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Abstract: Secondary acute myeloid leukemia (sAML) is a heterogeneous malignant hematopoietic
disease that arises either from an antecedent hematologic disorder (AHD) including myelodysplastic
syndromes (MDS), myeloproliferative neoplasms (MPN), aplastic anemia (AA), or as a result of
exposure to genotoxic chemotherapeutic agents or radiotherapy (therapy related AML, tAML). sAML
is diagnosed when the number of blasts is ≥20% in the bone marrow or peripheral blood, and it
is characterized by poor prognosis, resistance to therapy and low overall survival rate. With the
recent advances in next generation sequencing technologies, our understanding of the molecular
events associated with sAML evolution has significantly increased and opened new perspectives
for the development of novel therapies. The genetic aberrations that are associated with sAML
affect genes involved in processes such as splicing, chromatin modification and genome integrity.
Moreover, non-coding RNAs’ emerged as an important contributing factor to leukemogenesis. For
decades, the standard treatment for secondary AML has been the 7 + 3 regimen of cytarabine and
daunorubicin which prolongs survival for several months, but modifications in either dosage or
delivery has significantly extended that time. Apart from traditional chemotherapy, hematopoietic
stem cell transplantation, CAR-T cell therapy and small molecule inhibitors have also emerged to
treat sAML.
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1. Introduction

Acute myeloid leukemia (AML) is defined as a heterogeneous malignant clonal disor-
der of hematopoietic stem cells (HSC) and is the most common myeloid disorder among
adults. This disease can be secondary (sAML) to either an AHD such as MPN and MDS or
as a consequence of a prior treatment (tAML), or without an AHD history in the case of de
novo AML [1–3]. MPNs lack cytopenia and are instead characterized by heightened differ-
entiation of progenitor cells and are negative for the BCR-ABL fusion protein. They are
divided into three main sub-categories: polycythemia vera (PV), essential thrombocythemia
(ET), and myelofibrosis (MF) [4]. MPN rates of progression to sAML vary by subtype:
on average 15% of PMF patients, 8.35% of PV patients, and 1.85% of ET patients develop
sAML over a ten-year period [5]. MDS are narrow clonal stem cell disorders characterized
by heightened cytopenia in the blood and bone marrow due to apoptosis of hematopoietic
progenitor cells, and one third of these syndromes progress to sAML [6,7]. AA is a rare,
life-threatening bone marrow disorder characterized by deficiencies in hematopoietic cell
production resulting from T-cell mediated autoimmunity. Like other AHDs, approximately
15–20% of AA patients over a ten-year period progress further to MDS/sAML. In addition
to mutations and chromosomal abnormalities (Figure 1), other factors including telomere
attrition, time to therapy, and the patient response to initial immunosuppressant treatment
contribute to disease progression [8,9].
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factors including telomere attrition, time to therapy, and the patient response to initial 
immunosuppressant treatment contribute to disease progression [8,9]. 

 
Figure 1. Schematic representation of mutations, abnormalities and factors driving different hema-
tological disorders and their progression to AML/sAML. Red: chromosomal abnormalities, blue: 
gene mutations, purple: therapeutic agents [10–26]. 

Unlike AHDs, sAML is a severe disease with a poor prognosis that has an overall 
survival time of 4.7 months and an event-free survival time of 2.9 months [27]. The disease 
affects the elderly and the majority of diagnosed cases are over 65 years old: the median 
age of diagnosis is 67 years old with a third of patients over the age of 75. Common mu-
tations that lead to the evolution of sAML are found in members of the spliceosome such 
as SRSF2, epigenetic modifiers including TET2, IDH1/2, ASXL1, and EZH2, or TP53 which 
maintains genomic integrity [28]. The aforementioned mutations are acquired on top of 
the mutations driving MDS or MPN development [29–35]. 

According to the 2016 WHO classification, patients are diagnosed with sAML when 
the percentage of myeloblasts in the bone marrow and/or peripheral blood is equal to or 
greater than 20% [36,37]. Although blast count has been set as the differentiator between 
the three phases, there are limitations to this method in that the blasts under examination, 
commonly through microscopy, are not easily distinguishable between normal samples 
and those of MDS and MPN patients. In addition to blast count, there are other indicators 
of progression to sAML, such as decreased apoptosis in the case of post-MDS sAML and 
increased cell proliferation for post-MPN sAML [38–40]. The vast majority of sAML pa-
tients progress from MDS (~85%) and upon exposure to therapy (~9%) (Figure 2). MPN 
and AA contribution is lower with (~5%) and (~1%), respectively [5,7,41–44]. 

Figure 1. Schematic representation of mutations, abnormalities and factors driving different hemato-
logical disorders and their progression to AML/sAML. Red: chromosomal abnormalities, blue: gene
mutations, purple: therapeutic agents [10–26].

