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Abstract: Harris Lines (HLs) are transverse, sclerotic lines that can be visualized by X-ray imaging and
that occur in long bones, most commonly in the tibia and femur. HLs are associated with disrupted
bone mineralization during endochondral ossification, affecting the normal growth process. The
etiology of HLs is debated, with some claims linking their presence to detrimental factors such as
inflammation, malnutrition, alcohol abuse, and diseases. The age at which HLs form can be estimated
based on their location, which allows for a retrospective assessment of the individual’s health status
during childhood or youth. The current study is concerned with providing new equations to estimate
the age of Harris Line occurrences using a simple calculating tool. Bone growth curves were derived
based on a dataset provided by Byers in 1991 using non-linear estimation. The best model was chosen
with the Akaike Information Criterion. New and old methods were compared through Bland–Altman
plots. As a result, we managed to produce reliable, well-fitted growth curves, concordant with
previous methods.

Keywords: growth model; skeletal indicators; growth recovery lines; anthropometrics

1. Introduction

Harris Lines (HLs, also Park–Harris Lines) are transverse, sclerotic lines that can be
visualized by X-ray imaging, as shown in Figure 1 [1], although they are visible also in
computed tomography [2] or on histological slides [3]. They may form in any bone growing
through the process of endochondral ossification. However, they occur most often in the
tibia and femur [4]. The first reports of them were in 1874 by Wegner. Later, independent
studies conducted by Henry Harris and Edwards Park in the late 1920s described and
popularized them [5]. During the last century, HLs were studied intensively in biological
anthropology [4], as well as in current radiology [5].

HLs are also referred to as “growth arrest lines” or “growth recovery lines”. According
to the model related to the first term, HLs form as a result of disrupted bone mineraliza-
tion during endochondral ossification. Normally, chondrocytes in the epiphyseal plate
proliferate, become hypertrophied, and undergo apoptosis; their remains serve as scaffolds
for a new bone matrix produced by osteoblasts. When the proliferation and delivery of
chondrocytes to the calcification zone is disrupted, osteoblasts do not receive scaffolding
for further bone growth, cannot penetrate the growth plate, and form a thickened layer of
bioapatite on an already existing bone [6]. Other models suggest that a thickened layer
of bone matrix forms during growth recovery rather than the growth arrest period [7].
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Regardless of which model is correct, HL formation is directly linked to transitional bone
growth inhibition.
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Figure 1. Example of Harris Lines (orange arrows) on juvenile tibia. Source: own archive.

The etiology of HLs remains disputed; their presence has been linked to a broad range
of detrimental factors, such as acute inflammation, malnutrition or undernourishment,
alcohol abuse, diseases, and others [8–11]. A recent review by Georgiadis and Gannon [5]
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provides a list of possible etiologies behind the formation of Harris Lines due to the nature
of adverse factors. According to them, physiological, metabolic, endocrine, systemic, post-
traumatic, pharmaceutical, and anthropological factors may contribute to their formation.

However, some studies question the reliability of HLs as non-specific detrimental
event indicators, which was discussed in a recent review [4]. Furthermore, the assessment
of HLs is susceptible to both intra- and inter-observer bias. Some HLs may be missed
while, conversely, small cracks may be incorrectly identified as HLs. Differences between
observers can be substantial, particularly for faint lines [12]. Intra-observer bias tends to be
less significant and is contingent upon the observer’s level of experience. Therefore, it is
important to establish clear rules for classifying HLs before beginning measurements to
minimize potential discrepancies. Additionally, the use of computed tomography instead
of radiographs for assessing HLs results in a slight decrease in inter-observer error [13].

Despite the aforementioned studies questioning the reliability of HLs, they are still
used in biological anthropology and paleopathology as non-specific indicators of malnu-
trition, disease, and other detrimental events [5,14–16]. Although bones are remodeled
during life, HLs may persist and are detectable for decades, which enables a retrospective
evaluation of the health condition of an individual during childhood and adolescence [17].
Thus, the observation of HLs remains a useful tool for paleopathologists, biological anthro-
pologists, and others, but they tend to be considered supportive information rather than
standalone proof and are used along with other indicators, such as cribra orbitalia, enamel
hypoplasia [16], or traces of physical injury [15].

