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Abstract: This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG)
and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the
narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity,
cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl
metabolite, takes center stage, becoming a principal player in the development of AGEs and con-
tributing to cell and tissue dysfunction. The dual facets of GLO I—activation and inhibition—unfold
as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural
compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular
enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease,
and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering
new possibilities in diseases associated with inflammation and multidrug resistance. The symphony
of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG
regulation. From natural compounds to synthetic drugs, each element contributes to a molecular
orchestra, promising novel interventions and personalized approaches in the pursuit of health and
wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to
validate these findings and acknowledges the importance of individual variability in the complex
landscape of health.

Keywords: methylglyoxal; glyoxalase 1; advanced glycation end products; diabetes; obesity; cardio-
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1. Introduction
1.1. The Glyoxalase System

The glyoxalase system, a molecular maestro found in the cellular orchestra, orches-
trates its performance in every mammalian cell’s cytoplasm and occasionally takes a bow
in the nucleus of some cells [1]. This biochemical symphony stars two enzymes, GLO I
and GLO II, accompanied by an enzymatic sidekick, reduced GSH. Together, they form a
dynamic trio catalyzing the transformation of MG into D-lactate through the intermediate,
S-D-lactoylglutathione, an essential act in the grand spectacle of cellular metabolism [2].
The overture begins with the spontaneous formation of hemithioacetal from MG in the pres-
ence of GSH. GLO I takes center stage, catalyzing the conversion of S-D-lactoylglutathione
from hemithioacetal. Then, enter GLO II, the cleanup crew, S-D-lactoylglutathione hy-
drolyzing into D-lactate and reforming the indispensable GSH. This ballet of enzymatic
precision ensures cellular harmony, with GLO I and GLO II performing in tandem as a
system (Figure 1).

However, a twist in the plot emerges in prostate tumorigenesis. GLO I expression
is seen in non-tumoral glands next to prostatic cancer, exclusively observed in luminal
cells but shunning basal ones. On the malignant stage, 80% of prostate tissues exhibit
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modest GLO I expression. Surprisingly, manipulating GLO I—either knocking it down
or amping up its expression—does not sway the expression of its partner, GLO II. This
revelation hints at the separate functions of GLO I and GLO II (Figure 1) in the prostate
tumorigenic drama [1]. The glyoxalase gene, a globetrotter in the biological realm, finds
its home in a variety of biological systems, including protoctista, bacteria, fungi, yeasts,
and humans [3]. Widespread distribution underscores its crucial role in biology. GLO I, a
central enzyme, plays a pivotal role as a key rate-limiting factor. Dysregulation of GLO I
emerges as a protagonist in serious human pathologies [4,5]. The script takes an intriguing
turn as researchers delve into the regulatory nuances of GLO I. Gene copy number variation
(CNV) and transcriptional control shape GLO I’s function. Small-molecule regulators of the
glyoxalase system hold promise for uncovering biomolecular mysteries and developing
pharmacological interventions in related diseases [6]. The glyoxalase system unveils a
cellular narrative of balance and regulation, featuring an enzymatic duet and a catalytic
companion, with potential therapeutic implications.
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Figure 1. The glyoxalase system. The glyoxalase pathway consists of a two-step process involving
GLO I and GLO II proteins. These enzymes facilitate the transformation of MG into D-lactate by
utilizing GSH as a cofactor. In parallel, GLO III proteins perform a distinct one-step reaction, directly
converting MG into D-lactate.

1.2. Glyoxalase I

The GLO I gene at 6p21.2 in humans exhibits diallelic diversity, encoding two akin
subunits in heterozygotes. The resulting dimeric protein weighs 46 kDa (gel filtration) or
42 kDa (sequencing), with a pI dance between 4.8 and 5.1 [7–9]. This genetic saga reveals
three human GLO I variants—GLO I-2, GLO I-3, and GLO II-2—representing the diallelic
gene’s homozygous or heterozygous expression symphony on an autosomal locus [3,8].