Unlike AHDs, sAML is a severe disease with a poor prognosis that has an overall
survival time of 4.7 months and an event-free survival time of 2.9 months [27]. The disease
affects the elderly and the majority of diagnosed cases are over 65 years old: the median age
of diagnosis is 67 years old with a third of patients over the age of 75. Common mutations
that lead to the evolution of sAML are found in members of the spliceosome such as SRSF2,
epigenetic modifiers including TET2, IDH1/2, ASXL1, and EZH2, or TP53 which maintains
genomic integrity [28]. The aforementioned mutations are acquired on top of the mutations
driving MDS or MPN development [29–35].

According to the 2016 WHO classification, patients are diagnosed with sAML when
the percentage of myeloblasts in the bone marrow and/or peripheral blood is equal to or
greater than 20% [36,37]. Although blast count has been set as the differentiator between
the three phases, there are limitations to this method in that the blasts under examination,
commonly through microscopy, are not easily distinguishable between normal samples
and those of MDS and MPN patients. In addition to blast count, there are other indicators
of progression to sAML, such as decreased apoptosis in the case of post-MDS sAML
and increased cell proliferation for post-MPN sAML [38–40]. The vast majority of sAML
patients progress from MDS (~85%) and upon exposure to therapy (~9%) (Figure 2). MPN
and AA contribution is lower with (~5%) and (~1%), respectively [5,7,41–44].

The outcome of sAML patients correlates with the mutational landscape. For example,
patients with TP53 mutations, roughly 10–15%, have a worse outcome than those with
wild type TP53. Not just due to the pernicious nature of these mutations, but also because
of the co-occurring mutations including but not limited to IDH2 and NPM1. Due to the
difference in mutation profiles between sAML and de novo AML, the treatment regimen
has not been as successful when applied to sAML. For example, TP53 mutant patients had
an overall survival of 8 months with induction therapy compared with 1.7 months for those
without. The hazard ratio for having a TP53 mutation was 3.1-fold which is higher than
either increasing age or performance status, although co-occurring mutations in FLT3 had
a slightly smaller ratio of 3.01 [45]. The most recommended method for treating sAML is
allogeneic stem cell transplantation (alloSCT) due to the highest probability of success [46],
especially compared with the more traditional method of 7 + 3, or 7 days of continuous
dosing of cytarabine followed by 3 days of IV injection of daunorubicin, which has been
the standard for decades [47]. However, direct comparison studies have shown that sAML
patients are consistently less responsive to 7 + 3 treatment compared with de novo AML,
and have a lower overall survival rate with this regimen, prompting the need for new
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therapies to be developed [48,49]. In this review, we discuss the recent advances in sAML
progression, and we elaborate on the factors that drive the clonal evolution and discuss the
different approaches used in the treatment of patients.
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Figure 2. Pie chart displaying estimated proportions of sAML patients by history based on studies
monitoring leukemic transformation. Each color represents the proportion of sAML patients by class.
Percentages based on average incidence per 100,000 people.

2. Pathophysiology of sAML

The WHO standard of a ≥20% blast count to differentiate between sAML and an-
tecedent disorders is arbitrary like any threshold, but also has a potentially decisive impact
on patients who may either display other characteristics of sAML with a blast count below
the threshold or do not display characteristics of leukemogenesis despite having surpassed
the threshold [50]. Therefore, this approach does not always assure diagnosis accuracy
or reflect the complexity of leukemogenesis nor does it guarantee the optimal treatment
for the patient. It is crucial to note that there are additional factors such as mutation
type influencing diagnosis and treatment regimens. During the progression process, the
immune system responds to the growth of the malignant cells. For example, Bauer et al.
have shown a shift in immune cell populations between healthy donors’ bone marrow
samples and those diagnosed with either MDS or sAML: there were neither CD3+CD8+ nor
CD3+FOXP3+ T cells within a 25-micron radius in healthy bone marrow samples, but both
of these populations were present in sAML patients at much higher levels. However, when
comparing subsets of sAML, the outcomes were not uniform: in contrast to patients with
TP53 mutations, patients with mutations in either signal transduction genes, chromatin
modifiers, or splicing factors showed a significant increase in both populations [51].

