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Abstract: This study aimed to implement a deep learning-based super-resolution (SR) technique
that can assist in the diagnosis and surgery of trigeminal neuralgia (TN) using magnetic resonance
imaging (MRI). Experimental methods applied SR to MRI data examined using five techniques,
including T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), contrast-enhancement T1WI
(CE-T1WI), T2WI turbo spin–echo series volume isotropic turbo spin–echo acquisition (VISTA), and
proton density (PD), in patients diagnosed with TN. The image quality was evaluated using the peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM). High-quality reconstructed MRI
images were assessed using the Leksell coordinate system in gamma knife radiosurgery (GKRS). The
results showed that the PSNR and SSIM values achieved by SR were higher than those obtained by
image postprocessing techniques, and the coordinates of the images reconstructed in the gamma plan
showed no differences from those of the original images. Consequently, SR demonstrated remarkable
effects in improving the image quality without discrepancies in the coordinate system, confirming its
potential as a useful tool for the diagnosis and surgery of TN.

Keywords: artificial intelligence (AI); deep learning; super resolution (SR); magnetic resonance
imaging (MRI); trigeminal neuralgia (TN)

1. Introduction

Trigeminal neuralgia (TN) is a pain disorder resulting from pathological changes in
the trigeminal nerve [1]. Pain caused by TN can severely restrict physical activity and
lead to significant emotional problems, such as intense stress and depression, adversely
affecting an individual’s basic daily life. Therefore, proactive treatment is essential. The
initial treatment for TN usually begins with pharmacological therapy. If the response to
medication is poor or adverse drug reactions occur, surgical options such as microvascular
decompression (MVD) or gamma knife radiosurgery (GKRS) may be considered [2–6].
The choice of treatment methodology for TN involves a comprehensive consideration of
the severity of pain, vascular anatomy, and patient age, with the primary goal of both
approaches being to accurately distinguish the cause of TN and minimize damage to
normal tissues [4–6]. MVD is primarily considered; however, if pain persists or significant
postoperative complications occur, GKRS may be an option [4,5].

GKRS for TN involves a series of steps, including frame fixation, image acquisition
and registration, treatment planning, and gamma radiation exposure. Computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) are used during the image acquisition
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and registration phases [7,8]. For GKRS of the TN, it is crucial to ascertain the precise
location of the trigeminal nerve, where MRI, in particular, provides the necessary posi-
tional information for accurate targeting, thereby enabling safer surgical procedures [6]. In
summary, the success of GKRS for TN depends on precise imaging studies, followed by
accurate treatment planning and targeting, based on which an appropriate radiation dose
is prescribed [8–10].

The use of MRI for diagnosis and surgery reflects ongoing improvements in image
quality and advancements in examination techniques to enable the accurate diagnosis
and treatment of diseases. In terms of image quality, various studies have reported the
effectiveness of applying image postprocessing techniques, such as image filtration and
algorithms, to efficiently remove noise generated during imaging examinations [11–13].
Reducing noise in image quality significantly aids in a clearer distinction between normal
and pathological tissues and offers considerable benefits for diagnosis and treatment. MRI
encompasses various methods from the perspective of examination techniques. Techniques
such as T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), and proton density
(PD) imaging provide characteristic imaging information specific to diseases and greatly
assist in diagnosis and treatment [14–17].

Although the aforementioned technologies provide useful indicators for the diagnosis
and treatment of diseases, there are several considerations when applying them to the
diagnosis and surgery of TN. One primary concern is the issue arising from the MRI
examination time and sequences. Clinically, techniques are employed to reduce MRI
examination times to minimize the quality degradation caused by patient movement.
However, this can lead to another cause of image quality degradation, as it does not ensure
sufficient time for the examined tissues to recover signals, which adversely affects the
accurate targeting of GKRS. Furthermore, traditional postprocessing techniques aimed at
improving image quality often intentionally distort the original image (ground truth, GT),
and the degree of such distortion is not sufficiently compensated for by improving the
image quality [18].

