully distinguishing 

the various classes of acne lesions (blackheads, pimples, papules, pustules, nodules, cysts, 

and normal skin) with a high accuracy [106]. Among these models, the AcneNet model, 

using a deep residual neural network, achieved an impressive overall accuracy of over 

94% [107]. A subsequent step was taken by Seite et al., who presented a DL-based AI al-

gorithm for facial acne analysis using smartphone images [108]. This method could eval-

uate the severity of facial acne based on the Global Evaluation Acne (GEA) scale and iden-

tify various types of acne lesions. However, the accuracy in classifying acne severity pro-

vided by the method was 68%. In 2021, Yin Yang et al. developed another acne rating 
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algorithm using DL to classify the severity of acne on the face according to Chinese guide-

lines, which demonstrated a strong correlation between the model and dermatologists 

[109]. Finally, in 2022, Liu et al. introduced a new overall pruning framework to accurately 

detect and classify acne using DL models. The proposed method involved training multi-

ple base models and eliminating redundant models based on performance and diversity. 

The framework achieved a high prediction accuracy of 85.82% on the acne dataset, sur-

passing the results achieved by existing studies. The approach was also tested on a skin 

cancer dataset and demonstrated a superior performance compared to state-of-the-art 

methods [110]. In summary, the confluence of advancements in dermatology, telederma-

tology, and DL techniques has paved the way for a more accessible and efficient acne di-

agnosis and severity assessment, particularly by leveraging the widespread use of 

smartphones globally. Ongoing research continues to refine and enhance these technolo-

gies for the benefit of patients and healthcare providers alike.  

Teledermatology, facilitated by the widespread adoption of smartphones, has 

emerged as a new solution for acne diagnosis [96]. 

- The integration of AI-powered acne-grading systems marks a significant advance-

ment in automating the diagnostic process [100,101]. 

- The application of DL techniques, particularly CNNs, has revolutionized the acne 

severity assessment. Models like AcneNet, utilizing deep residual neural networks, 

have achieved a remarkable overall accuracy of over 94% [107]. 

2.7. Rosacea 

In recent years, it has become clear how the application of AI and, specifically, of 

deep CNNs through image recognition, further refined with data augmentation tech-

niques, plays no small contribution in the diagnostic facilitation of rosacea and other der-

matopathies with a high incidence and similar clinical presentation with the increasingly 

cutting-edge proposition of frameworks representative of authentic dermatologic clinical 

practice within defined geographic boundaries [81]. In the wake of such trends, Binol et 

al. proposed Ros-NET, a new framework for the automatic identification of rosacea lesions 

based on deep-learning and transfer-learning systems by using deep CNNs pre-trained 

with query patches obtained from photographic facial images in addition to a new anthro-

pometric model. The ultimate result was a significant decrease in the rate of false positives 

revealed [111]. Further confirmation about the deciphering capabilities from clinical im-

ages of deep CNNs comes from Zhao et al., in whose study the use of ResNet-50 proved 

effective and accurate in identifying rosacea by discerning it from other facial dermatoses 

of similar clinical presentation, as well as classifying it into the three major subtypes. In 

addtion, the identification performance of their model was comparable to that of an expe-

rienced dermatologist [112].  

- The state-of-the-art AI clinical applications for rosacea concern only its diagnostic fa-

cilitation by the automatic identification and classification of subtypes from facial im-

ages [111,112]. 

2.8. Lichen 

The use of AI for efficient decision-making support, especially in real clinical settings 

and for predictive purposes in the diagnosis of oral lichen planus (OLP) and lichen planus-

like keratosis, has been pioneered in the past decade through the use of ML algorithms 

[81,113–115]. The potentially useful role of interleukin 12 receptor beta 2/tumor necrosis 

factor receptor superfamily member 8 (IL12RB2/TNFRSF8) ratio as a biomarker in the dif-

ferential diagnosis between OLP and other chronic nonspecific mucositis has emerged 

[116]. The predictive model just discussed helped to pave the way for the further use of 

ML techniques in the dichotomous classification of patients with OLP, as part of the eval-

uation regarding the diagnostic potential of their salivary cytologic profile [117]. Likewise, 

the creation of ANNs capable of detecting and quantifying the presence of monocytes and 
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granulocytes in the inflammatory infiltrates typical of OLP has made it possible to define 

a distinctive cut-off threshold between OLP and other lichenoid lesions, thus representing 

a valuable aid for anatomopathologic diagnosis [118]. Moreover, in more recent times, the 

predictive accuracy of lichen planus and other skin diseases has been increasing, starting 

from a more efficient use of datasets, made possible by the development of new ML algo-

rithms capable of combining various and individual data-mining techniques, under the 

so-called “multi-model ensemble method” [61]. The latest AI employment frontier in the 

OLP diagnostic facilitation calls into play deep CNNs capable of distinguishing between 

OLP and non-OLP lesions with an 82% to 88% accuracy [119]. In the past year alone, the 

literature has been teeming with work related to the application of AI, both in evaluating 

the performance of new DL-based models in OLP lesion identification, as well as making 

initial use of the assisting function of ChatGPT for conceptual assimilation and synthesis 

and for drafting, and then the qualitative improvement of the manuscript related to a ret-

rospective study on lichen sclerosus et atrophicus (LSEA) [120,121]. Figure 1 shows the 

role of AI in chronic inflammatory skin diseases. 