One of the reasons why sAML is more common in older patients, especially over the
age of 60, is the phenomenon of clonal hematopoiesis of indeterminate potential (CHIP),
which is defined as having more than 2% mutant hematopoietic stem cells (HSC) without
a history of either cytopenia or myeloid neoplasms. The risk for patients accumulates
every year by 0.5–1%, thus most sAML patients skew older with some exceptions such as
Fanconi anemia (FA) that progresses earlier. FA is a rare blood disorder characterized by
a selective growth advantage to HSCs with an extra copy of 1q, leading to bone marrow
depletion and an elevated risk of both MDS and later sAML [52,53]. However, in cases of
cytopenia where patients do not exactly meet the criteria for MDS, they are diagnosed with
clonal cytopenia of undetermined significance (CCUS) [54]. A 2023 study of UK Biobank
patients found that patients diagnosed with either CCUS or CHIP had a significantly higher
risk to develop MPNs and subsequently sAML: 1.74 for the former and 2.63 for the latter.
For comparison, the risk for patients over 65 to develop MPN/sAML was 1.53 and the
risk associated with the total number of mutations was 2.32. Non-genomic factors like
red blood cell width distribution (RDW) over 15% or the mean corpuscular volume over
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100 fL (MCV) had even higher risks: 3.63 and 4.03 [55]. RDW is also a biomarker for
leukemic transformation: a higher RDW is not only used to distinguish MDS patients from
healthy ones, but it is also a reliable predictor of leukemogenesis years after the initial MDS
diagnosis. Higher RDW is associated with overall worse outcome in patients who have
been treated with alloSCT and increased possibility to have passenger mutations in genes
like NPM1 or ASXL1 [56].

In terms of cytogenetic risk for leukemic transformation, chromosomal mosaicism
is also positively correlated with MPN formation: the 10-year cumulative incidence with
mosaicism was 83% and 43% without it [55]. Moreover, chromosomal abnormalities impact
diagnosis. For example, t(8;21) is associated with a favorable diagnosis, whereas poor
prognosis is associated with −7, inv(3)/t(3q)/del(3q), −7/del(7q), or complex karyotype
(CK) with ≥3 abnormalities, which substantially increases the risk of leukemic progres-
sion [57,58]. A recent study has reported a case of a 44-year-old female with MDS/MPN
where constitutional trisomy 21 was the only identified chromosomal abnormality [59].
Due to higher average age, the risk of an adverse karyotype is higher in sAML than in
de novo. Compared with de novo AML, sAML patients have lower overall platelet and
leukocyte counts, as well as a lower blast percentage in either bone marrow or peripheral
blood [60]. Another study found that 81% of post-MDS sAML patients had a lower WBC
count compared with 68% of MPN blast phase or 60% of de novo AML cases (Table 1) [61].

Table 1. Hematological features associated with MPN, MDS, sAML and de novo AML.

Clinical Overview Healthy MDS MPN sAML De Novo AML

Age (y) 18–65 53–98 18–92 21–77 18–59
White Blood Cells

(109/L) 4–11 1.1–17.9 7.2–14.7 0.8–144.1 0.77–419.9

Platelets (109/L) 150–450 8–505 376–720 3–752 30–171
Hemoglobin (g/L) 120–175 47–149 109–173 34–143 2–1726

Clinical record Free of treatment
and transfusion

Both therapy free
and treatment *

3 + 7 regimen
Hypomethylation or
palliative treatment

3 + 7 regimen

Reference [62] [63] [64] [65] [65]

* anti-platelet drugs, cytoreductive therapy, JAK-2 inhibitors, immunomodulators, venipuncture, and supportive
RBC transfusions.

Another factor that contributes to sAML progression is inflammation through im-
mune system dysregulation. Patients with autoimmune diseases (AIDs) are already at
higher risk of developing sAML due to the elevated levels of inflammatory cytokines in the
blood [66,67]. A recent study demonstrated that the increase in inflammation is particularly
observed in MPN patients with TP53 mutations, either heterozygous or multi-hit, where
the mutant myeloid cells gain a selective advantage over erythroid cells, especially those
with WT TP53, which leads to a distortion in the ratio between erythroid and myeloid
progenitor cells [68]. For example, TNF drives malignant clonal dominance by targeting
healthy myeloid progenitor cells with both apoptotic and necroptotic signaling while malig-
nant cells are left unaffected and able to proliferate through immuno-evasive mechanisms.
Moreover, constitutive NFκB activity has been reported in both MPN/MDS and sAML
patients [68–70]. In the case of MDS progressing to sAML, the chemokine receptor CCRL2,
normally expressed in granulocytes, monocytes and NK cells is up-regulated in stem
cells, which in turn stimulates IL-8 and the chemokine receptor CXCR2 [71,72]. On the
other hand, IL-8 is a catalyst for several downstream pathways that promote proliferation,
especially in tumors, including NFκB, MAPK, AKT, STAT3, and β-catenin. In a study
conducted by Montes et al., compared with healthy donors, patients with MDS and sAML
have significantly reduced counts of both CD4+ T lymphocytes and NK cells, with sAML
having a higher count of CD4+ T lymphocytes than MDS, but lower than healthy donors.
This illustrates that at least the correlation between CD4+ T lymphocytes and MDS pro-
gression to sAML is not linear. In tandem with lower counts of proactive immune cells,
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programmed death ligand 1 (PD-L1) is upregulated, which suppresses the T-cell response
to tumor growth and permits clonal expansion and metastasis of leukemic cells [73,74].
Patients with sAML have lower or similar expression levels of PD-L1 compared with
MPN/MDS, with no difference between early and advanced stages of MDS; suggest-
ing that the peak of PD-L1 expression results in a long-term suppression of the immune
response that allows subsequent mutations to develop and trigger the progression to
sAML [75]. In parallel, monocytic myeloid-derived suppressor cells (Mo-MDSC), another
immuno-suppressive cell type, has been shown to have stronger positive correlation with
the progression to sAML from MDS [74,76]. In addition, alteration in the extracellular
matrix (ECM), and in particular the leucine-rich proteoglycan biglycan (BG), contributes
to the heightened inflammatory environment observed in both MPN/MDS and sAML.
BG is expressed in the bone marrow of both MDS and sAML patients but not in healthy
individuals: it promotes cell signaling, bone mineralization, and differentiation. The pres-
ence of BG was positively correlated with activity of inflammasome components such as
IL-1β, IL-18, and IFN-α. There was no significant difference in BG bone marrow expression
between MDS and sAML patients. The hazard ratio of BG-high MDS patients versus
BG-low patients for progression to sAML was 8.3 [77].