Artificial intelligence (AI), particularly super-resolution (SR) techniques, is a viable
method for the diagnosis and surgery of TN. On MRI, the presence of surrounding ves-
sels compressing the trigeminal nerve and the degeneration of the nerve itself are key
radiological indicators of TN’s pathological state of TN, each possessing distinct texture
components [1–4,19,20]. For the accurate diagnosis and treatment of TN, it is essential
to represent the texture components of the trigeminal nerve and surrounding structures
without distortion. Deep learning-based SR demonstrates remarkable performance in
learning the characteristics of images and generating high-resolution images by estimating
the detailed information of small parts of the image and implementing the overall pattern
of the image at a higher resolution [19–22]. Thus, deep learning-based SR has a significant
advantage in learning complex patterns from input data and reconstructing fine texture
information, implying higher improvement in image quality and minimal distortion of the
texture information of the trigeminal nerve compared to traditional methods.

The characteristics of SR can be particularly useful for GKRS in the treatment of
TN. Distortion of the texture information of the trigeminal nerve is the primary cause
of misalignment of coordinates in GKRS for TN. The ability of SR to minimize texture
information distortion while ensuring high image quality can enhance the success rate of
TN’s GKRS by accurately targeting the coordinates. Therefore, this study aimed to evaluate
the improvement in the quality of trigeminal nerve MRI data when SR is applied and to
determine whether the reconstructed MRI can be accurately utilized for the coordinates in
TN’s GKRS, thus offering a practical approach for use in actual GKRS procedures.

2. Subject and Experimental Methods
2.1. Image Data

The data for this study were obtained from 31 individuals (eight males and 23 females)
diagnosed with TN at our institution between October 2020 and July 2023, who underwent
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GKRS after experiencing recurrent and typical symptoms of TN despite pharmacological
treatment and MVD surgery. For all GKRS procedures, a frame was fixed, and frame-based
CT was performed to obtain coordinates for GKRS by co-registering the MRI and CT
images. The target was the trigeminal nerve, with gamma radiation delivered using a 4 mm
shot size. The MRI utilized internal imaging from our institution and was approved by
the Institutional Review Board (IRB) for this retrospective study (IRB No. 2022-06-035).
Figure 1 illustrates the imaging performed using a Philips Intra Achieva 3.0 tesla MRI
scanner comprising five examination techniques: T2WI, T1WI, contrast-enhancement T1WI
(CE-T1WI), T2WI turbo spin-echo sequence of volume isotropic turbo spin-echo acquisition
(VISTA), and PD.
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Figure 1. (a–e) Trigeminal nerve images (a): T2WI, (b): T1WI, (c): CE-T1WI, (d): VISTA, and (e): PD.

Table 1 presents the composition of the dataset and its parameters. The total dataset
comprised 655 MRI data with a resolution of 512 × 512 and 16-bit processing. The detailed
breakdown included 147 T2WI, 150 T1WI, 147 CE-T1WI, 116 VISTA, and 95 PD images. The
examination parameters set to ensure the consistent image quality of the trigeminal nerve
are as follows: for T2WI, spin echo (SE) sequence with a recovery time (TR) of 2500 msec,
echo time (TE), and the number of excitations (NEX) of 1; for T1WI, gradient (GR) sequence
with TR of 5 msec, TE of 2.5 msec, NEX of 1, and flip angle (FA) of 8; for CE-T1WI, GR
sequence with TR of 5 msec, TE of 2.5 msec, NEX of 2, and FA of 8; for VISTA, SE sequence
with TR of 2000 msec, TE of 316 msec, NEX of 1, and FA of 90; for PD, SE sequence with TR
of 2000 msec, TE of 30 msec, NEX of 1, and FA of 90.
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Table 1. Examination parameters.

MRI
Methods

Image
Resolution

Bit
Processing

(bits)

Number of
Images

(n)
Sequence

Recovery
Time

(msec)

Echo Time
(msec)

Number of
Excitations

Flip Angle
(o)

T2WI

512 × 512 16

147 Spin echo 2500 100 1 -

T1WI 150
Gradient 5 2.5

1
8

CE-T1WI 147 2

VISTA 116 Spin echo 2000 316 1 90

PD 95 Spin echo 2000 30 1 90

2.2. Dataset Preprocessing

After transferring the MRI data for TN to a picture archiving and communication
system (PACS), the files were downloaded in digital imaging and communications in
medicine (DICOM) format without compression. Subsequently, the DICOM data were
converted into joint photographic expert group (JPEG) format images with 8-bit processing,
and the input resolution was uniformly normalized to 256 × 256. During this process, MRI
images containing moving artifacts, which were visually identified and thus not expected
to improve image quality, were excluded.