Among the advantages of evaluating HLs in bioarcheological studies, it should be
emphasized that it is an affordable and widely available method, which may be important
for low-income countries or for low-cost studies conducted by students or novice scientists.

Besides recording the presence and number of HLs, it is possible to estimate age at their
formation [4], which may provide additional information on archeological populations [10,18–20].
For example, Hughes et al. [21] noted different distributions of age at HL formation in
different age groups, and Jerszyńska and Nowak [18] observed different distributions
of HLs in males and females. However, the chronology of the HL formation is rarely
calculated despite many available methods. There were 357 articles including the phrase
“Harris Lines” published between 2020 and 2023 and indexed by the Google Scholar search
engine, yet (to the best of our knowledge) most of them solely recorded the presence of HLs,
without their chronology estimation. We managed to find only three recent articles that
actually estimated age at HL formation [22–24]. Yet there are many articles in which the
calculation of HL chronology turned out to be a valuable tool [18–20]. Why, then, recently,
has the age at HL deposition rarely been taken into consideration?

Besides the controversies mentioned above, the calculation of age at HL formation may
still be considered time-consuming and hard to understand and calculate. Six methods exist
for estimating age at HL formation: Allison and McHenry’s [25,26]; Hunt and Hatch’s [27];
Clarke’s [28], Maat’s [29]; Hummert and van Gerven’s [30]; and Byers’ [31], recently
modified by Kulus and Dąbrowski [4]. Until recently, there were no reviews on how to
calculate it and which method may be considered the best one [4]. Research related to
determining the chronology of the formation of Harris Lines thus involves a lengthy search
for appropriate methods, often described in great detail and requiring a lot of time to learn.

This applies not only to HLs but other indicators; for example, age at linear enamel
hypoplasia (LEH) formation may be also calculated with many methods [32–34], yet there
are a vast number of publications that solely record its presence or lack thereof [35,36]. This
may be caused by controversies regarding the precision of LEH chronology estimation [37]
or difficulties in calculations and seemingly complex methodologies.

Henriquez and Oxenham [38] recently simplified the calculations of LEH chronology,
increasing, concurrently, the precision of age at LEH formation estimation. Their idea
was simple yet effective—using existing growth tables, they derived equations describing
age at LEH formation as a function of LEH positions on the tooth. Their work simplifies
calculations greatly and may help in many further studies on LEH.
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The current study is aimed at providing a new tool for fast and precise age at HL
formation estimation based on growth curves rather than growth tables using a methodol-
ogy similar to the one developed by Henriquez and Oxenham for the estimation of LEH
chronology. This approach will result in the faster, easier, and more precise calculation of
HLs, making them more accessible for scientific use.

2. Materials and Methods
2.1. Study Population

To evaluate the consistency of the new method, it was used to estimate the age of HL
formation in bones from the archeological population of the St. Barbara Church parish
cemetery, Wrocław, Poland (Figure 2). The cemetery was established in the 13th century
and remained an active burial ground until the 19th century [39]. The remains used for this
study were excavated from the area used between the 16th and 18th centuries, which was
also confirmed by radiocarbon dating [40].
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Figure 2. (A) Localization of Wrocław, Poland, and (B) cemetery of St. Barbara Church (red area).

The cemetery located within the parish of St. Barbara initially served as a burial ground
primarily for indigent craftsmen [39]. Later, however, wealthier individuals also found their
final resting places here. The necropolis underwent several expansions, continuing until
the latter part of the 18th century [41]. The skeletal remains used for the current study were
excavated in the latest part of the cemetery and consisted of an early modern population.

The sample consisted of 12 adult tibiae (from 6 males and 6 females) with 137 visible
HLs, 6 non-adult tibiae (with 95 visible HLs), and 8 non-adult (age range: 1.5–8 years)
femora (with 52 visible HLs). Only bones with abundant HLs were selected for this study.