Another key feature of sAML is the increased self-renewal activity of pre- Leukemic
Stem Cells (pre- LSC) through the WNT/β-catenin pathway activation during progres-
sion, which produces three main LSC phenotypes: multi-potent progenitor (MPP), lym-
phoid primed multi-potent progenitor (LMPP) and granulocyte-macrophage progenitor
(GMP) [78]. Compared with de novo AML, sAML patients had higher amounts of MPP-like
LSCs and LMPP-like LSCs, and this difference was more pronounced in post-MPN sAML.
Post-MDS sAML patients had more GMP-like LSCs than post-MPN patients, but similar to
de novo AML. The first two types of LSCs were strongly correlated with poor prognosis
while GMP-like LSCs were more commonly seen in patients (either de novo or sAML) with
either an intermediate or favorable prognosis. There was no difference in terms of LSC
type distribution between patients younger than 65 and those older than 65 [79].

In contrast to increased pre-LSC activity in MPN patients progressing to sAML, there
is a negative correlation between interferon (IFN) activity and risk of sAML. A study by
de Castro et al. categorized MPN patients by both LSC and IFN activity and found that
those with both the lowest IFN and highest LSC activity had the greatest risk of progression
to sAML. Clonogenicity was significantly higher in this cohort compared with the rest
of the study population, and the result was the same when comparing before and after
transformation. The low IFN activity in these transforming cells also results in a more
chaotic microenvironment where endothelial cells are dysregulated, and leukocytes are
behaving abnormally while under increased oxidative stress [80].

The transition to sAML is accompanied with a shift in the clonal architecture inside
the bone marrow. This shift is correlated with the number of acquired mutations during
progression. Static shift occurs when mutations are acquired sequentially and the clones
with the most mutations gradually dominate the bone marrow. Dynamic-S (for single
nucleotide variant) shift occurs upon acquisition of multiple mutations that can be in
multiple categories simultaneously (Table 2) and their rise to clonal dominance is expedited.
Finally, the Dynamic-C (for chromosomal) shift is similar to Dynamic-S except that instead
of gaining mutations, the clones acquire chromosomal abnormalities that confer a selective
advantage (Table 3) [81]. Most genomic aberrations are either initiators in terms of clonal
expansion and myeloid transformation or acquired after the process has begun [82].

3. Cytogenetics and Mutational Landscape of sAML

Like other cancers, AHD progression to sAML is a gradual process that is accom-
panied by chromosomal abnormalities and acquisition of mutations in genes involved
in several processes such as signaling, splicing, cell cycle, and chromatin modification
(Tables 2 and 3). In MPNs, the most prevalent driver mutation is JAK2 V617F, which
accounts for 98% of PV, 55–60% of ET, and MF cases. Frameshift mutations in calreticulin
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(CALR) represent 20–25% of ET and MF patients. In MDS, the most common mutations
affect the members of the spliceosome such as SF3B1, SRDF2, U2AF1, and ZRSR2; and DNA
methylation and chromatin remodeling such as TET2, DNMT3A, IDH1/2, and ASXL1 [83].
Before progression to sAML, patients acquire mutations in other genes. Luque Paz et al. per-
formed a molecular study by targeted sequencing on 49 PV and ET patients after leukemic
transformation and they found that certain mutations, in particular spliceosome members
such as SF3B1, were classified as “short-term” mutations that resulted in a rapid transforma-
tion, while other mutations, such as TP53 and ATM, were considered “long-term” as they
took many years to occur but also had a poor prognosis upon transformation. TP53 requires
both wild-type alleles to be mutated as opposed to other genes and thus it takes more
time [84]. Makishima et al. analyzed the mutation landscape in 2250 MDS patients that
evolved to sAML and they have shown that the number of mutations, their diversity and
clone sizes significantly increased. Based on their mutational landscape, they categorized
the patients into two groups. Patients with FLT3, PTPN11, WT1, IDH1, NPM1, IDH2, and
NRAS mutations were associated with lower risk of progression. Whereas patients with
mutations in genes such as TP53, GATA2, KRAS, RUNX1, STAG2, ASXL1, ZRSR2, and TET2
were in the high-risk category [85].

