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Abstract: The primary objective of this research was to enhance the quality of semantic segmentation
in cytology images by incorporating super-resolution (SR) architectures. An additional contribution
was the development of a novel dataset aimed at improving imaging quality in the presence of
inaccurate focus. Our experimental results demonstrate that the integration of SR techniques into
the segmentation pipeline can lead to a significant improvement of up to 25% in the mean average
precision (mAP) metric. These findings suggest that leveraging SR architectures holds great promise
for advancing the state-of-the-art in cytology image analysis.

Keywords: super image resolution; computer vision; deep learning; cytology; medical imaging;
semantic segmentation

1. Introduction, Motivation

Veterinary cytology is a specialized field within veterinary medicine that focuses on
the microscopic examination of cells and cellular structures in animals. This discipline plays
a crucial role in diagnosing and monitoring various diseases and conditions in animals. By
analyzing the morphology, size, and arrangement of cells obtained through techniques like
fine-needle aspiration, veterinarians can identify abnormalities such as cancerous growths
or infections, aiding in the development of appropriate treatment plans.

The process of veterinary cytology can be time consuming and labor intensive, requir-
ing skilled professionals to examine numerous cell samples under a microscope. Artificial
intelligence can significantly expedite this process by automating cell image analysis, iden-
tifying and categorizing abnormalities, and providing veterinarians with quicker, more
accurate diagnostic results. This not only saves valuable time but also enhances the ef-
ficiency of veterinary care, ultimately improving the outcomes for animals in need of
diagnosis and treatment.

In recent years, deep learning-based solutions have emerged as a prominent topic in
the field of Information Technology. Novel approaches are being developed and imple-
mented daily to optimize, enhance, and facilitate various aspects of our lives. This growing
trend is also evident in the medical domain, including veterinary medicine. It is important
to note that deploying models for healthcare applications entails significant responsibility
and necessitates rigorous testing and monitoring to mitigate any risks associated with
artificial intelligence (AI) predictions.

Our research team is dedicated to developing solutions that assist veterinarians in
making faster and more accurate diagnoses for their animal patients. Our prior work
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has focused on age classification [1], object segmentation [2], and detection [3] in the
context of cytology imaging for canines. In this study, we continue our investigation
into AI applications in the veterinary field, specifically exploring the combination of
Super-Resolution (SR) and Semantic Segmentation techniques. By building upon previous
research, we aim to further advance the state-of-the-art in veterinary image analysis and
improve diagnostic outcomes.

2. State-of-the-Art, Reason for Conducting the Research

The acquisition of cytology images is a multifaceted process that involves the prepara-
tion of tissue samples using staining methods such as Diff-Quik, followed by the selection
of suitable areas by a veterinary expert and image capture via a microscope-mounted
camera. This study aims to address the challenges associated with obtaining images of
inadequate focus or suboptimal quality for examination purposes. The integration of
super-resolution (SR) techniques into the image analysis process represents a promising
avenue for enhancing the quality and utility of cytology images, thereby facilitating more
accurate and reliable diagnostics.

Research Questions:
Can deep learning-based architectures enhance the quality and resolution of cytology

images, thereby facilitating improved image quality assessments? To what extent can such
enhancements aid pathologists in diagnosing challenging or average-quality cases? Does
the improvement of image quality augment the performance of semantic segmentation
architectures in detecting carcinogenic cells within preparations?

2.1. Advancements in Super-Resolution and Semantic Segmentation

The field of medical imaging has seen significant advancements through the inte-
gration of deep learning techniques, particularly in super-resolution (SR) and semantic
segmentation. He et al.’s development of deep residual learning for image recognition [4]
laid the groundwork for subsequent innovations in image analysis, including the applica-
tion of SR to improve image quality. Similarly, the introduction of U-Net by Ronneberger
et al. [5] revolutionized biomedical image segmentation, offering a powerful tool for de-
tailed tissue and cell analysis.

2.2. Dual Super-Resolution Learning for Semantic Segmentation

Building on these foundations, Wang et al. [6] proposed a dual super-resolution learn-
ing framework specifically designed to enhance segmentation accuracy without additional
computational costs. This approach directly addresses the challenges faced in cytology
image analysis, where the precision of segmentation is paramount. By integrating SR
techniques into the segmentation process, this method not only improves image quality
but also enhances the efficiency of diagnostic models.

