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Abstract: Background: Retinal microvascular anomalies have been identified in patients with cardio-
vascular conditions such as arterial hypertension, diabetes mellitus, and carotid artery disease. We
conducted a systematic review and meta-analysis (PROSPERO registration number CRD42024506589)
to explore the potential of retinal vasculature as a biomarker for diagnosis and monitoring of patients
with coronary artery disease (CAD) through optical coherence tomography (OCT) and optical co-
herence tomography angiography (OCTA). Methods: We systematically examined original articles
in the Pubmed, Embase, and Web of Science databases from their inception up to November 2023,
comparing retinal microvascular features between patients with CAD and control groups. Studies
were included if they reported sample mean with standard deviation or median with range and/or
interquartile range (which were computed into mean and standard deviation). Review Manager
5.4 (The Cochrane Collaboration, 2020) software was used to calculate the pooled effect size with
weighted mean difference and 95% confidence intervals (CI) by random-effects inverse variance
method. Results: Eleven studies meeting the inclusion criteria were incorporated into the meta-
analysis. The findings indicated a significant decrease in the retinal nerve fiber layer (WMD —3.11
[—6.06, —0.16]), subfoveal choroid (WMD —58.79 [—64.65, —52.93]), and overall retinal thickness
(WMD —4.61 [-7.05, —2.17]) among patients with CAD compared to controls (p < 0.05). Furthermore,
vascular macular density was notably lower in CAD patients, particularly in the superficial capillary
plexus (foveal vessel density WMD —2.19 [-3.02, —1.135], p < 0.0001). Additionally, the foveal
avascular zone area was statistically larger in CAD patients compared to the control group (WMD
52.73 [8.79, 96.67], p = 0.02). Heterogeneity was significant (12 > 50%) for most features except for
subfoveal choroid thickness, retina thickness, and superficial foveal vessel density. Conclusion: The
current meta-analysis suggests that retinal vascularization could function as a noninvasive biomarker,
providing additional insights beyond standard routine examinations for assessing dysfunction in

coronary arteries.

Keywords: coronary artery disease; retinal; microvascularization; meta-analysis; optical coherence
tomography angiography

1. Introduction

Today, ischemic heart disease remains a leading cause of death globally, being respon-
sible for approximately 16% of the total mortality rate at any given time, according to the

Life 2024, 14, 448. https:/ /doi.org/10.3390/1ife14040448

https:/ /www.mdpi.com/journal/life


https://doi.org/10.3390/life14040448
https://doi.org/10.3390/life14040448
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://doi.org/10.3390/life14040448
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life14040448?type=check_update&version=3

Life 2024, 14, 448

2 of 14

World Health Organization [1]. Although both modifiable and non-modifiable risk factors
for coronary artery disease (CAD) are well known and understood [2], the significant
disease burden fuels the drive for finding innovative approaches in early diagnosis and
improved risk stratification.

The last two decades have brought novel screening and diagnostic non-invasive
imaging methods into current medical practice, such as coronary computed tomography
angiography (CCTA). Despite their availability, both invasive and non-invasive coronary
angiography—recognized as gold-standard diagnostic methods for coronary artery disease
(CAD)—have limited utility for widespread screening in the general population due to
various factors, such as the need for intravenous iodinated contrast material injection, X-ray
exposure, patient- and/or technique-related lower image quality, imaging artefacts, risk of
local and systemic complications, and patient-related contraindications. Moreover, such
investigative methods fail to diagnose dysfunction of the coronary microcirculation, the
underlying cause of angina in almost 50% of cases, which is associated with unfavorable
prognosis [3].

Coronary microcirculation status can be estimated using indirect methods such as
the Thrombolysis in Myocardial Infarction (TIMI) myocardial perfusion grade during
coronary angiography and the coronary flow reserve measured using positron emission
tomography, magnetic resonance imaging (MRI), and CCTA [4]. Unfortunately, all these
techniques are of limited use, being associated with increased examination costs and
offering only a rough estimate of the microvascular status. Currently, there is an acute need
for novel non-invasive methods that could be widely used for screening, risk assessment,
and stratification in CAD.