Bones were imaged with the RTG Quantum Medical Imaging system (SWX RAY, Dal-
las, TX, USA), using standard parameters (45–50 kV; 17 mA; exposure time, 0.1 s). The total
length of the bones and distance from HLs to the nearest bone end were measured using
the MicroDicom Viewer (MicroDicom, Sofia, Bulgaria) to the nearest 0.1 cm. Transverse
lines extending more than 1/4 the width of the bone were considered valid HLs.

2.2. Bone Growth Equation Development and Selection

The method presented in this article is based on Byers [31], which may be consid-
ered the best for the estimation of age at HL deposition; among the methods developed
to date, this is the most precise. Previous models were discarded because they were
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based on incorrect assumptions or had significant limitations. The methods of Allison
and McHenry [25,26] assumed constant bone growth throughout life. Hunt and Hatch’s
method [27] included changes in the bone growth ratio during life; their method was based
on precise equations but did not include differences in body (or bone) height between
individuals. Clarke’s method [28] did not include epiphyseal thickness, which introduced
a constant error. The methods by Maat [29] and Hummert and van Gerven [30] are limited
to the distal part of the tibia only.

Byers’ method is free from these disadvantages. It is based on correct and logical
assumptions and is not susceptible to errors associated with different bone lengths. It is also
suitable for both the distal and proximal parts of the femur and tibia. Further details on the
comparison of these methods are presented elsewhere [4]. The principles of Byers’ method
and its modification were presented in our latest review [4]; the required measurements
are shown in Figure 3.
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Figure 3. Measurements required for calculation of age at HL deposition with Byers’ method.
Calculations require two measurements: (a) total bone length and (b) distance from the HL to the
nearest bone end. The method’s principle is described in a recent open-access review [4]. (A) adult
bone; (B) bone of non-adult.

Briefly, this method requires measurement of (a) the total bone length and (b) the
distance from HLs to the closest bone end. Byers [31] developed equations that can
determine the ratio of bone length at HL formation to the adult bone length using those
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two measurements. The calculated ratio may be compared with values in the suitable table
to determine age at HL formation. This method was further modified by [4], so it can be
used for adult bones and non-adult bones.

Byers’ equations and tables are based on datasets provided by Maresh [42], Gind-
hart [43], Anderson and Green [44], and Anderson et al. [45]. The data were collected in the
mid-20th century (1943–1973) from various institutions in the United States, including the
Children’s Hospital in Boston [44,45], the Department of Maternal and Child Health of the
Harvard School of Public Health [45], the Fels Research Institute for the Study of Human
Development [43], the Child Research Council, and the University of Colorado School of
Medicine [42]. It is important to note that the data were collected from white individuals of
European descent [43].

The current study required the development of a simple, mathematical model describ-
ing the age at LEH formation as a function of the “bone length at HL formation/adult
bone length” ratio. Growth curves were developed for tibiae and femora, as these two
bone types are used most commonly in the study of HLs [46]. This approach allows for
the creation of equations that describe the approximate age at which HL formation occurs.
These equations are faster and easier to use than tables that require the calculation of HL
chronology to the nearest 0.5 years, as was required in the previous method.

It should be emphasized that using this method does not require an understanding
of its basic assumptions. It is enough to look at the diagrams showing the necessary
measurements and to follow them.

Growth curves were developed based on the dataset adapted by Byers [31] from
the aforementioned studies [42–45]. Three types of curves were fitted to the mentioned
dataset using the non-linear estimation Levenberg–Marquardt algorithm provided by
Statistica 13.1 (TIBCO Software Inc., Palo Alto, CA, USA): linear (y = a × x + b), quadratic
(y = a × x2 + b × x + c), and exponential (y = a×e(b×x) + c). In this equation, y represents
the age at HL formation (in years), while x represents the ratio of bone length at HL
formation to adult bone length. The parameters a, b, and c are curve-fitting parameters that
have been established experimentally.