Table 2. Mutated genes implicated in leukemic transformation and clonal expansion.

Category of Genes Examples Citations

Spliceosome SRSF2, U2AF1, SF3B1 [86,87]
DNA Methylation DMNT3A, TET 1/2, IDH 1/2, [88,89]

Activated Signaling CALR, JAK2, PTPN11, TpoR,
KRAS, FLT3, NRAS [90,91]

Transcription Factors RUNX1, NFE2, TP53 [92–96]
Chromatin Modification EZH2, ASXL1, NPM1 [89,97]

Despite the overlap in the genetic profile, the events accompanying leukemic transfor-
mation are not identical between the two disorders: post-MDS sAML is mainly initiated
upon acquisition of mutations in: proteins involved in signaling (eg, K-Ras, N-Ras and
FLT3), transcription factors (RUNX1, GATA2, CEBPA), or nucleophosmin 1 (NPM1) [98].
On the other hand, post-MPN sAML is mostly associated with the loss of TP53, RUNX1,
IDH1/2, EZH2, and ASXL1 (Table 2) [84,99,100]. The rate of leukemic progression varies
largely between the three subtypes of MPNs, with MF patients having the highest rate
and ET the lowest [5]. A higher proportion of MDS patients progress to sAML: roughly
one third will undergo leukemic transformation over a ten-year period [5]. tAML patients
usually acquire mutations in genes like TP53, TET2, DNMT3A, IDH2, NRAS, RUNX1, and
SRSF2 before the initiation of therapy. After treatment, they gain mutations in FLT3, IDH1
and NPM1, which drive progression [101,102].

Alterations in the TP53 pathway are one of the main drivers of this process; however,
the molecular mechanisms behind it are obscure and require further investigations. TP53
loss by point mutations or chromosomal abnormalities such as gain of 1q that results in
the amplification of MDM4, a p53 negative regulator, or deletion of 17p accounts for up
to 50% of MPN cases evolving to sAML [19,25,83,92,93,103]. 1q gain is mostly found in
PV patients; however, 17p deletions are common in MF patients [25]. TP53 mutations
are also found in post-MDS sAML, but with a lower frequency (5–10%). This frequency
increases with age and in patients with complex karyotype or with a loss of chromosomes
5/5q, 7/7q, and 17/17p [104–108]. For tAML patients, TP53 bi-allelic mutations occur in
25%-50% of the cases making it the most frequently seen mutation in this disease [101,102].
sAML with TP53 mutations is highly aggressive and characterized by poor prognosis
and short overall survival rate [109]. sAML patients usually lose both alleles of TP53
either by homozygous point mutations, or a point mutation with uniparental disomy
(UPD) [19,92,103]. Monoallelic mutations are mostly found in the MDS/MPN-BP (blast
phase) stages, and pretreatment stage in tAML; which forms a fertile ground for progression.
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Upon the loss of the second allele, transformation to sAML is accelerated, indicating a key
role for TP53 in this process.

In a fraction of FA patients evolving to sAML, dysfunction in DNA repair proteins
like BRCA2 as well as duplication 1q have been characterized [53]. Alternatively, other
alterations trigger progression to MDS and sAML: either monosomy 7q or duplication of 3q
which contains the secondary oncogene RUNX1. Both of these chromosomal abnormalities
occur after bone marrow cells enter the blast phase [110]. Pezeshki et al. found that roughly
14% of FA patients progressed to sAML, significantly higher than other hematological
disorders such as Shwachman–Diamond syndrome or Diamond–Blackfan anemia, and
this was caused by the higher abundance of cytogenetic abnormalities [111]. The loss of
7q contributes to sAML because of the triune of LUC7-like proteins, especially LUC7L2,
that interact with the spliceosome and regulate exonic splicing. Upon downregulation
of LUC7-like genes, both intron retention and exon skipping increase. This is clinically
relevant given that these genes are disproportionately expressed in the bone marrow and
thymus, highlighting their importance [112].

Table 3. Chromosomal abnormalities correlated with sAML transformation.