2.3. SR Technique

SR implementation utilizes a deep super resolution (VDSR) network. Figure 2 shows
a VDSR network that implements SR using low-resolution images, high-resolution images,
and residual images.
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Figure 2. This Figure shows the proposed VDSR network for improving image quality. This illus-
trates the series of processes through which the input image passes through the convolution and
residual layers, eventually producing a high-resolution image based on SR by summing it with the
residual image.

In the implementation of SR using VDSR, if we denote the dataset as N, the low-
resolution image as X, and the high-resolution image as Y, then the dataset is yielded by
Formula (1): {

X(i), Y(i)
} N

i=1
(1)

The VDSR network aims to reconstruct a high-resolution image based on SR through
training data. If we denote the network prediction as f and the reconstructed high-resolution
image as Y, then SR is yielded by Formula (2):
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Y = f(X) (2)

The VDSR defines the residual image R based on the fact that most components of the
input and output images are similar. R is defined by Formula (3). In addition, if we denote
the loss as L, then L follows Formula (4):

R = Y − X (3)

L =
1
2
|R − f (X)|2 (4)

Table 2 lists the hardware and software settings used to implement VDSR networks.
The VDSR network was developed using MATLAB R2023a, utilizing image processing,
deep learning, and parallel computing toolboxes. The computer specifications for deep
learning included a Windows 11 Education operating system, a central processing unit
(CPU) of Intel Core i9-12900KF (Intel, Santa Clara, CA, USA), and a GeForce RTX 3080
(NVIDIA, Santa Clara, CA, USA) graphics processing unit (GPU) at 12 GB.

Table 2. Computer environment for SR implementation.

System Computer Environment

Computer language Matlab R2023a

Image processing Image processing toolbox

Deep learning implementation Deep learning toolbox

Dataset processing and computation Parallel computing toolbox

Operating system Windows 11 education

Central processing unit Intel core i9-12900KF

Graphic processing unit GeForce RTX 3080 12 GB

2.4. Construction of Training Dataset

The GT images were first converted into the YCbCr color space and separated into
luminance (Y channel) and chrominance (Cb and Cr channels). To create low-resolution
sample images, the size of the Y channel was reduced, and the images were resized to their
original size using bicubic interpolation. For this purpose, the training dataset was defined
as pairs of up-sampled images with their corresponding residual images. These pairs were
stored in the specified directories. To increase the number of training data, augmentations
were applied by translating the images horizontally and vertically within a pixel range of
(−30, 30) and scaling them within a range of (0.9, 1.1) to enlarge the dataset. The code for
this procedure is shown in Figure 3.
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2.5. Set Training Options

Table 3 lists network training options. Through iterative experimentation based on
values known to be suitable for evaluating the performance of generalized models in
various studies, an optimized set of training options was determined. Accordingly, the
mini-batch options included a maximum of 100 epochs and a mini-batch size of 64, and
the optimizer used was a stochastic gradient descent with momentum (SGDM), with a
momentum of 0.9, an L2 regularization factor of 0.0001, a gradient clipping threshold of
0.01 (with the gradient threshold calculated using the L2 norm), an initial learning rate
of 0.1, and a learning rate factor of 0.1, with the learning rate decreasing by a factor of 10
every 10 epochs.

Table 3. Specifying learning parameters.

Options Hyper Parameter Value Setting

Mini batch options
Max epoch 100

Mini batch size 64

Training options

Optimizer Stochastic gradient descent with momentum

Momentum 0.9

L2 regularization 0.0001

Gradient threshold 0.01

Gradient threshold method L2 norm

Initial learning rate 0.1

Learning rate factor 0.1

Learn rate drop factor 10

2.6. Improving the Image Quality of the Trigeminal Nerve

The network layers were specified to facilitate the easy implementation of SR for
medical imaging. The structure included an input layer, convolution layers, rectified linear
unit (ReLU) layers, and an output layer, culminating in the implementation of a VDSR
network. Subsequently, a VDSR network-based SR was applied to test the MRI data.
Initially, the low-resolution images formed through sampling were resized to the size of
the GT, and the image channels were converted to YCbCr. A bicubic interpolation was
applied to each channel. Only the Y channel was isolated and passed through the VDSR
network to produce a residual image. The components of the Y channel and output of
the residual image were combined to obtain a high-resolution Y component. Finally, the
high-resolution Y component was combined with the remaining chrominance channel
components to output the SR-based high-resolution MRI data.