2.3. Effectiveness of Super-Resolution in Medical Imaging

The effectiveness of SR techniques in medical imaging has been further demonstrated
by Ledig et al. [7], who developed a generative adversarial network for photo-realistic super-
resolution. This advancement underscores the potential of SR to significantly improve the
resolution and clarity of medical images, facilitating more accurate diagnoses. Moreover,
Dong et al. [8], Zhang et al. [9], Pereira et al. [10], Pham et al. [11], Goodfellow et al. [12]
and Wang et al. [13] have contributed to the field by developing deep learning models
that enhance the resolution of images, proving essential for detailed medical analysis
and diagnosis.

2.4. Super-Resolution for Enhanced Diagnostic Accuracy

The integration of SR with semantic segmentation has shown promise in enhancing
diagnostic accuracy. Studies by Chen et al. [14] and Zhou et al. [15] have demonstrated
the potential of deep-learning models to improve semantic segmentation, which, when
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combined with high-resolution images obtained through SR techniques, can significantly
aid in the detection and classification of diseases. Furthermore, the work by Isola et al. [16]
on image-to-image translation with conditional adversarial networks has opened new
avenues for applying SR in medical imaging, suggesting that enhancing image quality can
substantially improve the performance of segmentation models.

2.5. Recent Progress and Integrative Approaches in Super-Resolution

Recent studies have underscored the transformative impact of super-resolution tech-
niques across various domains of medical imaging, offering novel perspectives and method-
ological advances. For instance, Wang et al. [17] introduced a smarter microscope system
that leverages E-CNN-based super-resolution to enhance single cell analysis, marking a
significant step forward in cytology imaging. Similarly, Zhang et al. [18] explored the
diagnostic potential of super-resolution in visualizing biliary structures, demonstrating its
utility in clinical settings. Caputa et al. [19] specifically addressed veterinary cytology by
integrating super-resolution to improve visual perception and segmentation performance,
which is directly relevant to our research objectives. These studies, alongside contributions
from Li et al. [20], Ma et al. [21], and Yuqian et al. [22], illustrate a collective move towards
enhancing diagnostic accuracy and image quality through advanced computational tech-
niques. The synthesis of super-resolution and deep learning not only promises to refine
diagnostic capabilities in cytology but also sets a new benchmark for precision in medical
image analysis.

3. Contribution, New Algorithm, Constructed System

The primary contribution of this study is the incorporation of a Super-Resolution
module into the machine-learning pipeline, with the aim of enhancing the accuracy of
segmentation models (Figure 1). This potential application for improving image quality
emerged as a result of various distortions that may occur during the acquisition of cytologi-
cal preparation images (Table 1). Our research is specifically focused on addressing poor
sharpness distortions.

Figure 1. Proposed working system scheme.
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Table 1. Potential distortions in veterinary image creation.

Distortion
Type

Image Description

correct image Image properly created

dark lighting

microscope bulb is not turned
on or the room where the

image is created is dark, the
resulting image may suffer

from low contrast and
poor illumination.

closed aperture
Responsible for the amount of
the light that comes to a focus

in the image plane

closed condensor

An improperly adjusted
condenser, which is

responsible for providing
evenly

distributed illumination

dark outside The image was not directly at
the lens leading to dark edges

bad sharpness

The microscope screw set
inaccurately or the focus is set

for the background of
the image

The objective of this study is to develop a machine learning model capable of en-
hancing the quality of images affected by improper focus settings on the microscope’s
adjustment knob. To evaluate the effectiveness of this approach, the enhanced images will
be compared to properly created images. The development of a dedicated dataset is a
prerequisite for this evaluation [23].
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In the context of veterinary examinations, an animal patient undergoes evaluation
when visible skin alterations are observed. A tissue sample is subsequently obtained and
examined under a microscope, during which an image is generated. In instances where the
image quality is sub optimal or the microscope lens focus is improperly set, the decision
block (binary image classifier) routes the image to the Super-Resolution model. Following
this enhancement process, the segmentation model identifies objects within the image, and
a diagnosis is proposed.

3.1. Novel Dataset

The majority of datasets for Super-Resolution (SR) tasks are artificially generated,
employing image downscaling and interpolation techniques. However, the nature of the
distortion we aim to address is distinct from these methods. Recognizing this led to the
development of an experimental dataset [23] in collaboration with a veterinary expert,
which is elaborated upon in the subsequent chapter.