Type of Chromosomal Abnormality Examples Citations

Deletions del(7q), del(5q), del(17p) [106,113]
Duplications dup(1q), dup(3q), dup(11q), dup(17q) [114–116]

Translocations t(1;11)(q21;p15), t(10;11)(q22;q23), t(8;21) [65,117,118]
Inversions inv(3)/t(3;3) [24]
Monosomy −7 [87,119]

Trisomy +8, +19, +21 [59,87,120]
Uniparental disomy UPD(9p), UPD(1p), UPD (17p) [75,92,121]

Another important gene that is frequently mutated in sAML is NPM1, or nucleophos-
min 1, which normally functions as a histone-binding, DNA-stabilizing factor as a response
to UV-induced DNA damage, but when overexpressed, it contributes to uncontrolled cell
proliferation. NPM1 is not enough to trigger the progression to sAML on its own, and any
mutation in the NPM1 gene is generally preceded by a mutation in DNA methyltransferase
3A (DMNT3A), permitting clonal expansion of hematopoietic stem cells into myeloid pro-
genitor cells. NPM1 mutant cells are characterized by down-regulation of TP53 activity and
decreased apoptosis as well as Myc up-regulation. A third mutation in FLT3-ITD (fml-like
tyrosine kinase 3) after NPM1 completes the path towards leukemogenesis, and patients
with this combination of mutations, observed in 40% of those who have sAML derived
from MDS, have a much poorer prognosis and shorter overall survival rate [2,60,96].

In addition, non-coding RNAs emerge as important players in leukemogenesis.
For example, the miR-320 family of microRNAs (miRNAs), which are down-regulated
in many types of cancer, are up-regulated in sAML. Compared with normal patients, both
MDS patients with an intermediate-to-high risk for progression and sAML patients had
significantly higher levels of these miRNAs expressed in the bone marrow. All miR-320
family members were negatively correlated with overall survival in MDS patients, but their
exact contribution to leukemic progression remains elusive [122]. miR-196 is involved in
MDS progression to sAML by contributing to both increased myeloid cell differentiation
and proliferation as well as decreased apoptosis [123]. A miRNA microarray screening
revealed a strong correlation between miRNAs associated with cytokine signaling activa-
tion, particularly the Toll-like receptor (TLR) family and interleukins, and progression of
MDS [124]. Furthermore, the progression is also facilitated by mutations in certain miRNAs.
A study performed on 326 patients undergoing alloSCT for sAML after a prior diagnosis of
MDS revealed that mutations in miR-142 are recurrent in these patients [125]. Mutations
are not the only source of miRNA alterations: deletions of entire chromosome sections
also contribute to their loss of function: the deletion of the chromosome 7q32 coding for
pro-apoptotic miRNAs in MDS patients has been strongly correlated with cell proliferation
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and progression [126]. Additionally, the lncRNA growth arrest-specific transcript 5 (GAS5)
acts as both a negative regulator of the oncogenic miR-222 and a positive regulator of the
tumor suppressor PTEN. Pavlovic et al. observed lower levels of GAS5 in sAML compared
with healthy donors [127].

Extensive sequencing analysis revealed that RNA-binding proteins (RBPs) are es-
sential in normal hematopoiesis, and their mutation is associated with 55% of sAML
patients [86,87,128]. RBPs play an important role in RNA splicing, stability, translation,
and localization; in addition to controlling the production of different isoforms, which has
been reported to impact cancer development through regulation of different mechanisms
such as proliferation and differentiation [128]. Moreover, they play key roles in miRNA
biosynthesis and maturation. A recent study has reported an inverse correlation between
the presence of mature miRNA and the progression to sAML. Bauer et al. observed down-
regulation of the ribonucleases Dicer and Drosha in bone marrow samples from sAML
patients and attributed heightened immature miRNA levels to the relative sparsity of these
proteins [129]. RNA splicing factors SF3B1 and SRSF2, associated with exon skipping and
nonsense-mediated decay of homeostatic proteins, contribute to the etiology of sAML and
are associated with a poor prognosis in patients. Although elevated levels of mutations in
these splicing proteins have been observed in sAML, as well as other myeloid malignancies,
the reason as to why these mutations are elevated in these diseases has yet to be fully
explained [86]. A major contributor to the pro-inflammatory switch between MPN/MDS
and sAML is the change in isoform of adenosine deaminase acting on RNA 1 (ADAR1)
from a constitutively active isoform to an isoform selective for inflammatory signaling,
thus facilitating leukemogenesis. ADAR1 increases the risk of progression, but it does not
act on its own. In tandem with another pro-inflammatory chemokine, apolipoprotein B
mRNA editing enzyme catalytic polypeptide like type 3 (APOBEC3), ADAR1 promotes
aberrant RNA editing, which enhances alternative splicing of STAT3 into its STAT3β proac-
tive isoform that prevents β-catenin phosphorylation and degradation, allowing the Wnt
pathway to continue driving proliferation and leukemogenesis [130].

