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Abstract: Vitamin D, a steroid hormone synthesized primarily in the skin upon exposure to ultraviolet
light, is widely deficient across global populations. This study aimed to fill the data gap in Western
Romania by measuring 25-hydroxy-vitamin D levels in a cohort of 7141 from Arad County. It was
observed that women, younger adults (18–29 years), and older adults (70–79 years) had notably lower
vitamin D levels compared to the average population. Additionally, there was a rise in vitamin D
levels over the four-year span of 2018–2022, coinciding with the COVID-19 pandemic. Our research
provides fresh data on those most susceptible to vitamin D deficiency and lays the groundwork for
educational campaigns on vitamin D supplementation benefits.
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1. Introduction

Vitamin D, also known as cholecalciferol, is a steroid hormone synthesized in the skin
under ultraviolet light exposure [1]. Its active metabolite, calcitriol (1,25-dihydroxycholecal-
ciferol), plays a critical role in regulating blood levels of calcium and phosphorus, as well
as in the mineralization of bone tissue [2].

According to the International Union of Pure and Applied Chemistry’s Commission
on the Nomenclature of Biological Chemistry, vitamin D3 is classified as either a steroid or a
secosteroid, with the chemical name 9,10-secocholesta-5,7,10(19)-trien-3 betaol. Among the
compounds referred to as vitamin D, six different steroid hormones were described, each
with varying levels of biological activity. These include cholecalciferol (D3), the endogenous
precursor derived from cholesterol; its hydroxylated derivative, calcidiol (25(OH)D3),
which has partial activity; and its hydroxylated derivative, the active form, calcitriol
(1,25(OH)2D3). Additionally, ergocalciferol (D2), a plant-derived form, along with its
monohydroxy- and dihydroxy metabolites, were identified [3]. Structurally, ergocalciferol
differs from cholecalciferol because it has a double bond between C22 and C23 and an
additional methyl group to C24 [4].

Skin synthesis has been established as the primary natural source of vitamin D pro-
duction, involving the photochemical conversion of 7-dehydrocholesterol (7-DHC) into
pre-vitamin D [5,6]. Vitamin D3 can be synthesized in this manner or, along with vitamin
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D2, absorbed in the small intestine [7,8]. However, these forms are considered biologically
inactive until they undergo enzymatic hydroxylation to become active [9].

Skin synthesis of vitamin D is triggered by exposure to ultraviolet B (UVB) radiation
(280–320 nm), occurring primarily in the basal layer of the epidermis [10,11]. The pho-
todegradation of the B ring from 7-DHC leads to the formation of pre-vitamin D, tachysterol,
and lumisterol. These secondary products are converted into vitamin D. When vitamin D
is released from cells, it enters the circulatory system. The transport of this vitamin to the
organs occurs through vitamin D binding protein (VDBP) [12,13]. VDBP belongs to the
albumin superfamily of binding proteins, which includes albumin, alpha-fetoprotein, and
alpha-albumin/afamin [14–16]. VDBP is synthesized by hepatic parenchymal cells under
the influence of estrogen, glucocorticoids, and inflammatory cytokines and plays a crucial
role in binding and transporting vitamin D and its metabolites to the target organs [17–19].
A deficiency in VDBP can have repercussions on the functionality of vitamin D. The serum
level of VDBP is significantly reduced in all conditions involving tissue necrosis or injury,
such as acute liver failure, septic shock, and tissue traumatism [17].

In order to exert its hormonal activity, vitamin D undergoes two hydroxylation pro-
cesses [6,20,21]. The first hydroxylation requires 25-hydroxylase, which facilitates the pro-
duction of 25-hydroxyvitamin D3 (25(OH)D3) in the liver hepatocytes. 25-hydroxyvitamin
currently represents the standard marker for assessing vitamin D status in humans [21–25].
The second hydroxylation occurs in the proximal tubes in the kidneys and is performed
using 1α-hydroxylase (CYP27B1), leading to the synthesis of calcitriol (1,25(OH)2D3) [26].
The active metabolite of cholecalciferol binds to vitamin D receptors (VDR) and modulates
gene expression [27]. The result is an increase in serum calcium levels through enhanced
intestinal uptake of phosphorus and calcium, increased renal reabsorption of calcium, and
increased osteoclast activity [28].