The following algorithm was proposed for the acquisition of samples:

1. Identify the diagnostic region within the cytological preparation.
2. Adjust the microscope lens focus to obtain a high-quality image.
3. Intentionally alter the microscope’s adjustment knob to degrade the image quality

and sharpness, thereby simulating the real-world distortion.

This approach enabled the generation of a dataset that more accurately represents the
specific type of distortion we aim to mitigate, providing a more suitable foundation for
model training and evaluation as in Figure 2.

Following this procedure we collected 1192 high resolution (2592 × 1944) samples
with their corresponding distorted versions.

(a) Correct image (b) Deliberately distorted image

Figure 2. Examples of high and low sharpness images from the dataset. Magnification 400×.

3.2. Proposed New Super-Resolution Metric

In this study, an additional metric based on frequency analysis is employed as a
novel approach to assess segmentation performance. This method involves grouping
the energy computed using a two-dimensional Discrete Fourier Transform (DFT-2D) by
frequency. This operation enables the observation of the total energy within each frequency
range, providing insights into how machine learning models affect high frequencies in
the image, which contribute to visual sharpness. The procedure for this approach is as
follows (Figure A1):

1. Open an image in YCbCr mode and use only the luminance channel.
2. Compute the two-dimensional discrete Fourier Transform and shift the zero-frequency

component to the center of the spectrum.
3. Calculate the absolute sum of all magnitudes for a chosen set of ring-shaped masks

and display the results in a bar plot.

This method employs visual representation to analyze the frequencies present within
an image. Primary advantage is that it is not based on singular metrics such as SSIM [24]
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or LPIPS [25], as it captures changes in distribution subsequent to the application of filters
or models.

3.3. Research Formula for Specific Medical Use Case with Unknown Degradation

During the course of the research, addressing the super-resolution (SR) task when
the nature of degradation is unknown was a significant concern. The following strategies
were assessed:

1. Use pre-trained models on various datasets;
2. Investigate known degradations, such as bicubic interpolation on our medical dataset;
3. Develop a dedicated super-resolution dataset exhibiting the same degradation in-

tended to be mitigated.

The most favorable results were achieved using the third approach; however, it is
crucial to consider feedback from domain experts in the medical field. It was discovered
that applying super-resolution to images introduced artifacts that would not typically be
present in cytology images. Veterinary specialists tended to favor lower-quality images
over sharper ones, as the artifacts introduced by SR models hindered the diagnostic process.
One of the key conclusions drawn is that a sharper image does not necessarily equate to a
superior model. Therefore, in medical applications metrics cannot be the only evaluator for
performance assessment.

4. Experiments and Results

This chapter provides a detailed look at the experiments conducted during this re-
search study. Each subchapter explains the different stages of the study in a more accessible
way, while still maintaining scientific accuracy.

4.1. Comparison of Possible Distortions in Cytology Imaging

Table 1 presents a list of potential distortions that may occur during image creation
by veterinary experts. These hypothetical scenarios may require the application of Super-
Resolution models as a preprocessing step to recover the images to their desired quality.

4.2. Comparison of Different Image Upsampling Methods Using Scale Factor 2

This section presents a visual analysis of various classical image upsampling tech-
niques when applied with a scale factor of 2. The objective is to evaluate the performance
of each method in terms of image quality, preservation of structural details, and overall
effectiveness in enhancing the resolution of the original image (Figure A2).

4.3. Pretrained Segmentation Model Approach

This section contains the results of inferencing pretrained Super-Resolution models
and measuring their impact on semantic segmentation task on our cytology dataset.

In this comparative analysis, three state-of-the-art image upsampling architectures
were selected for evaluation: SwinIR, BSRGAN, and RealSRGAN. The goal was to assess
each model’s performance in terms of image quality and impact on segmentation metrics.

For segmentation evaluation, a deep learning model based on the Cascade Mask R-
CNN [26] architecture was selected. The ResNeSt101 [27], which employs skip connections
(i.e., input values bypass the current layer without any modifications, and are then summed
with the modified input), was used for feature extraction. The model was initialized
with weights pre-trained on the MS COCO dataset [28] and subsequently fine-tuned on
cytology images.