4. Treatment of sAML

The standard of care for sAML patients is the 7 + 3 regimen, which has been im-
proved through a liposomal delivery system CPX-351 (Figure 3) [131]. However, its
relative inadequacy towards sAML has propelled a drive towards developing more suc-
cessful therapeutics. In addition to delivery, this regimen was also modified in an ex-
perimental study where cytarabine at a low dose (40 mg/m2 for 10 days compared with
100 mg/m2 for 7 days for 7 + 3) in combination with the cytotoxic purine analog cladribine.
The objective of the low cytarabine study is to test the regimen for patients who were
considered unfit for intensive chemotherapy. Overall survival for the entire cohort was
seven months, which is promising considering that the average age of the cohort was
70 years old, and 40% of the patients had high risk genetic profiles. However, the survival
time for those who had complete remission (CR) was 21 months, also adding to the op-
timistic prospects for this modified regimen [132]. Taking a more preemptive approach
towards treatment, the tumor suppressor FBX011 was identified via CRISPR-Cas9 as a
contributor to aberrant RNA splicing via EZH2 and cytokine-independent growth once it is
inhibited. One candidate for preventing the down-regulation of FBX011 was bortezomib, a
proteasome inhibitor already approved by the FDA for the treatment of multiple myeloma
and mantle cell lymphoma, but it did not improve the overall survival of sAML patients
in a randomized Phase 2 trial. Bortezomib was screened in conjunction with decitabine, a
DNA-hypomethylating agent (HMA) currently approved for treatment of MDS. Decitabine
has also been used for treating MDS patients that have crossed the 20% blast threshold and
progressed towards sAML as an alternative to chemotherapy. HMAs have also been shown
to significantly decrease the progression from MPNs to sAML by inducing a viral mimicry
response to upregulate IFN activity and reduce LSC levels [80,133–135].
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Another class of drugs used in combination with decitabine to treat sAML are in-
hibitors of BCL-2 like proteins, which help LSCs evade apoptotic mechanisms. Venetoclax
(BCL-2 inhibitor) has been successfully tested for both de novo AML and tAML in terms of
CR, with CR rates for these two AML variants above 70%. However, for post-MDS sAML,
the hazard ratio of resistance to treatment is 2.01 compared with de novo AML, and this
is likely influenced by two factors: the first is that some of the post-MDS sAML patients
had previously received HMA treatment and the second is that some of these patients also
had the RUNX1-RUNX1T1 fusion gene that confers resistance to HMA treatment [136].
Even with the combination of venetoclax and decitabine, it is possible for sAML patients to
relapse because of the overexpression of the “don’t eat me” signal CD47. An anti-CD47
antibody, magrolimab, has been developed and is currently being tested on sAML patients
in combination with venetoclax and decitabine in ongoing clinical trials [137]. Besides
decitabine, another HMA, 5-azacitidine (AZA), has also been screened against post-MDS
sAML, especially in patients with TP53 mutations. AZA and APR-246, a pro-apoptotic
agent that restores the normal function of TP53, synergistically suppress AML cell growth
by promoting cell cycle stagnation at the G0 phase and apoptosis. APR-246 also halted
cell growth in the absence of AZA, but not to the same extent. Another pro-proliferation
pathway, FLT3, was also inhibited by this combination. However, the effects of the AZA-
APR-246 combination were reversed by the presence of the FLT3 ligand [138].

For post-MPN sAML in particular, there is the promising option of combining in-
hibitors for both the lysine demethylase LSD1 and the bromodomain and extra-terminal mo-
tifs (BET). Using CRISPR knockouts of LSD1 in post-MPN sAML, SET-2 cells demonstrated
both increased apoptosis and differentiation compared with control cells.
LSD inhibitors used in combination with either ruxolitinib or BET inhibitors do not develop
any non-genetic resistance to either of those treatments in sAML xenografts in mice models.
Moreover, either of these combinations are proven to be efficient on cells derived from
sAML patients suffering from relapse post-3 + 7 treatment [139]. Another recently identified
target, that also works synergistically with ruxolitinib and persists in ruxolitinib-resistant
post-MPN sAML cells, is CDK9, a transcription-promoting enzyme that helps prolong the
lifespan of otherwise short-lived mRNAs for oncogenes like c-Myc. When treated with
a combination of a CDK9 inhibitor (NVP2) and ruxolitinib, these cells underwent higher
levels of apoptosis accompanied with less chromatin accessibility, thus also leading to
decreased Myc transcription [140,141].



Life 2024, 14, 309 10 of 18

Recent studies present rebecsinib as a novel potential drug that targets LSCs.
It specifically inhibits the p150 subunit of ADAR1, which is activated by the inflamma-
tory cytokines and clonal expansion. Another recent comparative whole-genome and
whole-transcriptome sequencing analysis of FACS purified pre-LSCs from MPN patients
documented APOBEC3C upregulation, increased C to T mutational burden, and HSPC
proliferation during evolution. Pre-LSC to LSC evolution is associated with STAT3 edit-
ing, STAT3β isoform switching, and increased ADAR1 p150 expression [130]. There was
consistently decreased STAT3 phosphorylation and significantly improved survival of
treated mice. These studies are notable because they did not just use samples from sAML
patients but also from MDS and MPN as well, suggesting that rebecsinib could potentially
work as a preventative measure for the progression to sAML and also as a treatment to
prevent relapse for sAML patients. ADAR1 is a promising target because of both its strong
stimulation of LSC proliferation in an immuno-evasive manner and its weak association
with normal myelopoiesis [130,142–144].

