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Abstract: We evaluated the association between biomarkers and COVID-19 mortality. Baseline
characteristics of 403 COVID-19 patients included sex and age; biomarkers, measured throughout the
follow-up, included lymphocytes, neutrophils, ferritin, C-reactive protein, glucose, and LDH. Hazard
ratios (HRs) and corresponding 95% credible intervals (CIs) were estimated through joint models
(JMs) using a Bayesian approach. We fitted univariable (a single biomarker) and multivariable (all
biomarkers) JMs. In univariable analyses, all biomarkers were significantly associated with COVID-19
mortality. In multivariable analysis, HRs were 1.78 (95% CI: 1.13–2.87) with a doubling of neutrophils
levels, 1.49 (95% CI: 1.19–1.95) with a doubling of C-reactive protein levels, 2.66 (95% CI: 1.45–4.95)
for an increase of 100 mg/dL of glucose, and 1.31 (95% CI: 1.12–1.55) for an increase of 100 U/L of
LDH. No evidence of association was observed for lymphocytes and ferritin in multivariable analysis.
Men had a higher COVID-19 mortality risk than women (HR = 1.75; 95% CI: 1.07–2.80) and age
showed the strongest effect with a rapid increase from 60 years. These findings using JM confirm the
usefulness of biomarkers in assessing COVID-19 severity and mortality. Monitoring trend patterns of
such biomarkers can provide additional help in tailoring the appropriate care pathway.

Keywords: COVID-19 mortality; biomarkers; time-varying covariates; joint modelling approach;
survival analysis

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019, and since then, has
been threatening human health. As of 17 December 2023, COVID-19 has affected more
than 772 million people and globally, nearly 7 million died [1]. Italy was the first European
country to be hit by the COVID-19 pandemic outbreak, with clusters of cases detected and
the first COVID-19-attributed deaths in Lombardy.

Over time, evidence has shown that older age is the main predictor of COVID-19 sever-
ity and mortality [2,3]. In addition, a meta-analysis comprising more than 36,000 patients
reported that men experienced the disease more severely (approximately 20%) and were
also at a higher risk of death from COVID-19 (nearly 50%) than women [4]. The presence of
pre-existing comorbidities, such as obesity [5–9], cardiovascular diseases [10–13], hyperten-
sion [11,13–16], diabetes [13,17–20], chronic obstructive pulmonary diseases [11,12,14,21],
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and cancer [12,14,22], are more common in patients with severe COVID-19, impacting
their survival [23]. Limited evidence has also suggested the role of pre-existing chronic
kidney diseases [24] and cerebrovascular diseases [11] in developing severe stages of
COVID-19. Other recognized predictors for COVID-19 severity and mortality include
hematological, coagulation, hematic, and biochemical markers [25–27]. The most investi-
gated were lymphocytes, neutrophils, eosinophils (hematological), D-dimer, prothrombin
time, activated partial-thromboplastin time (coagulation), aspartate aminotransferase, ala-
nine aminotransferase (hematic), ferritin, C-reactive protein, procalcitonin, and lactate
dehydrogenase (biochemical).

During the first wave of the COVID-19 pandemic, physicians at the Istituto Clinico
Città Studi in Milan collected a set of biomarkers over a follow-up period, to understand
whether changes in their levels might be used as prognostic factors for severity and mortal-
ity of COVID-19.

Thus, we evaluated here the association between a set of biomarkers measured
throughout the follow-up and COVID-19 mortality using the joint modelling (JM) ap-
proach, the candidate tool for this kind of data.

2. Materials and Methods
2.1. Study Design and Patients

Between February and May 2020, a total of 403 COVID-19 patients were admitted to
the Istituto Clinico Città Studi in Milan. Patients aged 21–100 years (mean of 72.4 and stan-
dard deviation of 17.0 years) and 58.3% were men. Baseline characteristics included the sex
and age of patients, whereas the set of biomarkers included hematological, coagulation, and
biochemical markers. Hematological markers included lymphocytes (count × 103/µL) and
neutrophils (count × 103/µL); coagulation markers included D-dimer (ng/mL); and bio-
chemical markers included ferritin (ng/mL), C-reactive protein (mg/L), glucose (mg/dL),
and lactate dehydrogenase—LDH (U/L). The biomarker data were extracted from the
patient’s clinical charts and stored in a database.