Vitamin D, while primarily synthesized endogenously via ultraviolet radiation ex-
posure, can also be ingested through dietary sources and supplements. This vitamin is
found in mushrooms (21.1–58.7 µg/100 g), cheese, beef liver, eggs (1.3–2.9 µg/100 g), dark
chocolate (4 µg/100 g), as well as fortified foods (milk, yogurt, orange juice, and breakfast
cereals) [29].

Vitamin D deficiency affects an estimated 50% of the global population, with an esti-
mated 1 billion people worldwide belonging to different ethnicities and age groups [30].
The risk factors for this worldwide deficiency included insufficient dietary intake and
decreased outdoor activities as well as environmental factors such as air pollution, which
decreases the exposure to sunlight, therefore reducing the UVB-induced vitamin D synthe-
sis [31].

Vitamin D deficiency is a significant global public health issue due to its association
with all-cause mortality [32]. Insufficient levels of this vitamin are correlated with an
increased risk of rickets and osteoporosis as well as chronic diseases, i.e., coronary heart
disease, non-insulin-dependent diabetes, different neurological disorders, autoimmune
and inflammatory diseases [31,33]. Vitamin D deficiency is widespread in the Middle East.
Reporting the highest rates at 80%, Southern and Eastern Europe has a prevalence of up to
60%, while Northern Europe has a lower occurrence of less than 20% [34].

In Romania, limited data on the status of vitamin D in the adult population is available,
although existing studies indicate that deficiency is prevalent [35,36]. Romania, located be-
tween 44◦ N and 48◦ N latitude in Eastern Europe, exhibits seasonal fluctuations in vitamin
D levels, with peaks observed in September and the lowest level in March [37]. Currently,
data on the sun protection measures adopted by the residents in Western Romania when
outdoors is not documented.

Currently, Romania lacks systematic screening for vitamin D levels among its citizens.
Consequently, this study was undertaken to evaluate vitamin D levels among the residents
of Arad County, Western Romania.
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2. Materials and Methods
2.1. Study Population

In the current study, we included 7141 consecutive residents of Arad County, Romania,
from 1 January 2018 to 31 December 2021, who came in for a routine blood draw. Blood
samples were collected in the Bioclinica Clinical Laboratories with blood collection points
in both urban and rural regions of Arad County. The dataset included basic demographic
information for each participant, such as date of birth, gender, and whether they resided in
an urban or rural area. However, no clinical data were collected for this study. All patients
were mobile and identified as White/Caucasian.

Participants were grouped into seven categories according to their age: 18–29 years,
30–39 years, 40–49 years, 50–59 years, 60–69 years, 70–79 years, and 80+ years.

2.2. Sample Collection and Laboratory Assessments

From all the study participants, venous blood samples into serum clot activator tubes
were collected using the standard venipuncture techniques between 8 A.M. and 11 A.M.
Due to the overnight fasting, all participants were in a fasted state. The filled clot activator
tube, within an hour of collection, was then centrifuged at 2000× g for 10 min and then
placed into Cobas 6000’s module e601 (Roche Diagnostics, Mannheim, Germany) in order
to assess the level of 25-hydroxyvitamin D.

Vitamin D (25-hydroxyvitamin D) was assessed on Cobas 6000’s module e601 (Roche
Diagnostics, Mannheim, Germany) using electrochemiluminescence. Levels of vitamin
D above or equal to 30 µg/L were considered optimal, levels between 21 to 29 µg/L
were considered insufficient, and levels below or equal to 20 µg/L were considered to be
indicative of deficiency.

All determinations conducted in this study were in accordance with the manufacturer’s
instructions as well as the internal laboratory standards.