The relationship between retinal microvascular anomalies and systemic vascular dis-
ease has been recognized since the nineteenth century, when Gunn RM performed the
first ophthalmoscopic studies and identified retinal microvascular anomalies in patients
with general arterial disease, chronic renal disease, and increased arterial tension [5,6]. In
2001, Wong et al. performed an extensive review of retinal anomalies (directly or indirectly
arteriolar) encountered in cardiovascular diseases such as hemorrhages, microaneurysms,
macular oedema, exudates, retinal ischemia, arteriolar narrowing, and arteriovenous nick-
ing [7]. Thus, retinal vessels could be considered a mirror of the coronary microvasculature,
as they share the size and structure of coronary arterioles and capillaries. Despite early
recognition, for more than a century, retina examination methods (ophthalmoscopy, fundus
photography) did not offer objective, quantitative, automatic, and reproducible tools for
assessing microvascular changes.

Optical coherence tomography (OCT) and optical coherence tomography angiography
(OCTA) are novel non-invasive methods that enable precise visualization and quantifica-
tion of the retinal and choroidal vasculature, structures that were previously accessible
for objective study only through the invasive usage of intravenous injections of contrast
agents. Both OCT and OCTA have already proven their use in evaluating patients with
cardiovascular diseases. The impact of arterial hypertension on choroidal thickness and
retinal microvascularization has been investigated by OCT [8] and OCTA [9], validating
the fact that hypertensive patients show reduced choroidal thickness and lower superficial
and deep vascular density compared to healthy controls. In patients with chronic heart
failure and reduced left ventricular ejection fraction (LVEF), Alnawaiseh et al. [10] identi-
fied reduced retinal and optic nerve head perfusion through OCTA. The authors further
postulated that assessing retinal perfusion via OCTA could offer valuable insights into the
overall microcirculation and hemodynamic condition of individuals with heart failure.

In the case of CAD, several studies involving OCT and OCTA have reported decreased
vascular density in the eyes of patients with coronary artery stenosis together with thin-
ning of the retinal nerve fiber layer (RNFL), increased foveal avascular zone (FAZ) area,
and other changes associated with increased CAD severity and risk of adverse events.
Impaired endothelial cells with altered function have been noted as main determinants of
both retinal microvascular anomalies (arteriolar narrowing, arteriovenous nicking, vessel
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tortuosity) and the progress of coronary atherosclerosis. This common ethiopathogenic
factor could explain the link between decreased retinal vascular density and coronary
stenotic lesions [11].

Considering this, we performed a comprehensive meta-analysis of studies analyzing
retinal vascular changes using OCT and OCTA to provide more reliable evidence for the
utilization of these methods in the diagnosis and monitoring of patients with CAD.

2. Materials and Methods
2.1. Literature Search Strategy

The international prospective register of systematic reviews (PROSPERO) registration
number for this study is CRD42024506589.

This investigation adhered to the guidelines outlined in the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) [12]. Two authors (A.C.R., R.O.C.)
independently searched the Pubmed, Embase, and World of Science (WOS) databases for
cohort or cross-sectional studies examining the relationship between retinal microvascular
changes and CAD using the following queries: [“coronary artery disease” OR “coronary
heart disease”] AND [“optical coherence tomography angiography retina” OR “optical
coherence tomography retina” OR “OCTA retina” OR “OCT angiography retina” OR “OCT
retina”]. No language limitation was applied. Identified records were supplemented by
manual searching of relevant references found in retrieved articles.

2.2. Inclusion and Exclusion Criteria

Chosen studies met the following criteria: (1) the study included CAD patients with
their disease confirmed by coronary angiography or CCTA and no history of preexist-
ing quantifiable retinopathy (diabetic, hypertensive), ocular surgery, high myopia, dense
cataracts or other macula-obscuring media opacities, glaucoma, retinal laser photocoagula-
tion therapy, or systemic vasculopathy; (2) the study included individuals with no coronary
lesions or significant ocular diseases as controls; (3) the study included cross-sectional
observational research; (4) the main outcomes of the study included superficial capillary
plexus (SCP) density, deep capillary plexus (DCP) density, retinal nerve fiber layer (RNFL)
thickness, choroid thickness (CTh), radial peripapillary capillary (RPC) density, foveal
avascular zone (FAZ) area, ganglion cells-inner plexiform layer (GC-IPL) thickness, and
retina thickness.

A study was excluded from the meta-analysis if it (1) provided different outcomes;
(2) did not include a control group; (3) presented only the results of the statistical analysis
with no baseline data; or (4) was a low-quality investigation.