2.7. Evaluation of Image Quality and Coordinates of Surgical Planning

To assess image quality, two key metrics are commonly used: peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM). To define the PSNR using the
mean square error (MSE), two images were considered: Image 1 with pixel values I1(m, n)
and Image 2 with pixel value I2(m, n), where m and n represent the number of rows and
columns in the images, respectively. The MSE between these two images was calculated by
Formula (5):

MSE =
1

MN ∑M
i=1 ∑N

j=1[I1(m, n)− I2(m, n)]2 (5)

When the maximum possible pixel value of an image is represented by R, the PSNR is
defined by Formula (6):

PSNR (db) = 10log10(
R2

MSE
) (6)
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To define the SSIM between two images, the dynamic range of the image is denoted as
L, and the constants are C1, C2, C3; these constants are defined by Formula (7):

C1 = (0.01 × L)2, C2 = (0.03 × L)2, C3 =
C2

2
(7)

When comparing two images, referred to as Image 1 and Image 2 or A and B, re-
spectively, and defining brightness as l, contrast as c, and structure as s, with µA and
µB representing the mean luminance of images A and B, σA and σB as their standard
deviations, and σAB as their covariance, the similarity in brightness l(A, B), contrast c(A, B),
and structure s(A, B) can be defined by Formula (8):

l(A, B) =
2µAµB + C1

µ2 A + µ2B + C1
, c(A, B) =

2σAσB + C2

σ2 A + σ2B + C2
, s(A, B) =

σAB + C3

σAσB + C3
(8)

Ultimately, considering the weights α, β, and γ for the similarities in luminance,
contrast, and structure, the SSIM is defined by Formula (9):

SSIM(A, B) = [l(A, B)]α × [c(A, B)]β × [s(A, B)]γ (9)

To ensure the reliability of the results, two neurosurgeons with over five years of AI
research experience and one medical physicist evaluated the outcomes, and data with an
SSIM of 1 between images were removed. The statistical significances of the calculated
PSNR and SSIM for each technique were analyzed. The IBM SPSS version 23 program (IBM
Co., New York, NY, USA) was used to conduct a paired t-test, and the statistical significance
level was set at a 95% confidence interval, with p < 0.05 considered reliable. The coordinates
for GKRS were evaluated by targeting the trigeminal nerve with a 4 mm shot using the
dose algorithm of the tissue maximum ratio (TMR) 10 in the Leksell Gamma Plan 10.1
(Elekta, Stockholm, Sweden). In addition, to identify changes in the texture composition
during the reconstruction process, the composition of the image pixels was plotted as a
three-dimensional set.

3. Results
3.1. Improving the Image Quality of the Trigeminal Nerve

Table 4 describes the layer configuration of the VDSR network, which was reconfigured
to predict SR in medical imaging. In the input layer, the patch size for the input image data
was set to 41 × 41 to enable patch operations for the 20 VDSR layers. Since VDSR utilizes the
luminance component, the Y channel was specifically designated, resulting in final channel
dimensions of 41 × 41 × 1. The convolution layer consists of 20 layers, and network learning
was facilitated by the operation of 3 × 3 filters, each composed of 64 units, with each operation
being activated in the ReLU layer. The output layer was replaced with a regression layer to
estimate the error between the residual image and the network prediction.

Table 4. VDSR network.

Network Layer Setting

Input layer 41 × 41 × 1 (Y channel)

Convolution layer 3 × 3 filter operation

ReLU layer Activation function

Output layer Replace with regression layer

The test MRI images were converted into Y, Cb, and Cr channels, as shown in Figure 4.
The Y channel of the MRI scanner was passed through the network to form a residual
image. Finally, the high-resolution Y-channel component was combined with the remaining
chrominance channels to output the MRI data with SR applied.
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residual image, (d) the high-resolution image based on SR, and (e) an enlarged view for comparison
of the trigeminal nerve between (b) (left) and (d) (right).