2.3. Data Collection and Statistical Analysis

Statistical analyses were performed using Stata 16.1 (StataCorp, College Station, TX,
USA). Data were presented as numbers, percentages, and mean ± standard deviation (SD).

A traffic light system (Red—vitamin D deficiency, Yellow—insufficiency, and Green—
optimal) in our charts was used to enhance reader comprehension, enabling readers to
quickly grasp the distribution and prevalence of vitamin D statuses within the popula-
tion [38].

Descriptive statistics were used to summarize the key characteristics of the study pop-
ulation. Mean and standard deviation were used for continuous variables, while percentage
was used for categorical variables. Ordinal logistic regression was employed as the primary
statistical model for this study, chosen for its appropriateness in analyzing ordinal outcome
variables. The model facilitated the exploration of associations between vitamin D levels
categorized as insufficient, deficient, and optimal and various independent variables. Odds
ratios (OR) with their corresponding 95% confidence intervals (95% CI) were presented for
each statistical analysis. Statistical significance for both logistic regression models was set
at p < 0.05.

2.4. Ethical Approval

This study was approved by the “Vasile Goldis” University Ethics Committee, Arad,
Romania. (no. 15 from 31 March 2023).

3. Results
3.1. Descriptive Statistics of the Participants Stratified by Age, Gender, Area of Residence, and Year
of Blood Collection

A total of 7141 adult participants from Arad County, Western Romania, were enrolled
in this study. They were aged between 18 and 97 years (mean = 48.66, median = 48).
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When data was stratified by sex and area of residence, it was found that out of the
total participants, 5699 (79.81%) were female, and 5234 (73.3%) were residing in urban areas.
Age-wise distribution was as follows: 802 patients (11.23%) were aged 18–29 years, 1352
(18.92%) were 30–39 years, 1628 (22.80%) were 40–49 years, 1488 (20.82%) were between
50–59 years, 1140 (15.97%) were between 60–65 years, 556 (7.78%) were 70–79 years, and
175 participants (2.45%) were over 80 years (Figure 1).

 

Patients 
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N = 7141 patients 
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groups 
Sex 

Females. 

79.81% 

n = 5699 
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Figure 1. Comprehensive diagram depicting the distribution of 7141 study participants from Arad
County, Western Romania, by sex, area of residence, age groups, and vitamin D status.

3.2. Descriptive Analysis and Ordinal Logistic Regression Models Analysing Vitamin D Levels
according to Participant’s Sex and Area of Residence

Of the 7141 study participants, 1911 (26.76%) had vitamin D deficiency, 2688 (37.8%)
had insufficient levels of vitamin D, and 2531 (35.44%) had optimal vitamin D levels. Among
the male participants (n = 1442), 315 (21.84%) had vitamin D deficiency, 549 (38.08%) had
insufficient levels, and 578 (40.08%) maintained optimal levels of vitamin D. Within the
female cohort (n = 5699), 1596 (28%) had deficiency, 2150 (37.73%) had insufficiency, and
1953 (34.27%) had optimal levels of vitamin D.

Within the subgroup of participants residing in rural areas (n = 1907), 494 (25.9%) had
deficiency, 784 (41.11%) had insufficiency, and 629 (32.99%) had optimal levels of vitamin
D. For those residing in urban areas (n = 5234), 1417 (27.07%) had deficiency, 1915 (36.59%)
had insufficiency, and 1902 (36.34%) had optimal levels of vitamin D (Table 1).

After performing ordinal logistic regression on the sex variable, it was revealed
that females were generally less likely to have higher vitamin levels compared to males
(OR = −0.28, 95% CI: −0.39–−0.17, p ≤ 0.001).
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Table 1. Ordinal logistic regression for two variables (sex and area of residence) on vitamin D status
among study participants from Arad County, Western Romania.