Another relatively more efficient strategy for sAML treatment is alloSCT (Figure 4),
but it has a generally lower response and overall survival rate compared with that of de
novo AML. These worse indices are in spite of the higher incidence of graft versus host
disease in de novo AML [145]. Nilsson et al. demonstrated the high potential of alloSCT
when applied after chemotherapy: the 5-year overall survival rate for sAML patients who
had an AHD was 28% for those who underwent transplantation compared with 2% for
those who underwent chemotherapy. Post-remission survival rates were significantly
higher for sAML patients with alloSCT, but lower than de novo AML (52% versus 65%
respectively) [146]. tAML patients, however, since they have a higher risk of relapse
because of the presence of comorbidities, show poor outcomes upon alloSCT treatment [21].
A recent study investigated the potential of a CPX-351 combination with alloSCT and
showed that 70% of the patients had CR, and 35% of this cohort had TP53 mutations.
Of those with TP53 mutations, 77% had CR. Cytogenetic risk also did not affect the overall
remission rate, and the study group which did not receive alloSCT had a worse performance
than those who did [147].
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Chimeric Antigen Receptor T (CAR-T) cell therapy has recently emerged as a promis-
ing strategy for cancer treatment, since these cells are specifically engineered to bind to
biomarkers more commonly expressed on cancer cells [148]. It has been successfully ap-
plied in the treatment of sAML in several studies. Zhang et al. targeted the biomarker
CLL-1, or C-type lectin-like molecule 1, in one patient with sAML, and the outcome was
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a morphological, immunophenotypic and molecular CR for over 10 months [149]. It is
important to note that the patient in this study was only 10 years old, and age may also
be a factor in the future application of this therapy given that the average age of sAML
patients is 70 years old. CLL-1, among other several biomarkers including lymphocyte acti-
vation molecule CD244 and IL-3 receptor CD123, is disproportionately expressed on LSCs
and AML blast cells while simultaneously not detected on normal HSCs. The successes
of CAR-T against acute lymphoblastic leukemia and non-Hodgkin lymphoma have also
propelled interest in this therapy [146,147,149–151].

5. Perspectives

Despite the advances and discoveries laid out in this review that provide a greater
understanding of the genetic and cytogenetic aberrations associated with sAML progres-
sion, more mechanistic studies are needed to uncover the molecular bases behind this
process. This would accelerate the development of novel strategies to treat and prevent
sAML progression. The successful efforts in the identification of the aberrations in genes
involved in this disease should be extended to explore the role of lncRNAs, which have
been shown to be involved in cancer etiology and resistance to therapy. Recently, a CRISPR-
based study identified the most differentially expressed lncRNAs for AML patients treated
with cytarabine through analysis of a corresponding MOLM14 cell line and revealed that
lncRNAs associated with oxidative phosphorylation and fatty acid metabolism had the
strongest correlation with resistance to treatment and renewed myeloid proliferation [152].
More studies are required to understand their mechanism of action and provide a complete
picture of their implication in the leukemogenesis process and resistance to therapy.

CAR-T appears to be a very promising strategy especially after its success in AML.
Recently, an improved version of CAR T, called modified or smartly reprogrammed CAR T
cells has been developed to overcome toxicity issues in the original strategy [153–156].

Most recently, at the 2023 ASH conference, several studies introduced novel treatment
strategies that would pave the way for better outcomes. Bertulfo et al. showed that a com-
bination of ruxolitinib and CBP30, a bromodomain inhibitor of histone acetyltransferases
(HAT) CREBBP and p300, had a synergistic effect on sAML cells viability and resulted in a
decrease in leukemia burden [157]. Rahmé et al. demonstrated the potential of alternative
intensive chemotherapies (IC) such as CLAG-M (cladribine, cytarabine, G-CSF and mitox-
antrone) and FLAG-IDA (fludarabine, cytarabine, G-CSF and idarubicin), or a combination
of FLAG-IDA with venetoclax. In a cohort of high-risk sAML patients, FLAG-IDA ± VEN
and CLAG-M induced high remission rates. These regimens were associated with limited
toxicity and a high rate of transition to alloSCT transplantation (50% of patients), which
offered a survival benefit specifically in the FLAG-IDA ± VEN group. As expected, the
presence of TP53 mutation was associated with inferior outcomes [158].

Overall, joint efforts between the experts in the field would help in better understand-
ing the disease, which would have a great impact on the development of novel customized
therapeutic approaches.
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