Person-time at risk (expressed in days) was computed as the time elapsed from the
day of hospital admission to the day of COVID-19 death (event time), either to the day of
hospital discharge or to the day of moving to other health care facilities (right-censoring
time), whichever came first.

2.2. Statistical Analyses

We evaluated the association between biomarkers and COVID-19 mortality using
JM proposed by Rizopoulos [28]. Particularly in the first epidemic outbreak, physicians
did not have standard clinical protocols for the management of COVID-19 patients and
for this reason, measurements of biomarkers were highly incomplete, especially at the
baseline. In this context, the classical time-to-event analysis using Cox regression [29,30]
with time-invariant covariates (i.e., variables that do not change value during the follow-
up) is unfeasible, whereas the time-dependent Cox model [31] would likely lead to biased
estimates in assessing the association between such incomplete time-varying covariates
(i.e., variables that change value during the follow-up) and mortality risk.

The JM is suitable for estimating the association between time-varying covariates
(i.e., biomarkers) and a time-to-event outcome (i.e., death from COVID-19). Briefly, the JM
consists of two sub-models: (i) the survival sub-model used to estimate hazards for a set of
time-invariant covariates (i.e., baseline characteristics) and (ii) the longitudinal sub-model
used to predict the complete trajectories of time-varying covariates (i.e., biomarkers) during
the follow-up, possibly considering a set of time-invariant covariates. The two sub-models
are interdependent by means of a set of random effects, also called shared parameters. The
shared parameters (i.e., patient-specific predicted trajectories of time-varying covariates)
derive from the longitudinal sub-model and they are plugged into the survival sub-model.
We used a Bayesian approach for fitting JMs. In particular, the estimation of JM’s param-
eters proceeded using the Markov chain Monte Carlo (MCMC) algorithm. The posterior
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distribution of the model parameters is derived under the assumption that given the shared
parameters, both longitudinal and survival sub-models are assumed independent, and
the longitudinal outcomes of each patient are assumed independent. For explorative pur-
poses, we set independent and non-informative priors for baseline characteristics and
shared parameters.

We fitted univariable and multivariable JMs. Univariable JMs included time-invariant
covariates (i.e., age and sex) and a single time-varying covariate (i.e., a biomarker), whereas
the multivariable JM included all covariates (i.e., all time-invariant and time-varying co-
variates). Summary statistics (i.e., the posterior mean and the credible interval of the
posterior mean) were estimated for each parameter. In particular, the 95% equal-tailed
credible intervals (CIs) were computed. In addition, to test the significance (at 5%) of
parameter estimates, we used the 2 times probability that a parameter estimate is strictly
positive or negative, whichever is less probable (P). The logarithmic transformation was
used to account for the skewness in the distribution of lymphocytes (log-lymphocytes),
neutrophils (log-neutrophils), D-dimer (log-D-dimer), ferritin (log-ferritin), and C-reactive
protein (log-C-reactive protein). In addition, glucose and LDH levels were rescaled by
dividing by 100 (glucose/100; LDH/100) for numerical stability. To account for possible
non-linear effects, we modelled age and patient-specific biomarkers trajectories through the
follow-up time by means of natural cubic splines (ns) with two knots. Two knots are gener-
ally sufficient to detect mild non-linear relationships and to avoid over-parametrization of
the model considering the available sample size. Due to the high number of patients (78;
19%) with missing values for D-dimer during the whole follow-up period, we excluded it
from the multivariable analysis. Analyses were performed using the JMbayes package [32]
in R Statistical Software, version 4.0.5 (R Core Team 2021, Vienna, Austria).

3. Results

Among 403 COVID-19 patients admitted to the Istituto Clinico Città Studi, 140 died
during the follow-up. Among the 263 patients who survived, 99 were discharged and
164 were moved to other health care facilities. The median follow-up was 14 days (range:
0–78 days).

Table 1 reports the distribution of patients, hazard ratios (HRs), and corresponding
95% confidence intervals (CIs) of COVID-19 mortality according to age group separately
for men and women. HRs and corresponding 95% CIs were estimated using time-invariant
Cox regression models including only age (in categories) and considering <60 years as
reference. A higher mortality was observed for elderly patients compared with patients
aged < 60 years, with a similar trend for men and women. Among men, the HRs run
from 3.55 (95% CI: 1.07, 11.81) for patients aged 60–69 years to 26.88 (95% CI: 8.52, 84.81)
for patients aged 90 years or older; among women, the corresponding figures were 1.84
(95% CI: 0.11, 29.41) and 18.74 (95% CI: 2.51, 139.91).