2.3. Data Extraction

Three investigators (K.U.H., R.O.C., A.I.B.I.) extracted the following data from each
selected study: first author’s surname, publication year, study design, the country in which
the study was conducted, sample size, OCT/OCTA device, baseline data, outcome data. A
4th investigator, K.B., analyzed the final data and referred to the original article in the case
of a difference between extracted data.

The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of the included
studies. All studies scored 7 or 8 stars (high-quality studies) (Table 1). Two investigators
independently evaluated selected articles (A.C.R., E.T.T.).
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Table 1. Quality assessment using Newcastle-Ottawa scale.
Ahmad M Neoh YL Wang J Kocamaz M Zhong P Agca FV Ay iEetal. Matuleviciite RenY Sideri AM ZhouT
Criteria etal. (2017) etal. (2018) etal. (2019) etal. (2021) etal. (2022) etal. (2023) (2023) etal. (2023) etal. (2023) etal. (2023) et al. (2023)
[13] [14] [15] [16] [11] [17] [18] [19] [20] [21] [22]
Selection
Is the case definition * * * * * * * * * * *
adequate?
Represtintatweness of * * * * * * * * * * *
e cases
Selection of controls * * * * * * * * * * *
Definition of controls * * * * * * * * * * *
Comparability
Comparability of cases
d trol. th
and contro’s on the * %k * *k * *k *k *k ** ** ** *
basis of the design or
analysis
Exposure
i f
Ascertainment o * * * * * * * * * * *
exposure
Same method of
ascertainment for cases * * * * * * * * * * *
and controls
Non-response rate A¢ PAS A A¢ PAS A A¢ * * Y *
Total score 8 7 8 7 8 8 8 8 8 8 7

Each criterion can receive a maximum of one star, while comparability can be awarded up to two stars. The maximum score for a study is nine stars.
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2.4. Statistical Analysis

Studies included in the analysis were functionally identical (cross-sectional), the effect
size differing mainly because of sampling. For statistical analysis, we have applied the
same methodology as in a previously published study [23]. We used Review Manager
(RevMan) 5.4 (The Cochrane Collaboration, 2020) software to calculate the pooled effect
size with weighted mean difference (WMD) and 95% confidence intervals (CI) by inverse
variance method according to the recommendations of the Cochrane Handbook of Systematic
Reviews [24]. When median, range, and/or interquartile range were reported in the studies
together with the sample size, mean and standard deviation were estimated by following
the methods described by Luo et al. [25] and Wan et al. [26] in order to be used for the
pooled analysis. When mean was reported together with 95% CI, RevMan Calculator
(Cochrane Training) allowed us to compute standard deviation.

The heterogeneity among studies was estimated by chi-squared-based Q test and 12
statistics; a p value > 0.05 for the Q test and an 1> > 50% were considered measures of
important heterogeneity. In the case of low heterogeneity, a fixed model effect was used
for the meta-analysis compared to the random effect method with increased heterogeneity.
When needed, online supplements were consulted, and the authors were contacted to
provide additional data. Publication bias was assessed by analyzing the asymmetry of the
funnel plot.

3. Results

The literature search yielded the following number of records: Pubmed, 220; Embase,
171; WOS, 32. Identified references were checked for duplicates, and a total of 140 records
resulted. After manually screening the abstracts, a further 121 reviews, conference ab-
stracts, short communications, or original articles containing limited or no actual data were
removed. A total of 19 abstracts qualified for further evaluation of the full-text article,
to decide whether inclusion and exclusion criteria were met. Another nine articles were
excluded during this step due to missing data, absence of a control group, or if full-text
retrieval proved impossible. In the end, 11 studies were finally included in the quantitative
synthesis (10 from the initial search, 1 identified through citation searching after full-text
analysis). The results of the selection process are detailed in Figure 1, and the summary of
included studies is in Table 2.

The 11 selected studies included a total of 1536 CAD patients and 925 control patients.
The baseline characteristics of patients from the studied groups are reported in Table 3.

Mean age difference between the CAD and no-CAD groups was less than one year (age-
matched CAD and no-CAD groups across analyzed studies) in favor of older individuals
with CAD, registering thusly a higher incidence of CAD risk factors compared to the
control group.