3.2. Evaluation of Image Quality and Coordinates of Surgical Planning

Table 5 presents the results of evaluating the performance of SR by assessing the PSNR,
SSIM, and coordinates of the trigeminal nerve. The image quality of MRI images subjected
to SR showed the highest PSNR and SSIM values at a scale factor of two, and the results for
PSNR and SSIM were statistically significant. Despite the differences in SSIM according to
the scale factor, the GKRS coordinates between the GT- and SR-based data did not show
any differences, as illustrated in Figure 5.

Table 5. Image quality evaluation.

Dataset Scale Factor

* Image Quality

* PSNR (db) ** SSIM

Bicubic Interpolation Super Resolution Bicubic Interpolation Super Resolution

Internal MRI data

×2 31.5 32.6 0.9 0.95

×3 26.3 26.4 0.84 0.86

×4 26.5 27.6 0.83 0.86

* paired t-test, *, ** p < 0.05.
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dinates in (b) match those in (a). 

Figure 6 displays the original image alongside a high-resolution MRI image recon-
structed based on SR to identify changes in texture composition. 

Figure 5. The coordinates system when high-resolution images based on SR were applied to the
gamma plan. (a) Represents the GT and (b) shows a high-resolution image based on the SR. The
yellow circle indicates a 4 mm shot targeted at the trigeminal nerve, and the X-, Y-, and Z-axis
coordinates in (b) match those in (a).

Figure 6 displays the original image alongside a high-resolution MRI image recon-
structed based on SR to identify changes in texture composition.
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4. Discussions

Various imaging techniques are used to accurately diagnose and treat diseases [23–25].
In particular, MRI provides valuable information for diagnosis and treatment by clearly
distinguishing between normal tissues and lesions based on its high resolution in soft
tissues [25]. The American Association of Physicists in Medicine (AAPM) offers several
recommendations for maintaining optimal MRI [26–28]. Among these, a core aspect
of the recommendations related to MRI resolution is the importance of quality control
(QC) and the selection of appropriate examination parameters, emphasizing the need to
efficiently manage noise occurring within images [27,28]. Hence, degradation in equipment
performance and the selection of inappropriate examination parameters play a role in
increasing the proportion of noise during signal and contrast formation in images, which
can be a major cause of adverse effects in the diagnosis of diseases owing to decreased
image quality [26–28].

Noise is not managed by QC, and the optimization of examination parameters oc-
curs randomly within the images [28]. This noise is usually controlled through image
postprocessing techniques such as filters, and various studies have been published on
the usefulness of noise removal using postprocessing techniques [29–31]. However, this
inevitably leads to a loss of image information. The problem is that the cost of image
information loss is not compensated for by the expected improvement in quality, and in
surgeries based on image guidance, such as GKRS, distortion due to loss of image informa-
tion can be another cause of adverse surgical outcomes. This suggests that optimizing the
image quality through traditional methods may no longer be the best approach, and there
is a need to explore new methods that can address these issues. This study investigated the
potential of applying deep learning-based SR as an image quality improvement strategy to
address these existing issues and evaluated how the reconstructed images can be utilized
in clinical situations requiring actual image guidance.

To improve the image quality of the TN, the network was selected by considering the
depth of the layers and the amount of image data to be used. Deep learning calculates the
patterns of complex image problems by feeding data into an artificial neural network (ANN).
ANNs are typically composed of 8–201 layers, and various methods have been applied
to minimize the time and computer resources required for pattern processing. Among
the representative SR networks that reflect these characteristics are the super-resolution
convolutional neural network (SRCNN) and VDSR. SRCNN, which utilizes a convolutional
neural network (CNN), exhibits exceptional performance in enhancing image quality and
has been proven to offer significantly better image quality improvement than traditional
methods [32,33]. However, an SRCNN has a simple network structure, and it is challenging
to apply a high learning rate, which limits its practical use [32]. As the depth of the layers in
deep learning increases, so does the learning performance. However, SRCNN’s relatively
simple design means it has lower learning performance, making it difficult to guarantee
high image quality improvement. Additionally, network design does not allow for a
high learning rate, leading to high computing resource costs [32,33]. Therefore, this study
focused on the characteristics of VDSR, which exhibits high performance in improving
image quality with its deep layers [32–34]. Compared with existing networks, VDSR is
designed with 20 deep layers, enabling superior image quality improvement effects based
on its excellent learning performance, allowing for the application of a high learning rate
for smoother learning [32,34]. Although VDSR’s deep structure presents another limitation
by complicating the learning process, this study aimed to implement single image super
resolution (SISR) for a single trigeminal nerve in a single MRI slice among multiple MRI
slices. Thus, VDSR was chosen as the network to improve image quality.