Table 1. Distribution of 403 COVID-19 patients: hazard ratio (HR) and corresponding 95% confidence
interval (CI) according to age and sex.

Age (Years)
Men (n = 235; 58.3%) Women (n = 168; 41.7%)

At Risk Mortality Rate a HR (95% CI) b At Risk Mortality Rate a HR (95% CI) b

<40 14 0.00
3.18 c Ref

6 0.00
2.27 c Ref40–49 26 0.00 6 0.00

50–59 29 7.59 17 3.32
60–69 41 10.85 3.55 (1.07, 11.81) 15 4.37 1.84 (0.11, 29.41)
70–79 50 26.72 8.34 (2.86, 24.32) 26 28.44 12.12 (1.58, 93.30)
80–89 62 30.55 9.27 (3.27, 26.32) 71 23.67 10.29 (1.40, 75.49)
≥90 13 88.71 26.88 (8.52, 84.81) 27 43.86 18.74 (2.51, 139.91)

a Calculated per 1000 person-days; b Estimated using time-invariant Cox regression models separately for men and
women including age (in categories) and considering <60 years as reference; c Mortality rate for age < 60 years.
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Table 2 reports estimates of univariable and multivariable JMs. Regarding the lon-
gitudinal sub-model of univariable JMs, the predicted log-lymphocyte count estimates
significantly increased through the follow-up time (Figure 1, first panel) according to the
positive natural cubic spline (ns) coefficients of time at measurement (Table 2). Conversely,
the predicted log-lymphocyte count estimates significantly decreased with increasing age
(according to the negative natural cubic spline coefficients for age reported in Table 2) and
men showed lower predicted log-lymphocyte count estimates than women (according to
the negative coefficient for sex in Table 2), though not significant.

Table 2. Univariable and multivariable joint models a (JMs) estimates.

Variables
Univariable JM Multivariable JM

Estimate (95% CI) P Estimate (95% CI) P

Hematological biomarkers
Longitudinal submodel: log-lymphocytes (count × 103/µL)
Intercept 0.68 (0.29, 1.05) P < 0.01 0.64 (0.38, 0.90) P < 0.01
ns(time at measurement in days) 1 1.11 (0.95, 1.27) P < 0.01 1.23 (0.98, 1.49) P < 0.01
ns(time at measurement in days) 2 0.52 (0.40, 0.65) P < 0.01 0.93 (0.47, 1.43) P < 0.01
ns(age in years) 1 −1.47 (−2.20, −0.72) P < 0.01 −1.32 (−1.81, −0.82) P < 0.01
ns(age in years) 2 −0.69 (−0.97, −0.39) P < 0.01 −0.53 (−0.74, −0.30) P < 0.01
Sex (Ref: women) −0.11 (−0.25, 0.03) P = 0.14 −0.13 (−0.23, −0.04) P < 0.01
Longitudinal sub-model: log-neutrophils (count × 103/µL)
Intercept 0.90 (0.57, 1.22) P < 0.01 1.09 (0.79, 1.41) P < 0.01
ns(time at measurement in days) 1 −1.10 (−1.40, −0.78) P < 0.01 −0.81 (−1.21, 0.41) P < 0.01
ns(time at measurement in days) 2 −2.89 (−3.55, −2.15) P < 0.01 −2.15 (−2.98, −1.36) P < 0.01
ns(age in years) 1 1.24 (0.65, 1.85) P < 0.01 0.94 (0.32, 1.54) P < 0.01
ns(age in years) 2 0.89 (0.64, 1.15) P < 0.01 0.62 (0.35, 0.89) P < 0.01
Sex (Ref: women) 0.25 (0.13, 0.37) P < 0.01 0.23 (0.12, 0.34) P < 0.01
Coagulation biomarkers
Longitudinal sub-model: log-D-dimer (ng/mL)
Intercept 4.34 (3.62, 5.01) P < 0.01