Sex
(n = 100%)

Deficiency
(<20 µg/L)

Insufficiency
(20–29.9 µg/L)

Optimal
(>30 µg/L) OR 95% CI

(Min–Max) p Value

Male (n = 1442) 315 (21.84%) 549 (38.08%) 578 (40.08%) Ref.
Female (n = 5699) 1596 (28%) 2150 (37.73%) 1953 (34.27%) −0.28 −0.39–−0.17 <0.001

Area of residence

Rural (n = 1907) 494 (25.9%) 784 (41.11%) 629 (32.99%) Ref.
Urban (n = 5234) 1417 (27.07%) 1915 (36.59%) 1902 (36.34%) 0.06 −0.04–0.15 0.244

When comparing rural and urban residents, we observed that those living in urban
areas have a slightly higher percentage of vitamin deficiency than those in rural areas.
However, urban residents also had a slightly higher percentage in the “optimal” vitamin D
level category, although not reaching statistical significance (OR = 0.06, 95% CI: −0.04–0.15,
p value = 0.244) (Table 1).

3.3. Descriptive Analysis and Ordinal Logistic Regression Models Analysing Vitamin D Levels
according to Participant’s Age at the Time of the Blood Draw

In the age group of 18–29 years, 32.29% of individuals had deficiency (<20 ng/dl) of vi-
tamin D, 39.65% exhibited insufficiency (20–30 ng/dl), and 28.06% had optimal (>30 ng/dl)
levels. For those aged 30–39 years, 25.81% had a deficiency, 40.83% showed insufficiency,
and 33.36% demonstrated optimal vitamin D levels. In the 40–49 age group, 26.23% ex-
perienced deficiency, 40.23% had insufficiency, and 33.54% achieved optimal vitamin D
levels. Within the age range of 50–59 years, 24.19% had a deficiency, 35.69% displayed in-
sufficiency, and 40.12% had optimal vitamin D levels. Among individuals aged 60–69 years,
24.74% had a deficiency, 35.61% exhibited in the 70–79 age group, 32.19% had a deficiency,
34.17% showed insufficiency, and 33.64% had optimal vitamin D levels. Among those aged
80 years and older, 31.43% had a deficiency, 26.86% experienced insufficiency, and 41.71%
had optimal vitamin D levels (Table 2).

Table 2. Analysis of vitamin D status across age groups in study participants from Arad County,
Western Romania.

Age Group
(n = 100%)

Deficiency
(<20 µg/L)

Insufficiency
(20–29.9 µg/L)

Optimal
(>30 µg/L) OR 95% CI

(Min–Max) p Value

18–29 years (n = 802) 259 (32.29%) 318 (39.65%) 225 (28.06%) Ref.
30–39 years (n = 1352) 349 (25.81%) 552 (40.83%) 451 (33.36%) 0.27 0.11–0.43 <0.001
40–49 years (n = 1628) 427 (26.23%) 655 (40.23%) 546 (33.54%) 0.27 0.11–0.42 <0.001
50–59 years (n = 1488) 360 (24.19%) 531 (35.69%) 597 (40.12%) 0.48 0.32–0.64 <0.001
60–69 years (n = 1140) 282 (24.74%) 406 (35.61%) 452 (39.65%) 0.45 0.29–0.62 <0.001
70–79 years (n = 556) 179 (32.19%) 190 (34.17%) 187 (33.64%) 0.13 −0.07–0.33 0.19
80+ years (n = 175) 55 (31.43%) 47 (26.86%) 73 (41.71%) 0.36 0.05–0.67 0.02

In a ordinal logistic regression model with the young adults group (aged between
18 and 29 years) as the reference, a statistically significant increased likelihood of vitamin
D insufficiency or deficiency was found in comparison to the 30–39 years age group
(OR = 0.27, 95% CI = 0.11–0.43, p < 0.001), 40–49 years (OR = 0.27, 95% CI = 0.11–0.42,
p < 0.001), 50–59 years (OR = 0.48, 95% CI = 0.32–0.64, p < 0.001), 60–69 years (OR = 0.45,
95% CI = 0.29–0.62, p < 0.001), and 80+ years (OR = 0.36, 95% CI = 0.05–0.67, p = 0.02).
However, there was no statistically significant difference when comparing young adults to
those aged between 70 and 79 years old (OR = 0.13, 95% CI = −0.07–0.33, p = 0.19) (Table 2).
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3.4. Descriptive Analysis and Ordinal Logistic Regression Models Analysing Vitamin D Levels
according to the Year of the Blood Draw