SR using the VDSR network was performed after a preprocessing step to efficiently
train the MRI data. Specifically, this study focused on ensuring the seamless transmission
of the Y channel to the network after converting the MRI data into YCbCr color channels,
verifying that the up-sampled MRI and corresponding residual learning data pairs were
correctly formed in the designated directory. This confirms that the trigeminal nerve
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MRI data can be reliably converted into YCbCr channels, and residual learning through
the VDSR network can be effectively performed. Experiments using the test data also
demonstrated the success of the network in outputting residual images, indicating the
effective implementation of trigeminal nerve reconstruction based on SR. In terms of image
quality improvement, VDSR showed superior effects compared with traditional methods.
Compared with conventional image postprocessing techniques, the PSNR and SSIM values
obtained using SR were significantly higher across all scale factors. A common issue with
deep neural networks is the reduction in the size of feature maps through convolution
layers, which potentially leads to the loss of pixel information that contains meaningful
data. To prevent this, VDSR aims to preserve pixel information as much as possible through
padding [32]. The high PSNR values across all scale factors reflected these characteristics.
The SSIM values for images improved by SR were 0.86 for scale factors of 4 and 3, and 0.95
for a scale factor of 2. Notably, despite the differences in SSIM, the texture composition
and gamma plan coordinates showed no differences between GT- and SR-based trigeminal
nerve MRI [35]. In summary, compared to previous studies, this research highlights the
ability to guarantee consistent results when applying the SR technique to trigeminal nerve
MRI with different data beyond the training data, effectively improving PSNR and realizing
accurate GKRS targeting as the reconstructed images’ X, Y, and Z coordinates match the
GT- and SR-based images, despite differences in SSIM. This is the distinctive aspect of
this study.

This study has limitations owing to the availability of MRI data and computer re-
source constraints, preventing the application of various methods that could aid in quality
improvement. A primary limitation is the need for an SR network tailored for medical
imaging. Most AI research emphasizes the importance of creating dedicated ANNs for spe-
cific purposes, with the majority of deep learning focusing on the classification and quality
improvement of general images [35–38]. Although the VDSR used in this study shows gen-
eralized performance, its image quality improvement metrics tend to be somewhat lower
than the PSNR improvement figures for general images [32,39]. In addition, the limited
dataset used in the experiments may have led to overfitting. It is necessary to increase the
available image data and consider overfitting when optimizing the network, specifically
for SR in medical imaging. Second, ensuring the reliability of clinical applications is crucial.
The GT- and SR-applied trigeminal nerve MRI data showed a similarity of 0.86, but it was
unclear where differences in the reconstruction process occurred [35,40]. Therefore, even if
there are no differences in the GKRS coordinates, the lack of objective evidence to claim
accurate targeting of the GKRS is problematic if the key image information constituting the
trigeminal nerve changes during the reconstruction process, regardless of the coordinates.
SR capable of achieving SSIMs close to 100% of GT and AI, which can explain the results,
are required. This necessitates checking the GKRS coordinates of the images reconstructed
using various gamma plan versions and verifying the coordinates for multiple shots.

5. Conclusions

Despite the aforementioned limitations, this study significantly demonstrated the
feasibility of applying SR to MRI images of the trigeminal nerve, quantitatively verifying
its potential to improve image quality and its application in image-guided diagnosis and
surgical environments. Furthermore, increasing the available datasets, improving SSIM,
and verifying the GKRS coordinates of images reconstructed with various gamma plan
versions represent additional research tasks crucial for accurately determining the targeting
of the TN in GKRS and are worthy of future exploration.
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