Excluded due to the high number of
missing values

ns(time at measurement in days) 1 −1.72 (−2.02, −1.39) P < 0.01
ns(time at measurement in days) 2 −2.99 (−3.47, −2.57) P < 0.01
ns(age in years) 1 4.18 (2.93, 5.52) P < 0.01
ns(age in years) 2 1.57 (1.01, 2.09) P < 0.01
Sex (Ref: women) 0.35 (0.10, 0.61) P = 0.01
Biochemical biomarkers
Longitudinal sub-model: log-ferritin (ng/mL)
Intercept 5.18 (4.67, 5.67) P < 0.01 5.27 (4.74, 5.82) P < 0.01
ns(time at measurement in days) 1 −1.05 (−1.32, −0.77) P < 0.01 −1.16 (−1.66, −0.71) P < 0.01
ns(time at measurement in days) 2 −1.69 (−2.23, −1.08) P < 0.01 −2.07 (−3.25, −1.05) P = 0.01
ns(age in years) 1 2.13 (1.15, 3.06) P < 0.01 1.93 (0.82, 2.97) P < 0.01
ns(age in years) 2 0.20 (−0.18, 0.59) P = 0.31 0.16 (−0.29, 0.63) P = 0.52
Sex (Ref: women) 0.53 (0.34, 0.70) P < 0.01 0.56 (0.35, 0.76) P < 0.01
Longitudinal sub-model: log-C-reactive protein (mg/L)
Intercept −0.19 (−0.71, 0.34) P = 0.47 0.29 (−0.32, 0.91) P = 0.36
ns(time at measurement in days) 1 −4.23 (−5.09, −3.35) P < 0.01 −5.16 (−6.47, −3.90) P < 0.01
ns(time at measurement in days) 2 1.03 (−0.65, 2.64) P = 0.23 −0.84 (−3.67, 1.79) P = 0.51
ns(age in years) 1 4.31 (3.30, 5.32) P < 0.01 3.67 (2.51, 4.83) P < 0.01
ns(age in years) 2 0.98 (0.57, 1.40) P < 0.01 0.70 (0.20, 1.24) P < 0.04
Sex (Ref: women) 0.50 (0.31, 0.68) P < 0.01 0.38 (0.13, 0.61) P < 0.01
Longitudinal sub-model: glucose/100 (mg/dL)
Intercept 0.94 (0.45, 1.44) P < 0.01 0.99 (0.75, 1.25) P < 0.01
ns(time at measurement in days) 1 −0.33 (−0.45, −0.20) P < 0.01 −0.40 (−0.64, −0.17) P < 0.01
ns(time at measurement in days) 2 −0.35 (−0.52, −0.20) P < 0.01 −0.61 (−1.23, −0.04) P = 0.04
ns(age in years) 1 0.57 (−0.42, 1.49) P = 0.25 0.41 (−0.08, 0.88) P = 0.11
ns(age in years) 2 0.08 (−0.30, 0.46) P = 0.66 0.05 (−0.15, 0.24) P = 0.64
Sex (Ref: women) 0.02 (−0.16, 0.21) P = 0.80 0.04 (−0.04, 0.14) P = 0.33
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Table 2. Cont.

Variables
Univariable JM Multivariable JM

Estimate (95% CI) P Estimate (95% CI) P

Longitudinal sub-model: LDH/100 (U/L)
Intercept 2.09 (1.56, 2.63) P < 0.01 2.65 (1.76, 3.49) P < 0.01
ns(time at measurement in days) 1 −2.45 (−2.70, −2.19) P < 0.01 −2.45 (−3.21, 1.69) P < 0.01
ns(time at measurement in days) 2 −3.74 (−4.77, −2.80) P < 0.01 −3.32 (−5.36, −1.35) P < 0.01
ns(age in years) 1 2.39 (1.36, 3.40) P < 0.01 1.16 (−0.47, 2.91) P = 0.16
ns(age in years) 2 0.86 (0.46, 1.25) P < 0.01 0.44 (−0.33, 1.21) P = 0.23
Sex (Ref: women) 0.27 (0.07, 0.47) P = 0.01 0.29 (−0.01, 0.61) P = 0.05

Variables log-hazard ratio (95% CI) P log-hazard ratio (95% CI) P

Survival sub-model
Baseline characteristics
ns(age in years) 1 - - 9.12 (2.17, 16.30) P < 0.01
ns(age in years) 2 - - 3.96 (2.53, 5.38) P < 0.01
Sex (Ref: women) - - 0.56 (0.07, 1.03) P = 0.03
Hematological biomarkers -
log-lymphocytes (count × 103/µL) −0.78 (−1.11, −0.44) P < 0.01 0.02 (−0.43, 0.52) P = 0.96
log-neutrophils (count × 103/µL) 1.56 (1.21, 1.91) P < 0.01 0.83 (0.18, 1.52) P = 0.02
Coagulation biomarkers

log-D-dimer (ng/mL) 0.48 (0.31, 0.64) P < 0.01 Excluded due to the high number of
missing values