In 2018, of 1414 participants, 33.52% had a deficiency, 37.63% exhibited insufficiency,
and 28.85% achieved optimal levels. Similarly, in 2019, 28.14% exhibited deficiency, 38.18%
had insufficiency, and 33.68% achieved optimal levels among 2022 participants. The year
2020 saw 22.39% with deficiency, 38.58% with insufficiency, and 39.03% reaching optimal
levels among 2224 participants. Finally, in 2021, 24.98% had a deficiency, 36.26% exhibited
insufficiency, and 38.76% reached optimal levels among 1481 participants. These findings
provide insights into the changing trends of vitamin D status in the study population over
the four-year period (Table 3).

Table 3. Analysis of vitamin D status distribution trends over four consecutive years (2018–2021)
among study participants from Arad County, Western Romania.

Year
(n = 100%)

Deficiency
(<20 µg/L)

Insufficiency
(20–29.9 µg/L)

Optimal
(>30 µg/L)

Adjusted
OR

95% CI
(Min–Max) p Value

2018 (n = 1414) 474 (33.52%) 532 (37.63%) 408 (28.85%) Ref.
2019 (n = 2022) 569 (28.14%) 772 (38.18%) 681 (33.68%) 0.24 0.11–0.37 <0.001
2020 (n = 2224) 498 (22.39%) 858 (38.58%) 868 (39.03%) 0.50 0.38–0.62 <0.001
2021 (n = 1481) 370 (24.98%) 537 (36.26%) 574 (38.76%) 0.44 0.3–0.57 <0.001

When the year 2018 was used as a reference in the ordinal logistic regression model
and compared to 2019 (OR = 1.24, 95% CI = 0.11–0.37, p < 0.001), 2020 (OR = 1.50, 95%
CI = 0.38–0.62, p < 0.001), and 2021 (OR = 1.44, 95% CI = 0.3–0.57, p < 0.001), a statistically
significant increase in the overall levels of vitamin D was observed over the years (Table 3).

4. Discussion

Vitamin D deficiency is recognized as a significant public health issue worldwide,
affecting roughly one billion people, with an estimated half of the global population
presumed to be deficient [30,39]. This deficiency is notably prevalent in Middle Eastern
countries, particularly among individuals with a higher amount of melanin in their skin
and those who traditionally cover most of their skin. For instance, in the case of infants in
India, Iran, and Turkey, over 90% of them were deficient in vitamin D. In the United States,
vitamin D deficiency was present in 47% of African-American infants and 56% of Caucasian
infants. In terms of the prevalence of vitamin D deficiency in the adult population, over
80% of adults in Pakistan, India, and Bangladesh were deficient, while in the United States,
vitamin D deficiency was present in 35% of adults [39]. In Western, Southern, and Eastern
Europe, the prevalence of vitamin D deficiency was between 30 and 60%, while in Northern
Europe, it exceeded 20% [34].

This study revealed that out of 7141 study participants, 1911 (26.76%) had a deficiency
in vitamin D levels, 2688 (37.8%) had insufficient levels, and 2531 (35.44%) had optimal
levels. These findings align closely with those of Bucurica et al. [40], who assessed the
vitamin D status of hospitalized patients in Romania over a two-year period. In this study,
which involved 11,182 participants, 28.83% were found to have vitamin D deficiency, 32.11%
had insufficient levels, and 39.05% had optimal vitamin D levels [40].