The optimal model was chosen with the Akaike Information Criterion (AIC), with
correction for small samples (AICc) [47,48]. AIC/AICc enables the estimation of the best-
fitted and least complicated equations from a set of different models. It helps to find
the optimal tradeoff between model complexity and goodness of fit, preventing curve
overfitting [49]. Models with the fewest parameters and lowest residuals are scored with
the lowest AIC and are considered the best ones.

AIC/AICc were calculated with the AICcmodavg package [50] in the R environ-
ment [51]. For the purpose of further calculations, models with the lowest AICc were chosen.

2.3. Age at HL Calculation Tool Development

All equations derived in this study are sufficient for standalone calculations of age
at HL formation. However, for the convenience of users, they are also provided as ready-
to-use formulas, referred to as the ‘age at HL calculation tool’. The age at HL calculation
tool was designed as a Microsoft Excel spreadsheet (Supplementary File S1) that uses the
equations chosen in Table 1. The spreadsheet automatically calculates the “bone length at
HL formation/adult bone length” ratio and approximate age at HL formation. Instructions
for the tool are available in the first sheet (entitled “About”).
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Table 1. Choosing the optimal equation. The y stands for age (given in years); x stands for the “bone
length at HL formation/adult bone length” ratio (given in percentages); The lowest AIC indicates the
optimal curve; AICc represents the AIC with correction for small groups. Residuals represent the
sum of squared differences between the model and source values. Equations with the lowest AICc
are bold.

Bone Equation Type Equation AIC AICc Residuals

Femur
(males)

Linear y = 0.217859 × x − 6.43422 25.82 27.82 3.234

Quadratic y= 0.00106893 × x2 + 0.077086 × x − 2.28129 −18.35 −14.71 0.1804

Exponential y = 11.5213 × e0.00979342×x − 14.5196 −15.94 −12.30 0.2098

Femur
(females)

Linear y = 0.191588 × x − 5.93988 24.19 26.59 3.007

Quadratic y = 0.00114036 × x2 + 0.0387797 × x − 1.33028 −12.01 −7.56 0.1963

Exponential y= 6.84604 × e0.0121551×x − 9.07047 −14.22 −9.77 0.1676

Tibia
(males)

Linear y = 0.216145 × x − 6.14786 20.56 22.56 2.328

Quadratic y= 0.000860092 × x2 + 0.103426 × x − 2.84765 −13.35 −9.71 0.2467

Exponential y = 16.227 × e0.00787971×x − 19.5643 −11.19 −7.55 0.2823

Tibia
(females)

Linear y = 0.19219 × x − 5.90254 22.61 25.01 2.685

Quadratic y = 0.00105703 × x2+ 0.0508895 × x − 1.64875 −4.59 −0.15 0.3333

Exponential y= 7.78153 × e0.011363×x −10.1631 6.38 −1.94 0.2933

Tibia
(unisex)

Liner y = (0.211442) × x + (−6.50326) 33.78 35.78 5.318

Quadratic y = 0.00128889 × x2 + (0.0374516) × x + (−1.24991) 4.29 7.93 0.7431

Exponential y= (6.79694) × exp0.0128072×x + (−9.00042) 1.11 4.75 0.6093

Femur
(unisex)

Linear y = (0.211759) × x + (−6.65994) 36.57 38.57 6.331

Quadratic y = (0.00142038) × x2 + (0.0191624) × x + (−0.812149) 6.1 9.74 0.8323

Exponential y= (5.61797) × exp0.0140969×x + (−7.60929) 2.58 6.21 0.6677

2.4. Bland–Altman Comparison of Method Outputs

To compare the performance of Byers’ method and the method developed in the
current study, Bland–Altman plots were used [52]. Each Bland–Altman plot compares
the performance of two methods. The X-axis represents the mean value of each pair of
results, and the Y-axis represents the difference between the output of the two methods for
each pair of measurements. Concordant methods tend to have densely distributed dots
and low mean differences. Discrepant methods have more dispersed points and a large
mean difference.