Biochemical biomarkers
log-ferritin (ng/mL) 0.55 (0.33, 0.79) P < 0.01 −0.12 (−0.45, 0.22) P = 0.46
log-C-reactive protein (mg/L) 1.34 (1.05, 1.67) P < 0.01 0.58 (0.25, 0.96) P < 0.01
glucose/100 (mg/dL) 1.15 (0.78, 1.51) P < 0.01 0.98 (0.37, 1.60) P < 0.01
LDH/100 (U/L) 0.59 (0.49, 0.69) P < 0.01 0.27 (0.11, 0.44) P < 0.01

a Univariable and multivariable JMs included age modelled using a natural cubic spline (ns) with 2 knots, and
sex (baseline characteristics) and biomarkers (time-varying covariates). In the longitudinal sub-models, time at
measurement of biomarkers was modelled using a natural cubic spline (ns) with 2 knots. The log-hazard ratio
estimates of the association between biomarkers and COVID-19 mortality are reported in the survival sub-model
section. The log-hazard ratio estimates for age and sex of the univariate models are not reported.

Instead, the predicted log-neutrophils count estimates slightly decreased during the
follow-up time (Figure 1, second panel), they increased with age and men showed higher
predicted levels than women (Table 2). Likewise, the predicted log-D-dimer and log-ferritin
estimates decreased through time (Figure 1, third and fourth panels), increased with age
and men had higher levels (Table 2). For log-C-reactive protein, predicted levels showed a
mixed trend through time (Figure 1, fifth panel). In particular, levels initially decreased
according to the negative natural cubic spline coefficient of time at measurement concerning
the first part of follow-up and increased thereafter (Table 2). The predicted log-C-reactive
protein levels increased with age and men showed higher levels than women. Predicted
levels of glucose and LDH significantly decreased during the follow-up (Figure 1, sixth and
seventh panels). Only for LDH, predicted levels significantly increased with age and men
had higher levels (Table 2).

Regarding the survival submodel of univariable JMs reported in Table 2, all biomark-
ers were significantly associated with COVID-19 mortality. An increase in the levels of
biomarkers was associated with an increase in the mortality risk, except for lymphocytes
(according to the negative log-hazard ratio in Table 2). In particular, the doubling of
lymphocyte count levels was associated with approximately halving mortality risk with
an HR of 0.58 (95% CI: 0.46–0.73). This HR was obtained by exp(−0.78 × 0.693), which
is the exponential product of the log-hazard ratio estimate (−0.78) and the logarithm of
2 (0.693) corresponding to the doubling of lymphocyte count levels in the original scale.
The strongest associations were observed for neutrophils (HR = 2.95; 95% CI: 2.31–3.76
for doubling of levels), C-reactive protein (HR = 2.53; 95% CI: 2.07–3.18 for doubling of
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levels), and glucose (HR = 3.16; 95% CI: 2.18–4.53 for an increase of 100 mg/dl). The HR
for glucose was obtained by exp(1.15).
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In the multivariable JM, there was no more evidence of association with COVID-19
mortality for ferritin and lymphocytes (survival sub-model of the multivariable JM in
Table 2). Furthermore, the strength of the association was attenuated for the other biomark-
ers considered. In particular, the HRs were 1.78 (95% CI: 1.13–2.87) for doubling of neu-
trophils levels, 1.49 (95% CI: 1.19–1.95) for doubling of C-reactive protein levels, 2.66
(95% CI: 1.45–4.95) for an increase of 100 mg/dL in glucose levels, and 1.31 (95% CI:
1.12–1.55) for an increase of 100 U/L in LDH. Lastly, men had a nearly 2-fold higher
risk than women (HR = 1.75; 95% CI: 1.07–2.80) and age showed the strongest effect on
COVID-19 mortality with HRs starting to rapidly increase approximately from 60 years for
both men and women (Figure 1, last panel).