Our study reported that females had an increased likelihood of vitamin D deficiency
compared to males, aligning with the findings of Muscogiuri et al. [41]. Their research, in-
volving 500 adult Caucasians in Naples, Italy, found that vitamin D levels were significantly
higher in males despite similar sun exposure and a lack of vitamin D supplements among
all participants [41]. Our results are also consistent with Chirita-Emandi et al. [35], who
reported a higher risk for vitamin D deficiency in females across a sample of 6.631 individu-
als. Further supporting these gender differences, da Silveira et al.’s [42] study revealed that
females of childbearing age from Brazil had a high deficiency of vitamin D [42]. Contribut-
ing factors were found to be marital status [43] and lower socioeconomic status [44]. In



Life 2024, 14, 274 7 of 12

contrast, the Qatar Biobank research by Al-Dabhani et al. [45] reported a higher prevalence
of vitamin D deficiency in males (69%) compared to females (61%), with females actually
showing higher serum 25(OH)D concentrations [45].

Our research indicated that individuals aged 70–79 years generally exhibit lower
vitamin D levels compared to the younger adult population. This observation is in line
with the findings reported by Giustina et al. [46], who noted that reduced sun exposure and
a decline in the skin’s ability to produce vitamin D put older adults at risk for deficiency.
The study emphasizes the importance of maintaining adequate vitamin D levels to prevent
various health issues, including bone density reduction, osteomalacia, fractures, and other
potential extra-skeletal effects like diabetes and cardiovascular disease, affecting mainly the
older population. The consensus is that vitamin D supplementation combined with calcium
is beneficial for reducing fracture risks in the elderly [46]. Similar results were also reported
by Bucurica et al. [40] and Chirita-Emandi et al. [35] in Romania. In elderly persons, the
prevalence of vitamin D deficiency was 96% in India, 90% in Turkey, 72% in Pakistan, 67%
in Iran, and 61% in the United States [47]. The increased incidence of deficiency in older
adults is also attributed to a reduced capacity for cutaneous vitamin D synthesis and less
sunlight exposure [48]. Assessing vitamin D levels in older individuals is essential due
to the role that this vitamin plays in the regulation of calcium–phosphorus homeostasis,
which contributes to the maintenance of bone health [20,49].

Romania, located between 44◦ N and 48◦ N latitude, shows parallels to findings in
France, located approximately from 43.5◦ N to 48◦ N, where a third of healthy adults were
reported to be vitamin D deficient [50]. Similar results were also reported in Spain (located
between approximately 36◦ N and 43.5◦ N latitude) by González-Molero et al., who found
that 33.9% of the Spanish population is at risk for vitamin D deficiency [51]. Significantly
higher rates of vitamin D deficiency (57.2% of the studied participants) were reported by
Capuano et al. [52] in Italy (located between latitudes 35◦ and 47◦ N). Controversially, in
Ukraine (located approximately 44◦ N to 52◦ N latitude), vitamin D deficiency was reported
at a lower rate of 19.5%, which is less than the rate observed in our study [53].

We also reported that younger adults are more likely to experience deficient or insuffi-
cient vitamin D levels. This aligns with the findings of Tangpricha et al. [54], who reported
a 36% vitamin D deficiency in adults aged 18–29 from the USA. A possible explanation is
that young adults tend to have lower consumption of vitamin D-containing foods such as
fortified cereals and oily fish [55], also due to the seasonal variation in sunlight exposure,
especially during the winter [54]. Besides dietary intake and sun exposure habits, young
adults aged 18–29 often spend increased time indoors due to their attendance in college or
graduate school, contributing to a greater prevalence of vitamin D deficiency within this
demographic, as documented by multiple studies [56–58].

Our results revealed that study participants aged 80+ had the highest percentage
(41.71%) of optimal vitamin D levels. This may be attributed to their risk of fractures [59]
and the potential fatal outcome of a fracture at advanced ages [60]. Furthermore, adherence
to COVID-19 guidelines, which recommend vitamin D supplementation, was higher among
the elderly [61,62]. To better understand this trend, it is recommended that future research
in this area should include specific questionnaires.