4.3.1. Impact of Bicubic Interpolation on Segmentation Inference

The results presented in Table 2 reveal an expected trend. As the bicubic interpolation
scaling factor increases, which corresponds to a greater loss of information, both segmen-
tation and super-resolution metrics are negatively affected. A higher scaling factor leads
to increased confusion between objects. For instance, with bicubic interpolation using a



Life 2024, 14, 321 7 of 16

scaling factor of five, almost no cells are accurately recognized for the two cancer types, as
illustrated in Figure A3.

Table 2. Comparison of super-resolution and segmentation metrics using pretrained segmentation
model for inference.

Factor Segm_mAP Avg_Precision Avg Recall PSNR SSIM LPIPS

Original 0.439 0.623 0.679 - 1 0
2 0.392 0.598 0.663 34.98 0.93 0.07
3 0.276 0.492 0.573 32.62 0.82 0.17
4 0.195 0.444 0.540 32.19 0.79 0.26
5 0.113 0.348 0.456 31.68 0.74 0.35

Figure A4 presents the relationship between the segmentation Average Precision
(segmAP) and Peak Signal-to-Noise Ratio (PSNR) metrics. A decreasing trend in the ratio
between these two metrics is observed when the scaling factor increases. This indicates
that, in some cases, a linear correlation exists between the performance metrics of these
two distinct computer vision tasks. As the scaling factor increases, the quality of the image
and segmentation performance both tend to degrade.

4.3.2. Impact of the Pre-Trained Super-Resolution Models on Segmentation Inference

In this phase, a comparative analysis is conducted to evaluate the performance of
the segmentation model on the original dataset opposite to bicubic interpolation with
scaling factors of two and five. The primary objective is to investigate whether employing
pre-trained models can enhance the accuracy of the segmentation process.

The application of various super-resolution (SR) architectures on the original data did
not yield any improvements in segmentation quality. Nevertheless, the minimal loss in
mean average precision (mAP) indicates that the model is proficient in identifying cancer
cells that have undergone enhancement through the SR process (Table 3).

Table 3. Results for inference on the test set for the original dataset.

Data Set
Original Segm_mAP Avg_Precision Avg_Recall PSNR SSIM LPIPS

Original 0.457 0.596 0.654 - - -
RealSRGAN 0.446 0.587 0.540 36.16 0.96 0.050
BSRGAN 0.430 0.572 0.636 33.54 0.93 0.092
SwinIR 0.421 0.567 0.630 35.10 0.96 0.057
SwinIR_large 0.457 0.584 0.643 37.18 0.977 0.041

When employing image enhancement techniques for damaged data with decimation
and bicubic interpolation, the results, as presented in Tables A1 and A2, are found to be
worse. This suggests that the utilization of SR introduces additional noise to the data,
consequently leading to poorer performance by the segmentation model. This outcome was
anticipated, given that the model was pre-trained on original data and was subsequently
required to handle processed data during the inference phase.

The findings indicate that the naive application of SR models to images does not yield
improvements in segmentation quality. However, it does enhance the perceptual quality of
the image, as depicted in Figure A5. In certain instances, it also results in an increase in SR
metrics, as demonstrated in Table 3.

The obtained results were subsequently reviewed in consultation with a veterinary
expert. It was determined that, although the images appeared sharper following the
application of the super-resolution model, the presence of certain artifacts rendered them
less reliable than the original images. The enhanced image quality did not contribute
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to improved diagnostic accuracy, as these artifacts introduced elements that would not
typically be found in cytology images.

4.3.3. Training Semantic Segmentation Model on Super-Resolution Medical Data

In this experiment, we trained and tested the segmentation on data processed in
various ways. As demonstrated in Table 4, we downsampled the images using decimation
and bicubic interpolation and then upsampled using super-resolution architectures. While
this research may not hold practical significance from a medical standpoint, as manipulating
original data is generally discouraged, it does reveal that the optimal results for cancer cell
recognition are obtained when utilizing undistorted, original data.

Table 4. Training semantic segmentation on interpolated and super-resolution data.

Data Set Data Set Explanation Segm_mAP Avg_Precision Avg_Recall

original Original cancer
inflammation dataset 0.494 0.494 0.584

bicubic2

Original dataset decimated
and interpolated using

scaling factor two (half of
the pixels left after

decimation)

0.465 0.465 0.567

bicubic4

Original dataset decimated
and interpolated using

scaling factor four (quarter
of the pixels left after

decimation)

0.423 0.423 0.527

realSRGAN ×4
Original dataset upscaled

using realSRGAN and
resized to original size

0.487 0.487 0.587

BSRGAN ×4
Original dataset upscaled

using BSRGAM and resized
to original size

0.478 0.478 0.587

SwinIR ×4
Original dataset upscaled

using SwinIR and resized to
original size

0.482 0.482 0.579

4.3.4. Dedicated Dataset Experiments for Super-Resolution

Ultimately, the experiments were carried out on a dedicated dataset, with the SwinIR
architecture selected for training [29].