4. Discussion

We used JM to evaluate the association between a set of biomarkers and COVID-19
mortality including some baseline patients’ characteristics. Patients were admitted to
a hospital in Milan during the first wave of the COVID-19 pandemic outbreak. In the
multivariable JM, increasing levels of some of the investigated biomarkers (i.e., neutrophils,
C-reactive protein, glucose, and LDH) were significantly associated with higher mortality.
In addition, men were at a higher risk of dying than women and the strongest association
was observed for increasing age.

Previous findings on biomarkers showed their association with the severity and mor-
tality of COVID-19 [2,3,25,27]. There is wide evidence of lymphopenia among COVID-19
patients [17,33–39]. Furthermore, some studies also reported a lower absolute number
of lymphocytes in patients with more severe illness, compared with patients with mild
illness [37,40,41]. Accordingly, we found a lower mortality risk for increasing the number
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of lymphocytes. Higher neutrophil count at hospital admission was reported in patients
with a severe or critical disease stage compared with patients with a mild or moderate
stage of COVID-19 [35,38]. Progressive increases in the number of neutrophils were as-
sociated with death [38]. Our predicted means of neutrophil count for patients who died
followed a similar trend during the follow-up. In particular, the predicted means were
8.02 (95% CI: 6.59, 9.76) at baseline, 9.39 (95% CI: 7.72, 11.43) at day 7, and 10.07 (95% CI:
8.27, 12.25) at day 15 of follow-up; no further increase in predicted means was observed
for subsequent follow-up times. Elevated D-dimer levels were frequently reported in
COVID-19 patients [40,42–44]. Several meta-analyses showed the prognostic value of
D-dimer for disease severity and mortality [1,45–54]. In addition, two studies reported
that a baseline D-dimer level of >2 µg/mL was associated with a higher mortality [55,56].
Among patients who died in the present study, the predicted mean of D-dimer at day 7
of follow-up was 1.75 µg/mL and increasing the levels resulted in a higher mortality risk.
Elevated levels of ferritin were associated with the progression to severe stages of COVID-
19, as well as mortality [54,57–59]. A meta-analysis investigated the prognostic value of
different biomarkers of anaemia and iron metabolism (including ferritin) in COVID-19
patients [60]. Based on the findings of 18 observational studies, comprising more than
7000 patients, the authors showed approximately a 2-fold higher pooled mean of ferritin
levels in non-survivors (1303.08 ng/mL; 95% CI: 1072.26, 1533.90 ng/mL) than survivors
(650.67; 95% CI: 541.84, 759.51 ng/mL). Likewise, our predicted mean levels of ferritin at
day 7 of follow-up were nearly 2 times higher in patients who died (1058.22; 95% CI: 740.25,
1512.77 ng/mL) than in patients who survived (556.90; 95% CI: 481.32, 644.35 ng/mL). In
the multivariable JM, however, there was no evidence of an association between ferritin
and the risk of COVID-19 mortality. High levels of C-reactive protein were associated
with the development of severe COVID-19 stages and higher mortality [1,46,49,51,53,54,57].
A C-reactive protein level of >10 mg/L has been shown to be a predictor of poor out-
come [54]. In our analysis, the predicted mean levels of C-reactive protein were 10.7 mg/L
(95% CI: 6.60, 17.38 mg/L) for non-survivors and 2.22 mg/L (95% CI: 1.66, 2.98 mg/L) for
survivors. Furthermore, a meta-analysis showed a 4-fold higher risk of severe disease for
levels of C-reactive protein >10 mg/L [61]. Accordingly, we estimated a mortality risk of
approximately 2.5 times (univariable JM) and 1.5 times (multivariable JM) higher for the
doubling of C-reactive protein levels. Higher levels of glucose were observed in the severe
and critical groups of COVID-19 patients [25,51]. Among the biomarkers considered in
the present analysis, glucose showed the strongest association with COVID-19 mortality
considering the effect of other biomarkers (HR from multivariable JM = 2.66; 95% CI:
1.45–4.95 for an increase of 100 mg/dL). Lastly, elevated LDH levels have been reported in
COVID-19 patients with the highest levels for patients with severe disease [1,46,51,62]. A
meta-analysis that included more than 3000 COVID-19 patients showed a pooled mean
level of LDH 1.54 times higher for severe illness compared to mild severity [63]. Similarly,
our predicted LDH mean level at day 7 of follow-up was approximately 2 times higher
in patients who died (478.6 U/L; 95% CI: 397.5, 559.9 U/L) than survivors (259.2; 95% CI:
244.5, 274.0 UI/l). Additionally, elevated baseline LDH levels were associated with higher
mortality risk with an HR of 1.30 (95% CI: 1.11, 1.52) for an increase of 100 U/L [64], which
is comparable to our estimate (HR from multivariable JM = 1.31; 95% CI: 1.12–1.55 for an
increase of 100 U/L).