Five studies analyzed retinal nerve fiber layer thickness (um) in patients with CAD.
The pooled WMD was —3.11 (95% CI: —6.06 to —0.16, p = 0.04), with moderate heterogene-
ity, revealing that RNFL thickness is lower in CAD patients compared to controls. Subfoveal
choroid thickness (um) was quantified in three studies and was also significantly lower
in CAD patients, with a pooled WMD of —58.79 (95% CI: —64.45 to —52.93, p = 0.0003)
and no heterogeneity across studies. Ganglion cell-inner plexiform layer and total retina
thickness were only quantified by two studies, each with low heterogeneity. In the case
of the GC-IPL thickness, the difference between CAD and controls was not statistically
significant (p = 0.3), but the total retinal thickness was significantly lower in CAD (pooled
WMD —4.61 um, 95% CI: —7.05 to —2.17, p = 0.0002) (Figure 2).
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Identification of studies via databases and registers w Identification of studies via other methods
) L J
= Records removed before
2 Records identified from: screening: . 5 .
& PubMed (n = 58) Duplicate records removed Rec‘?“’? identified from. _
::E Embase (n = 94) (n=22) Citation searching (n = 5)
5 WOS (n = 32)
-]
Records excluded after title and
Rne=cc71rg§ screened —| abstract analysis
( ) (n=121)
Reports sought for retrieval o | Reports not retrieved Reports sought for retrieval >
= (n=19) "l n=2) (n=5) Records excluded after title and
‘'z abstract analysis
g ! ] (n=4)
Q
»
Reports assessed for eligibilit Reports assessed for eligibilit
(n 5 17) o ! (n 2 1) $ Y
Reports excluded after full-text
analysis
(n=7)
v
3 o -
3z Studies included in review »
I (n=11)
£
Figure 1. PRISMA flow chart of the selection process.
Table 2. Summary of included studies.
CAD Patients Il\io .CAD
(Mean Age + atients
Reference Country 0C¥/OCTA Study Type Methods Parameters Patients SD, % of (Memo
ype Female Age + SD, % of
Patients) Female
Patients)
Subfoveal CTh and CTh 34 28
Ahmad M et al. USA - Cross- EDI SD-OCT 2000 jum superiorly, 62 (611+6.38, (60.1£53,
(2017) [13] sectional inferiorly, nasally, and (single eye) o o
44.1%) 60.8%)
temporally to the fovea.
. Humphrey Axial length, ONH disc . 59
Ngg}g)l‘[g]al' Malaysia Cirrus se(cj:ioosrsml visual field area, ONH rim area, 119e(s$gle (59.1 £9, 60 (5646.175'/’: )10'9’
analysis, OCT RNFL thickness, vCDR. Yy 18.6%) 10
Mean retinal thickness, 158 158
Vg‘(ﬁ%)] ["]tfll' China Optovue se(ég)os;al OCTA SCP and DCP vessel 313 (gs‘;th (663 = 8.4, (644 +92,
) density, flow area. Y 54.43%) 55.69%)
RNFL thickness,
Kocamaz M . . 53 32
etal. (2021) Turkey Péelieé':firsg Sgﬁf;al EDI SD-OCT ﬁ;ﬁ;’e?ﬂgz‘;“giﬁ h 8‘2 ('Z‘s’)th (61.36 + 10.57, (57.84 £ 752,
[16] P Y porally 4 18.9%) 18.8%)
to the fovea.
RNFL thickness, RPC 270 140
Zhong P et al. China Optovue Cross- OCTA density, SCP.and DCP 410 (single (591 +91, (593 + 69,
(2022) [11] sectional vascular density, GC-IPL eye) o o
. 21.9%) 24.3%)
thickness.
SCP vessel density
whole, DCP vessel 123 62
Aé%zg)v[f;]al' Turkey Optovue (ross OCTA density whole, RPIC .. S o GBSSETI, (439645
density whole, FAZ gle eyl 26.83%) 26%)
area.
SCP vascular density 69
Ay iE etal. Cross- whole, DCP vascular 104 (single 37
(2023) [18] Turkey Optovue sectional OCTA density whole, FAZ area, eye) (gig 4j; )9' (60 + 7, 32.43%)
RNFL thickness. R
RNFL thickness, CTh,
Matulevicitte I Cross- SCP and DCP vascular 165 (single 92 73
etal. (2023) Lithuania - sectional OCT, OCTA density, FAZ area, A e)g (59.96 + 8.44, (59.22 £ 6.95,
[19] GC-IPL thickness, retina Y 36.96%) 45.2%)