- The current AI applications for OLP exclusively concern its diagnostic (including cy-

tologic) facilitation and differential diagnosis from other chronic nonspecific mucosi-

tis and lichen planus-like keratoses, especially through the identification of new po-

tential biomarkers [61,117–119]. 

 

Figure 1. The main findings about the role of AI in chronic inflammatory skin diseases are described. 

Created with BioRender.com. 
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- Except for immunobullous diseases, clinical applications of AI are being widely in-

vestigated for all other major chronic dermatoses. 

- Application areas involve the improved understanding of etiopathogenesis, predic-
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recognition, identification of new biomarkers for diagnostic and prognostic pur-
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poses, characterization of pheno-endotypes and subtypes of disease, early identifica-

tion of comorbidities, automation of disease severity staging, drug repositioning, 

identification of new drug candidates, and prediction of therapeutic response.  

- The dermatoses of major interest so far are atopic dermatitis, psoriasis, and acne. 

- Future and challenging AI application goals towards a “precision intelligence” con-

cern the ever-increasing mastery of epigenetic datasets for the unequaled clinical-

therapeutic cognitive evolution of discussed dermatoses. 

3. Conclusions 

AI is increasingly dominating, year after year, not only our daily lives but, also, and 

above all, the international scientific scene. Indeed, a multitude of increasingly improved 

clinical application fields are emerging: the prediction of the onset, better definition of the 

etiopathogenesis, diagnosis, prognosis, and management of a wide variety of diseases. In 

our proposed narrative review, the intent has been to examine the most cutting-edge ap-

plication evidence of the various AI subsets in the extensive domain of chronic inflamma-

tory and autoimmune dermatoses, in this meaning ever more objectively and meticu-

lously assessed and understood, especially by reason of their huge impact, as well as the 

socio-economic aspect, on the quality of life of patients and caregivers. As if that were not 

enough, the new frontier AI promises to reach and master ever more thoroughly the mas-

sive body of transcriptome and microbiome data; these latter are parallel but have as in-

tertwined information universes as ever, with the ambitious goal of identifying new bi-

omarkers of disease, as well as predicting its occurrence ever more accurately. Early ex-

ploratory evidence in this matter is limited to the analysis of data from the intestinal mi-

crobiome. But, while remaining on topic with the subject of our discussion, it would be 

interesting, for future research purposes, to be able to assess AI potential applications con-

cerning the investigation of skin microbiome data. Last but not least, to the increase tech-

nological implementation and decisional transparency, a not negligible aspect needs to be 

better defined: the explainability of AI algorithms. These, in fact, while returning outputs 

coherent with inputs, due to their data processing complexity, do not allow the human 

mind to understand why certain decisions are made. Such “cognitive opacity” has, in fact, 

led to AI algorithms that resembled veritable “black boxes.” In this sense, the opening of 

the black box, in other words, the full understanding of how the given input data are pro-

cessed by the algorithm and transformed into a result (output), would be indispensable 

for the preservation of the scientific method as an essential pillar of truthful knowledge 

about reality. The challenge of modern explainable AI, even and especially in the clinical 

setting, is to achieve transparent results while not sacrificing the statistical significance 

that would be achieved by keeping the black box closed. Besides the just-discussed tech-

nological limitation, for the future purposes of AI development in this dermatological set-

ting, also noteworthy are the major limitations of different backgrounds: clinical, cultural, 

and socio-economic. For the first one mentioned, it will certainly be necessary to deter-

mine which dermatoses need a higher degree of accuracy than others, to what extent, such 

that a rigorous statistical analysis is still preferable to an algorithm-based approach. Cul-

tural limitation, on the other hand, calls into question the reluctance of the current class 

of dermatologists to have their clinical knowledge, fine-tuned over years of visual experi-

ence, challenged and sometimes outclassed, or to lose autonomy in specific areas of clini-

cal decision-making. With this in mind, one wonders how profitable the emerging hu-

man–machine partnership can be. Last but not least, the socio-health limitation intuitable 

to date would presume more elucidation of possible disparities in terms of healthcare ac-

cess that AI might create between underdeveloped and industrialized countries, espe-

cially in an epidemiologically well-represented field such as chronic inflammatory skin 

conditions. 
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