During the exploration of the dataset, the data distribution was analyzed. The his-
tograms presented in Figure A8 showcase the PSNR values for both bicubic interpolation
and our dedicated dataset, in comparison to high-resolution original data. The spectrum
of our dataset is wider and there are images that would be considered of a good quality
in terms of pixel loss. In contrast, bicubic interpolation exhibits less diversity, limiting its
applicability to the restoration of specific distortion types.

The dedicated dataset encompasses various forms of degradation that are likely to be
encountered in cytology images.

The initial experiment exhibited a substantial improvement in the PSNR metric upon
training the SwinIR model on our dataset, as displayed in Table A3. This improvement is
also evident in the inferred images after training, presented in Figure A6.

The transformer model underwent training for approximately 1000 epochs, utilizing
four NVIDIA V-100 GPUs from the ACK Cyfronet Prometheus supercomputer [30]. Default
parameters tailored for the classical super-resolution task were employed. The upsampling
factor was set to 2.

Experiments involving training on our dataset demonstrated a notable improvement
when compared to the bicubic dataset, which is commonly utilized in super-resolution tasks.
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The second experiment focused on examining the influence of the selected spectrum.
We investigated whether a narrow or wide spectrum of our dataset would yield superior
results. Figure A7 illustrates the three distinct segments of the dataset that were employed
in this experiment.

The experiment reveals that training on the widest spectrum (as illustrated in Figure A7)
leads to the the most favorable results for both narrow and wide spectrum test datasets, as
presented in Table A4. This finding suggests that the model effectively learns to reconstruct
images when the training data encompasses a diverse range of distortions with varying
types and levels (Figure 3).

(a) Good quality (b) Distortion (c) Result

Figure 3. Example result for training on a wide spectrum. Magnification 400×.

4.3.5. Improving Segmentation Metrics Results with Super-Resolution

For end-to-end experiments aimed at enhancing segmentation using super-resolution
(SR) architectures, a new subset of the dataset was employed. This subset comprised both
semantic segmentation annotations and distorted images representing the exact same area.

The results depicted in the subsequent table exhibit promising outcomes. In certain
methodologies, the results show improvements when compared to the low-quality dataset.
For instance, with the BSRGAN architecture, employing a 4x upsampling technique fol-
lowed by subsampling to the required resolution, the improvement reaches up to 25%
when compared to the results that would have been obtained using a low-quality dataset.
As anticipated, the most optimal results are achieved when training the segmentation on
high-quality images, where the segm_mAP_75 increase is up to 64%. Interesting aspect of
the following experiments is that using super-resolution as a first step, before subsampling
to desired annotations size leads to better results than the opposite operation. This is
because subsampling as a first step loses even more information that can not be restored
during upsampling step, leading to lower segmentation results.

The intriguing outcome of the subsequent experiments in Table 5 suggests that imple-
menting super-resolution as an initial step, prior to the subsampling process to achieve
the desired annotation size, yields superior results compared to the inverse sequence of
operations. This observed phenomena could be primarily attributed to the fact that the
adoption of subsampling as a preliminary step entails an excessive loss of information.
This loss of detail, once occurred, is unable to be fully recuperated during the upsampling
process, culminating in compromised segmentation outcomes. Hence, the order of these
processing steps plays a critical role in maximizing the data fidelity and overall accuracy of
the segmentation results.
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Table 5. End-to-end pipeline tests BSRGAN.

Experiment
Summary

Segm_
mAP_50

Segm_
mAP_75

Segm_mAP_50
Percent_Change

Segm_mAP_75
Percent_Change

high quality dataset 0.314 0.255 38.94% 63.46%

low quality dataset 0.226 0.156 0.00% 0.00%

subsampling ×2, SR ×2 0.198 0.120 −12.39% −23.08%

SR ×2, subsampling ×2 0.233 0.110 3.10% −29.49%

subsampling ×4, SR ×4 0.227 0.155 0.44% −0.64%

SR ×4, subsampling ×4 0.279 0.195 23.45% 25.00%

5. Conclusions

The presented research, which encompasses two fields of Computer Vision—Super-
Resolution and Semantic Segmentation—underscores the possibility of enhancing the
quality of medical images for their interpretation and analysis. The primary challenges
identified during the investigation include a scarcity of data and differing perceptions
between programmers and medical experts.