3. Results
3.1. Bone Growth Curve Selection

Table 1 contains bone growth curves based on a dataset provided by Byers [31] for
the tibia and femur. Distinct curves were designed for males and females. Moreover, for
the calculations of the bones of non-adults, equations based on an averaged dataset were
derived since the sex of non-adults (especially infants) cannot be reliably determined [53].
Figure 4 shows curves derived for the tibia.
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Each model was scored with AIC and AICc. The model with the lowest AICc was
chosen for the age at HL formation calculation tool, although all the models can be used as
standalone equations, available for use in any calculation software.

3.2. Age at HL Calculation Tool Development

Optimal curves were used to create an age at HL calculation tool, which is available
for download as Supplementary File S1. Calculations require bone length [cm], the distance
from HL to the closest bone end [cm], the localization of HL (distal or proximal bone part),
and sex. The spreadsheet automatically calculates the “bone length at HL formation/adult
bone length” ratio (with formulas derived by Byers [4,31]) and approximate age at HL
formation (with formulas derived in the current study).

For the bones of children and juveniles, an estimated age of an individual is required.
The spreadsheet additionally calculates the ratio of the current bone and “would-be-adult”
bone length, which is used for the calculation of approximate age at HL formation.

Detailed instructions are present in the first sheet of Supplementary File S1.

3.3. New Method and Byers’ Method Comparison

A comparison of the methods is shown in Figure 5. Bland–Altman plots show great
concordance between Byers’ method and the equations derived from the current study—the
mean of the difference does not exceed 0.1 years, and the maximum difference does not
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exceed 0.7 years. The differences between the methods are the result of the imprecision of
Byers’ method; his growth tables provide results for full years only, so the estimated result
must be rounded to full-year or half-year intervals. Our new method is based on curve
equations and does not have such limitations.

Life 2024, 14, x FOR PEER REVIEW 9 of 14 
 

 

A comparison of the methods is shown in Figure 5. Bland–Altman plots show great 

concordance between Byers’ method and the equations derived from the current 

study—the mean of the difference does not exceed 0.1 years, and the maximum 

difference does not exceed 0.7 years. The differences between the methods are the result 

of the imprecision of Byers’ method; his growth tables provide results for full years only, 

so the estimated result must be rounded to full-year or half-year intervals. Our new 

method is based on curve equations and does not have such limitations. 

 

Figure 5. Bland–Altman plot comparing Byers’ method and the new equations. The X-axis 

represents the mean output of two methods for one HL; the Y-axis represents the difference 

between the method outputs for each HL. The mean difference for tibias (A,B) is low and does not 

exceed 0.5 years; slightly worse results were obtained for femurs (C). 

4. Discussion 
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worse results were obtained for femurs (C).

4. Discussion

In biological anthropology (and related fields), vast amounts of data may be ignored
just because of the difficulties in calculations. Providing new, fast, and accurate tools may
increase the quality of future studies. Although the method developed by Byers is still
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applicable, it has one major disadvantage—the tables provided for age at HL deposition
present values for full years only; therefore, the final results must be given in one-year or
half-year intervals. Rounding the age at which HLs form can lead to decreased accuracy,
particularly for HLs that are so close together that they must be classified as forming at the
same time, which is an obvious error.

Moreover, without the latest modification [4], Byers’ method could only be used for
adult bones. Methods based on equations rather than tables are more accurate and less
subjective [38]. Moreover, they enable faster calculations and may be easily used after basic
training. These derived and selected equations fit the bone growth datasets accurately and
enable calculations for adult and non-adult bones.

The previous, modified Byers’ method [4] was tested for consistency using an artificial
model of bones with abundant HLs. For a change, the method developed in this study was
evaluated using actual bones. Although the population was rather limited, the equations
derived in the current study show great concordance with the previous method, with
differences not exceeding 0.7 years. It may be assumed that both methods are highly
concordant and valid, but the newer method allows for increased estimation accuracy.