The current study revealed that levels of vitamin D in the adult population tended
to increase as the pandemic began and progressed. The SARS-CoV-2 pandemic began in
December 2019 when an outbreak of severe pneumonia of unknown cause was identified
in Wuhan, China [63]. Romania confirmed its first case of SARS-CoV-2 on 26 February
2020 [64]. A plausible rationale for this rise in vitamin D levels during this period may
be attributed to increased public health recommendations for self-isolation [65], which
likely prompted a rise in the consumption of vitamin D supplements as a preventive health
measure [66].

Several studies highlighted a correlation between low vitamin D levels and increased
susceptibility to acute respiratory infections, including SARS-CoV-2 [67]. Additionally,
higher levels of vitamin D have been associated with a lower risk of ICU hospitalization in
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patients with COVID-19 [68,69]. Specifically concerning COVID-19, a study conducted by
Abdrabbo et al. [70] highlighted the interaction between the SARS-CoV-2 spike protein and
the human angiotensin-converting enzyme 2, which is influenced by the disulfide-thiol
balance in host cells. Vitamin D supplementation may reduce oxidative stress, affecting
the host cell redox status. This could potentially block viral entry and prevent or reduce
the severity of COVID-19 infection. However, the precise molecular mechanisms of this
interplay remain unclear and require further research [70].

Maintaining adequate vitamin D levels is crucial for the general population due to
its immunostimulatory and immunomodulatory effects [71]. The significance of vitamin
D has expanded beyond bone and mineral metabolism as the vitamin D receptor (VDR)
and the enzyme responsible for its activation, 1-α-hydroxylase (CYP27B1), are expressed
in various types of cells, including those in the pancreas, intestine, and immune system
cells [72,73].

Vitamin D plays a role in regulating innate immunity by enhancing the body’s defense
mechanism against microbes and other pathogenic organisms, as well as in modulating the
adaptive immune system through its direct effects on T-cell activation and the phenotype
and function of antigen-presenting cells, especially dendritic cells [71]. The pivotal role of
vitamin D in immune function was first understood through the discovery of the expression
of the vitamin D receptor (VDR) expression across nearly all cells of the immune system [74].
VDR belongs to the superfamily of nuclear receptors [75] and acts on several genes in about
half of human cells and tissues [76]. 1,25-(OH)2D3 binds to the VDR, determining a
conformational rearrangement of the molecule that will allow its heterodimerization with
the retinoid X receptor (RXR). Subsequently, this complex is translocated into the nucleus,
where it binds to vitamin D response elements (VDRES) in the promoter region of the target
genes and where it modulates their transcription [77]. The VDR–RXR complex can regulate
the expression of more than 3000 genes in the human genome, depending on the cell type
and physiological conditions [78–80]. Therefore, 1,25-(OH)2D3 regulates numerous cellular
processes by activating the nuclear receptor VDR [81]. VDR is expressed differently in
immune cells depending on their activation state. For example, at the time of activation, T
cells present a higher concentration of VDR with an increase that is significant after eight
hours and reaches a maximum level 48 h after activation [82]. In contrast, monocytes lose
the expression of VDRs by differentiating them into macrophages or dendritic cells [83].

Our study acknowledges certain limitations. A notably higher number of females and
urban residents were included in this study, which may reflect a tendency of these groups
to access healthcare services and undergo health assessments more frequently [35,84]. An
additional constraint was the absence of a questionnaire to collect data on participants‘
associated health conditions, body mass index (BMI), intake of supplements, or dietary
habits. Furthermore, the lack of precise timing for blood sample collection means the data
could not be sorted according to seasons of specific months, which may influence vitamin
D levels. Lastly, another limitation was that the adult population does not represent the
broader general population but, due to the high number of study participants, could offer
insights into the current trends within the general population.

5. Conclusions

The results of our research show a notable occurrence of below-optimal vitamin D
levels within the adult population of Western Romania. A heightened risk of deficiency
was particularly evident in females, as well across age extremes, affecting both the young
and elderly. In addition, there was a discernible increase in vitamin D levels among the
adult population over a four-year interval during the COVID-19 pandemic. This trend
emphasizes the critical need for widespread education and communication regarding
the importance of vitamin D supplementation, given the significant role of vitamin D in
immune function.
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