The first challenge stems from the nature of the formulated problem. Restoring an
image from an unknown degradation is a daunting task, particularly in medical imaging.
Consequently, a unique dataset was created for this study, enabling improvements in both
super-resolution metrics and human perception. The second challenge arises from the
specific use case provided; veterinary experts analyze medical images differently from
individuals unfamiliar with cytology. The realization that sharper, high-resolution images
are not always preferable for diagnosis due to artifacts observable after applying AI models
was not immediately evident.

This research primary achievements include formulating a potential procedure for
addressing unknown degradation, such as incorrectly set sharpness on a microscope. The
steps taken during the experimental phase could potentially be applied to other domain-
specific use cases. Another valuable aspect is the identification and analysis of possible
distortions in medical imaging. We facilitated a better understanding of the problem’s
nature and its uniqueness compared to standard Super-Resolution tasks.

Finally as expected, the substantial increase in the PSNR measure during SwinIR archi-
tecture training (Table A3) and the visual perception improvement shown in Figure A6 are
noteworthy. The remarkable improvement of up to 25% in certain experimental scenarios,
with respect to the segm_mAP metric change, is also worth mentioning. This underscores
the potential of the applied methods in enhancing the performance of image segmentation
tasks in medical imaging.
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Appendix A

Figure A1. 2D-DFT magnitude bar plot for original image and two bicubic interpolation degradations,
example with 10 ring-shaped masks.

(a) Without processing (b) Nearest neighbour (c) Bilinear interpolation

(d) Bicubic interpolation image (e) Lanczos 2 (f) Box shaped kernel

Figure A2. Comparison of different image upsampling methods using Scale 2. Magnification 400×.
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Figure A3. True Positive cell detection numbers for different scaling factors.

Figure A4. Correlation between segmAP and PSNR metrics for different scaling factors.

(a) Distortion (b) Good quality (c) BSRGAN

(d) realESRGAN (e) SwinIR (f) SwinIR large

Figure A5. Example results of chosen architectures (cropped part of the image). Magnification 400×.
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(a) Good quality (b) Distortion (c) Dedicated start

(d) Dedicated stop (e) Bicubic start (f) Bicubic stop

Figure A6. Comparison of results for training on dedicated and bicubic datasets. Magnification 400×.

Table A1. Results for inference on the test set for bicubic interpolation with Factor 2.

Data Set
Bicubic2 Segm_mAP Avg_Precision Avg Recall PSNR SSIM LPIPS

original 0.426 0.566 0.633 34.69 0.92 0.0084
realSRGAN 0.379 0.559 0.624 34.49 0.92 0.073
BSRGAN 0.360 0.536 0.607 33.77 0.90 0.090
SwinIR 0.345 0.534 0.606 33.54 0.91 0.087
SwinIR_large 0.339 0.541 0.613 33.70 0.91 0.091

Figure A7. Histogram presenting chosen spectrums.
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Table A2. Results for inference on the test set for bicubic interpolation with Factor 5.

Data Set
Bicubic5 Segm_mAP Avg_Precision Avg Recall PSNR SSIM LPIPS

original 0.116 0.311 0.419 31.58 0.72 0.377
realSRGAN 0.092 0.300 0.397 31.38 0.69 0.252
BSRGAN 0.093 0.276 0.381 31.46 0.70 0.282
SwinIR 0.071 0.250 0.374 31.29 0.69 0.301
SwinIR_large 0.055 0.227 0.357 31.17 0.67 0.348

Table A3. Dedicated and bicubic results.

Train Data Set Test Data Set PSNR

bicubic dedicated 25.84
dedicated dedicated 29.99

Table A4. Spectrum experiments PSNR value.

Trained

Validated

Spectrum Narrow Middle Wide

Narrow 30.41 30.14 29.73
Middle 30.64 30.06 29.69
Wide 30.76 29.40 29.90

(a) Bicubic interpolation histogram (b) Dedicated dataset histogram

Figure A8. Comparison of histograms for datasets.
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