thickness.
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Table 2. Cont.
CAD Patients No .CAD
(Mean Age + P;/Ihents
Reference Country OCT/OCTA Study Type Methods Parameters Patients SD, % of ( can
Type Female Age + SD, % of
Patients) Female
Patients)
Ren Y etal Cross RNFL, RPC density, SCP 185 (single 127 58
: China Optovue ool OCTA ¢ e (61.57 + 8.32, (61.91 + 8.53,
(2023) [20] sectional and DCP vessel density. eye) 41.73%) 53.4%)
FAZ area, SCP and DCP 88
Sideri AM et al. Cross- vascular density, 330 (both 77 (56.6 & 13.05,
(2023) [21] Greece Topcon sectional OCTA choriocapillaris layer eyes) (559 ;t 137, 17%)
- 6%)
thickness.
. 200 437
Zhou T et al. China Cross- OCTA Choroid thickness. 637 (single 53 434 5.6, (5141 + 5.45,
(2023) [22] sectional eye) 31.12%) 38.5%)

ACS—acute coronary syndrome; CAD—coronary artery disease; CCTA—coronary computed tomography an-
giography; CTh—choroid thickness; DCP—deep capillary plexus; EDI SD-OCT—enhanced-depth imaging in
spectral-domain optical coherence tomography; FAZ—foveal avascular zone; GC-IPL—ganglion cells-inner
plexiform layer; IOP—intraocular pressure; MI—myocardial infarction; OCT—optical coherence tomography;
OCTA—optical coherence tomography angiography; ONH—optic nerve head; RNFL—retinal nerve fiber layer;
RPC—radial peripapillary capillary; SCP—superficial capillary plexus; SD—standard deviation; vCDR—vertical
cup-to-disc ratio; VEGF—vascular endothelial growth factor.

Table 3. Patient baseline characteristics.

Criteria (Studies Reporting Criteria) CAD No-CAD p
Age (weighted mean + SD) (10 studies) 58.69 +9.72 57.73 £9.27 0.016
Female patients (no., %) (10 studies) 480 (31.83%) 363 (39.24%) 0.0001
Arterial hypertension (no., %) (11 studies) 874 (56.90%) 220 (48.78%) 0.0023
Hyperlipidemia (no., %) (4 studies) 208 (57.62%) 69 (27.06%) <0.001
Diabetes mellitus (no., %) (8 studies) 428 (34.91%) 76 (20.11%) <0.001
Smoking (no., %) (4 studies) 243 (49.89%) 43 (35.83%) 0.0057

SD—standard deviation.

Retinal capillary plexus density (superficial and deep) in the macula was analyzed for
the whole image and for specific regions from the center to the periphery (fovea, parafovea,
and perifovea rings). All retinal microvascular structures were severely damaged in CAD
patients compared to controls. Vascular densities in the macula were significantly lower
in patients with CAD (Figure 3) for all regions of the macula, especially in the superficial
capillary plexus. Heterogeneity across the studies was moderate or considerable because
of differences between studied populations (all races), CAD severity, associated diseases,
and devices used for quantification, but all studies converged in measuring lower vascular
densities in CAD patients. The en face superficial vessel density (%) was between —6.38
and —1.28 lower than controls, the fovea superficial vessel density between -3.75 and —1.01
lower, the parafovea superficial vessel density between —7.12 and —1.52 lower, and the
perifovea superficial vessel density between —4.26 and —0.45 lower than controls.

The deep capillary plexus density was also affected, with values ranging between
—8.11 and —2.27 for the whole image, —7.87 and —0.04 for the fovea, —8.20 and —2.2
for the parafovea, and —8.85 and 0.31 for the perifovea, with considerable heterogeneity
(Figure 4).

The radial peripapillary capillary vessel density (%) was quantified by three studies
that also converged in measuring lower values for CAD patients (—6.93 to —1.49 lower,
pooled WMD —3.42, p = 0.05), with increased heterogeneity (Figure 5).