The method developed in this study is intended for use in biological anthropology
and related fields, although it is not limited to them. Observing Harris Lines has clini-
cal significance [5] and may be used to estimate age at HL formation in contemporary
populations—the dataset used for the development of the current method was obtained in
the 20th century [31] and shows similar growth patterns to modern populations.

Importantly, the application of this method does not require a prior understanding
of its underlying assumptions. Users can achieve successful implementation by following
the provided diagrams, which clearly illustrate the required measurements, and then
using appropriate equations or Supplementary Material File S1. However, there is room
for the optimization of this method. The modification that yields the best results, albeit
the most challenging, is the source dataset for bone growth. It is important to note that
different populations may exhibit variations in bone growth patterns, particularly during
the adolescent growth spurt [54–56]. Creating our own growth curves based on the study
population would result in the most accurate estimation of age at the formation of HLs.
This is particularly important for populations that differ significantly from the mid-20th
century white North American population.

A future tool for calculating age at HL formation may allow the equations to be
customized based on the growth patterns of the population being studied. Assuming the
same tibia (or femur)/body height ratio, based on decile charts for distinct populations,
it may be quite possible to create customized equations for them. Although this would
require more sophisticated tools than those used for the current study, it may be considered
a future direction in the calculation of age at HL formation.

HLs cannot be correlated with bone length and morphology [1,57] or age at linear
enamel hypoplasia (LEH) formation [58,59]. The lack of correlation with LEH may be
considered a contradiction since both HLs and LEH possibly share similar etiologies [33,58].
However, this may be logically explained: LEH usually forms on anterior teeth, which are
formed during early childhood [60]. HLs may form during the whole bone growth period;
however, early HLs tend to disappear during the bone-remodeling process [58]. The evalu-
ation of LEH and HLs in juvenile or infant individuals, who tend to have more pronounced
and visible HLs [30], could lead to finding some correlation between both indicators. How-
ever, to the best of our knowledge, no such study has been conducted. Moreover, the reason
may also be linked to the calculation methods of age at LEH/HL formation.

Until recently, the most accurate method of LEH formation estimation was the decile
growth chart-based method developed by Reid and Dean [32,61]. The equation-based
method by Goodman and Rose was deemed too simplistic to properly describe enamel
growth [38,62]. Cumulative inaccuracies may impede the correlation of both indicators.
A study on the remains of juvenile individuals, utilizing the Henriquez and Oxenham
method for age at LEH formation estimation and the currently developed method for age
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at HL formation estimation could bring more insights into the correlation (or lack thereof)
between the two indicators.

It is important to note that the growth curves derived in this study are not universal.
Byers’ bone growth tables were developed based on a study of the North American white
population in the mid-20th century [42–45], so they may be unsuitable for populations
with different growth patterns. To achieve the most accurate estimation of HL chronology,
new bone growth tables and models should be developed for the population under study
following the methods presented in this study.

Also, this method shares inevitable disadvantages with the previous methods, as
described in our previous review [4]. This method cannot take into consideration individual
variations in bone growth, such as delayed or premature adolescent spurts, developmental
defects, stunted growth, and others. Moreover, when evaluating age at HL formation
in non-adult individuals, the possible inaccuracy of age estimation further decreases the
precision of age at HL estimation. Therefore, it is important to evaluate age at HL formation
in fairly large populations of study, to blur the influence of individual variability, and to
include the abovementioned sources of inaccuracies in the limitations of studies.

5. Conclusions

This study introduces a novel equation-based method of estimating the age at which
Harris Lines (HLs) form in bones, presenting significant improvements over previous
approaches. An evaluation of its consistency using actual bones demonstrates high con-
cordance with the existing methodologies but also higher accuracy. The new method
paves the way for fast, accurate, and reliable age at HL formation estimation in biological
anthropology and related fields.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/life14040501/s1: File S1: Age at HL formation calculation tool.
A Microsoft Excel spreadsheet facilitating the calculation of HL chronology. All instructions are
included in the first sheet (entitled, “About”).
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