In summary, decreased lymphocyte count, increased neutrophil count, C-reactive
protein, LDH, D-dimer, ferritin, and blood glucose levels were shown to be associated with
the mortality of the disease. It has been well assessed that a high level of inflammation
is characteristic of COVID-19 pneumonia and the observed biomarkers trend might be
the manifestation of this inflammatory response and the subsequent cell damage [65]. In
particular, significantly lower lymphocytes and higher neutrophils counts have been widely
observed in patients with severe COVID-19 disease in comparison to those who suffered
mildly: the lymphopenia might be caused both by the inflammatory mediators, which
directly damage the immune system cells and by the migration of the circulating lympho-
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cytes into inflammatory lung tissues [66,67]. Along with these, persistent stimulation by
SARS-CoV-2 might lead to lymphocyte exhaustion. High levels of ferritin might reflect
macrophage activation, since the synthesis of ferritin is responsive to alterations in cytokine
status [68], whereas the increase in LDH in serum is the manifestation of cell necrosis,
strongly increased in severe pneumonia [69]. In addition, a recent cohort study conducted
in the US on vaccinated and unvaccinated patients infected with SARS-CoV-2 reported
significantly lower geometric mean concentrations of several inflammatory biomarkers
among the fully vaccinated group than among unvaccinated patients [70]. Likewise, vacci-
nated patients showed significantly lower levels of ferritin, C-reactive protein, and D-dimer,
as well as higher levels of lymphocyte counts than unvaccinated patients [71,72]. It could
be interesting to extend the present analysis to vaccinated patients.

The traditional time-to-event analysis using Cox regression can be extended to en-
compass time-varying covariates (i.e., covariates that are repeatedly measured over the
follow-up and their values can change over time), as long as time-varying covariates are
exogenous. In the presence of endogenous time-varying covariates, however, the time-
dependent Cox regression model could lead to an overestimated effect size (i.e., inflate
HRs). The main features of endogenous time-varying covariates are that (i) their existence
(and/or future measurements) is directly related to the occurrence (or non-occurrence) of
the event of interest, and (ii) they are measured intermittently (i.e., incomplete information
occur at random points during the follow-up because, for instance, individuals may skip
schedule visits and dropout from the study) [28]. All biomarkers considered in the present
study were typical examples of endogenous time-varying covariates. Thus, the JM frame-
work for the simultaneous analysis of the survival data of the event and the longitudinal
data of the time-varying covariates is the candidate tool.

The lack of information on patients’ treatment should be counted as a limitation of the
present study. Different treatments may have differently modified biomarker levels and
consequently their association with the risk of COVID-19 mortality. However, a standard
treatment protocol for COVID-19 had not yet been implemented at the time of data collec-
tion, maximising the variability due to different drug administration regimes. The general
conditions of patients on hospital admission, as measured, for example, by indexes already
available in the clinical records or derived by data reported therein should also be included
as a study limitation. In addition, information on other baseline characteristics, such as
body mass index, smoking habits, and pre-existing comorbidities, were not available. The
inclusion of these variables in the model could modify the HR estimates introducing further
limits of the present analysis. A limited sample size may have a role in the precision of
parameter estimates, especially 95% confidence intervals of HRs for age reported in Table 1.

The main strength of the present work is the use of a multivariable JM to investigate the
association between several time-varying covariates (i.e., the set of biomarkers considered),
mutually adjusted, and a time-to-event outcome (i.e., COVID-19 mortality).

5. Conclusions

Increasing levels of some biomarkers, i.e., neutrophils, C-reactive protein, glucose,
and LDH, were significantly associated with higher COVID-19 mortality. Men were at a
higher risk of dying than women and age showed the strongest association with a rapid
increase in COVID-19 mortality risk from 60 years. These findings using the JM approach
confirm the usefulness of biomarkers in assessing COVID-19 severity and mortality. Con-
sequently, prognosis definition and therapy can benefit from the trend pattern analysis of
such biomarkers.
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