In the case of the foveal avascular zone (FAZ) area (um?), pooled WMD indicated a
52.73 um? higher area in CAD patients compared to controls (p = 0.0003), with considerable
heterogeneity across the four studies quantifying this feature. A single study reported a
non-significant difference in FAZ area between CAD and no-CAD patients, but it included a
limited number of cases (67 CAD patients, 37 healthy controls) compared to other research
(Figure 6).
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CAD Control Mean Difference Mean Difference
Study or Subgroup Mean [pm] 5D [pum] Total Mean [pm] SD[pm] Total Weight IV, Random, 95% Cl IV, Random, 85% ClI
Ay IE etal 2023 111.9 12.96 lirs 11416 13.81 a7 181% -2 26 769, 317] I
kKocamaz b etal 2021 9y 3z 987 103 936 a.0ar 62 24.2% -1.38 [4.15,1.39] -
Meoh YL etal 2018 91.29 12.43 a9 100.2 11.47 B0 18.6% -8.91[-12.21,-4.61] —
RenY etal 2023 111.71 1309 127 115.81 1513 a8 17.9% -4 10861, 0.41] ———
ZFhong P etal 2022 119.6 16.05 270 114.76 1294 140 241% -0.16 [-2.96, 2.64] ——
Total (95% CI) 626 357 100.0% -3.11 [-6.06, -0.16] S
Heterogeneity: Tau? TAT, Chif=12.34, df= 4 (F = 0.01); F=68% BN a0 b n 20
Testfor overall effect 2= 2.06 (P =0.04) Favours [CAD] Favours [Control]
(a)
CAD Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI IV, Fixed, 95% CI
Ahmad M oetal 2017 252 488 34 303 [32 28 37% -51.00[-81.64,-2036]
Kacamaz b etal 2021 24469 F214 103 28992 F4.91 G2 6.3% -459.23[68.591,-21.99]
Zhou T etal 2023 22903 3344 437 28909 3841 200 90.0% -60.06[-66.24,-53.88] .
Total (95% Cl) 574 290 100.0% -58.79 [-64.65, -52.93] &
Hetarogeneity: Chis=1.71,df=2 (F=042) F=0% l t t {
o -100 -50 a a0 100
Testfor overall effect Z=19.66 (P = 0.00001}) Favours [CAD] Favours [Control]
(b)
CAD Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Fixed, 95% Cl IV, Fixed, 95% CI
Matulewifiote | etal 2023 10487 114 92 106.27 97 T3 286% -140[4.561.76] I
Zhang P etal 2022 9873 811 Z¥0 9941 1056 140 F14% -068[-2681.37 ——
Total (95% CI) 362 213 100.0% -0.89 [-2.57,0.80] *
Heterageneity Chi= 014 df=1 (FP=071); F=0% f } t |
Testfi Il effect 7=1.03 (P = 0.30 1o = 0 3 10
estfor overall effect: 2=1.03 (P = 0.30) Favours [CAD] Favours [Control]
(c)
CAD Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI IV, Fixed, 95% Cl
Matulevididte | et al. 2023 2786 22.M 92 78633 1363 T3 196% -F73I[F13.24,-227 -
Wiang J etal 20149 IF38 181 316 ¥ 194 316 80.4%  -38A[EAT -1.17] —.—
Total (95% CI} 408 389 100.0% -4.61[-7.05, -217] e
Heterogeneity: Chi*=1.63, df=1 (P =0.22%; F= 35% —1ID IS 7 % 150
Testfor overall effect Z=3.70(F=0.0002 Favours [CAD] Favours [Control]
(d)

Figure 2. Forest plot of retinal layers thickness between CAD and control groups [11,13-16,18-20,22].
(a) RNFL thickness, (b) subfoveal choroid thickness, (c) ganglion cell-inner plexiform layer thickness,
(d) retina thickness.
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CAD Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl IV, Random, 95% Cl
Agea BV etal. 2023 48.88 412 123 5204 262 B2 200% -316[F4.14, -218] —
~yIE etal 2023 4885 518 67 5145 276 37 18.6%  -256[4.09 -1.03] —
RenY etal 2023 4706 268 127 5147 215 58 204%  -441 513 -3.69] -
WangJ etal 2019 48,05 5452 316 5443 35 M6 Z204%  -638[7.10,-5E66 -
Fhong P etal 2022 4864 349  2F0 4982 339 140 205% -1.28[-1.98 -058] =
Total (95% CI) 903 613 100.0% -3.58 [-5.53, -1.62] -
Heterogeneity: Tau®=4.73; Chi®=106.04, df= 4 (P = 0.00001); IF= 96% 5_1 0 55 5 é 1IZII
Testfor averall effect £=3.98 (P =0.0003 Favours [CAD] Favours [Control]
(a)
CAD Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl IV, Random, 95% Cl
Agea FV etal 2023 2209 B34 123 2563 544 G2 141% -354[530,-1.79] I
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Figure 3. Forest plots of SCP vessel density between CAD and control groups [11,15,17-21]. (a) Whole
vessel density, (b) fovea vessel density, (c) parafovea vessel density, (d) perifovea vessel density.
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Figure 4. Forest plots of DCP vessel density between CAD and control groups [11,15,17-21]. (a) Whole
vessel density, (b) fovea vessel density, (c) parafovea vessel density, (d) perifovea vessel density.
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Figure 5. Forest plot of RPC whole vessel density between CAD and control groups [11,17,20].
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Figure 6. Forest plot of FAZ area between CAD and control groups [17-19,21].

4. Discussion

To the best of our knowledge, this meta-analysis represents the first attempt to assess
and compare retinal structural and vascular changes using OCT and OCTA between
individuals with coronary artery disease (CAD) and a control group. We identified eleven
relevant studies and aggregated various potentially valuable parameters for screening and
grading CAD severity, including macular superficial and deep vascular density (whole,
foveal, parafoveal, perifoveal), FAZ area, and retinal layers’ thickness.

Despite moderate to substantial heterogeneity across the eligible studies, the combined
data revealed a significant decrease in macular superficial and vascular density, a notable
thinning of retinal layers, and a significant increase in FAZ area in CAD patients compared
to controls. Retinal structural alterations and vascular changes are intricately connected.
The blood supply for SCP comes from the central retinal artery, whereas the DCP receives
its nutritional support also from the choriocapillaris. The FAZ lacks vascular structures,
being oxygenated by neighboring choroidal tissue supplied by the posterior ciliary artery.
Additionally, the optic nerve head is nourished by the radial peripapillary capillaries [27].
Consequently, the thickness of retinal layers is influenced by retinal vascularization and
the obstruction and constriction of various vascular sources, leading to loss of perfusion in
DCP and SCP, with subsequent thinning of retinal layers.

In 2012, Machaliniska et al. demonstrated endothelial dysfunction as a key feature in
the development of both systemic atherosclerosis and age-related macular degeneration.
This finding suggests a direct connection between retinal vessels and overall atherosclerosis,
including CAD [28]. Both the retina and coronary arteries are affected by endothelial
dysfunction and disruptions in the autoregulatory system of the vessels. Impaired coronary
autoregulation is linked to long-term fatal events in stable CAD [29]. The retinal and
coronary microvasculature exhibit parallel responses to prevalent cardiovascular risk
factors such as arterial hypertension, diabetes mellitus, hypercholesterolemia, and obesity.
This response involves endothelial disruption and reduced production of nitric oxide (NO),
accelerating the inflammatory process and resulting in compromised angiogenesis [30].

Compared to coronary arteries, the retina can be easily assessed using non-invasive
methods due to its location and structure. In recent years, OCT and OCTA, state-of-the-art
non-invasive imaging methods, have become widely accessible for an accurate, objective,
and reproducible evaluation of the retinal structure and vascularization. Prior methods
were subjective (ophthalmoscopy) or more patient-/investigator-dependent (fluorescein
angiography, indocyanine green angiography) and involved a qualitative analysis that is
not highly reproducible. McClintic et al. [31] was the first to suggest using retinal evaluation
for screening CAD in low-risk patients and its adoption as a guideline indication.

The thickness of coronary microvascular structures has been reported to be comparable
to that of the retinal arteries, with an independent association between retinal vessel
diameters with CAD (wider venules, narrower arterioles, arteriovenous nicking, altered
arteriovenous ratio) and of retinal vessel sclerosis with cardiac mortality due to acute
coronary syndromes [32,33]. OCT and OCTA go even further and offer the full picture
of the retinal microvasculature, not only isolated elements. Individuals exhibiting lower
retinal vascular density show inconsistent signs of systemic vascular disease and are more
frequently associated with a medical history of peripheral artery disease, CAD, high blood
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pressure, and type 2 diabetes mellitus. The microvascularization of the retina is closely
linked to the cardiovascular risk profile and the severity of coronary lesions [34].

In the EYE-MI Pilot Study, Arnould et al. demonstrated a robust association between
SCP density and the cardiovascular risk profile, as well as left ventricular ejection fraction
impairment in individuals experiencing acute coronary syndromes [35]. On the other hand,
Altinkaynak et al. demonstrated reduced subfoveal choroid thickness in patients with heart
failure [36]. Ay et al. correlated retinal and optic disk microcirculation alterations with the
SYNTAX score: the higher the SYNTAX score values, the lower the ocular microcircula-
tion [11]. On the contrary, Fu et al. examined 57,947 participants with no prior history of
coronary artery disease (CAD) from the UK Biobank. Their findings established a notewor-
thy correlation between retinal microvascular parameters (fractal dimension, number of
vascular segments, vascular skeleton density) and the occurrence of CAD. This suggests
that a reduced complexity and density of the retinal vascular network may indicate an
elevated risk of developing CAD [37]. In addition to diagnostic value, retinal microvascular
parameters could hold a high predictive value.

In 2022, Zhong et al. introduced and validated a nomogram for retinal vasculature,
demonstrating its ability to accurately identify the presence of coronary artery disease
(CAD). This development aims to enhance patient selection for stress and invasive diag-
nostic tests, ultimately facilitating a personalized approach based on estimated risk. The
model incorporates clinical variables, electrocardiographic signs, and the results of OCTA
evaluations. The authors identified three independent OCTA predictors in the retinal vas-
culature, which include SCP vessel density in the temporal perifovea and nasal perifovea,
as well Deep Capillary Plexus (DCP) density in the inferior parafoveal area [11].

Our meta-analysis highlights the potential use of computerized methods such as
OCT and OCTA for screening and grading CAD severity. These methods could be easily
automated and used for machine-learning assessment of retinal vasculature and integra-
tion with electronic health records (risk factors) and coronary evaluation (Gensini and
SYNTAX scores) [38] to establish threshold values and stratify risk. This could be of par-
ticular interest in evaluating Ischemia with No Obstructive Arteries (INOCA), a highly
prevalent entity characterized by microvascular disfunction, ischemia, and no evidence of
coronary obstruction at coronary angiography. Finally, retinal investigation could prove a
more reliable indicator of the microvascular status than classic cardiac imaging techniques
(MRI, CCTA, nuclear tests, contrast echocardiography), especially if the screening protocol
takes into account variables such as the time of day in which the evaluation takes place.
Chakraborty et al. [39] suggested that potential diurnal variations in ocular biometrics,
choroidal thickness, axial length, and intraocular pressure could also impact retinal mi-
crovascularization. The main advantages of OCTA are represented by its non-invasive
character, fast acquisition times, and easier access by the general population as opposed to
standard investigative methods. The question of whether retinal microvascular anomalies
are synchronous or preclude coronary lesions remains to be determined.

There are a series of limitations present in the study that must be acknowledged:
(1) heterogeneity was significant (I> > 50%) for most features except for subfoveal choroid
thickness, retina thickness, and superficial foveal vessel density. The analysis was per-
formed using the random effect method to consider between-study variance; (2) study
quality and publication bias—CAD severity varied across studies, as did the device used
for OCT/OCTA and the precise localization of measurements; (3) data were unadjusted
for cardiovascular risk factors whose incidence varied across studies (both for CAD and
no-CAD patients); (4) we did not analyze all retinal microvascular abnormalities due to a
limited number of studies reporting them.

5. Conclusions

The correlation between coronary artery disease and the density and structure of
retinal vessels is evident, yet the findings are varied, necessitating further research to
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create an effective population-based screening and risk assessment tool centered on retinal
vascularization.

Retinal vascularization has the potential to serve as a noninvasive biomarker, offer-
ing insights beyond conventional routine examinations for evaluating systemic vascular
dysfunction.

Diminished vascular density in both the superficial and deep retinal plexuses, along
with the thinning of retinal layers, may serve as a valuable subclinical indicator of coronary
vasculature impairment, prompting earlier therapeutic and preventive interventions.
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