GLO I, the metal-dependent maestro, carries the weight of a Zn2+ ion per subunit (in
E. coli) or a Ni2+ ion in the human counterpart [10,11]. The human GLO I α AP-2 promoter
region is a regulatory orchestration featuring players like AP-2α, E2F4, NF-κB, and AP-1.
Amidst this genetic symphony, we find ARE, MRE, and IRE [5,9,12]. Notably, ARE also
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waltzes into GLO I exon 1, indicating a dance with Nrf2 [13,14]. Nrf2 activators, such as
sulforaphane and resveratrol, take the role of GLO I conductors [15]. However, the exact
details of this regulatory composition remain a melody to be fully composed. Current
investigations explore the complex regulatory mechanisms of GLO1, involving gene expres-
sion and post-translational modifications. Acetylation and oxidation do not affect GLO1
activity, but glutathione acylation significantly impairs its functionality Currently, numer-
ous investigations have delved into the intricate regulatory mechanisms governing GLO1.
These mechanisms encompass both the regulation of gene expression and post-translational
modifications of the enzyme. While acetylation and oxidation exhibit no impact on GLO1
activity, glutathione acylation significantly hinders its functionality [16]. Furthermore,
GLO1 can undergo modifications such as phosphorylation at Thr107 and nitrosylation at
Cys139 [17]. The regulation of GLO1 activity induced by TNF-α involves phosphoryla-
tion mediated by protein kinase A (PKA). This process leads to caspase-dependent cell
death, accompanied by the generation of reactive oxygen species (ROS) [18]. ROS, in turn,
dramatically inhibits GLO1 enzyme activity, resulting in the intracellular accumulation
of the pro-apoptotic advanced glycation end product (AGE), argpyrimidine. This accu-
mulation triggers a mitochondrial-dependent apoptotic pathway. Phosphorylated GLO1
plays a role in a pathway leading to the formation of specific methylglyoxal-derived AGEs.
Additionally, the expression of GLO1 may be diminished by activating the receptor for
advanced glycation end products (RAGEs), although the exact mechanism remains unclear.
Moreover, the GLO1 gene serves as a hotspot for functional copy number variation (CNV),
resulting in a 2–4-fold increase in GLO1 activity and expression.

The focus now turns to the complex regulatory mechanisms of GLO I, involving both
modulation of gene expression and post-translational modifications. While acetylation
and oxidation do not affect GLO I activity, glutathione acylation emerges as a potent in-
hibitor [16]. GLO I dons the attire of phosphorylation on Thr107, and TNFα orchestrates
its modulation through PKA-induced phosphorylation, resulting in a dramatic ballet of
caspase-dependent cell demise accompanied by a dazzling display of reactive oxygen
species (ROS) [4,19,20]. These ROS spectacularly inhibit GLO I, ushering in the intracellular
buildup of pro-apoptotic AGEs, such as argpyrimidine, and kickstarting a mitochondrial-
dependent apoptotic pathway [21–24]. One important component of a process that pro-
duces particular MG-derived AGEs is phosphorylated GLO I [25]. Adding another layer
to this genetic symphony, GLO I expression encounters modulation through the RAGE
receptor being activated, though the specifics of this maneuver remain veiled [13,16]. More-
over, the GLO I gene plays host to a hot spot for functional CNV, causing a staggering
2–4 fold increase in both activity and expression [26–28]. And so, the genetic ballet of
GLO I unfolds—a narrative of allelic diversity, metal-dependent nuances, and a regulatory
symphony that orchestrates its crucial role in cellular harmony.

1.3. Glyoxalases II and III

GLO II, stationed at 16p13.3, emerges as additional key player in the glyoxalase narra-
tive, encoded by the HAGH gene [10]. The human GLO II script unfolds across 10 exons,
giving rise to two distinct mRNAs. One crafts the cytosolic GLO II (28.8 kDa), while the
other weaves the mitochondrial GLO II (33.9 kDa), equally sharing an isoelectric point
of 8.3 [8]. GLO II, a catalytic virtuoso, hydrolyzes S-D-lactoylglutathione, generating α-
D-lactate and regenerating GSH with remarkable efficiency. This monomeric enzymatic
maestro features a Fe(II)Zn(II) core and a metallo-β-lactamase-like α-helical domain. In-
triguingly, Fe(II) has no influence on GLO II’s catalytic prowess, as observed in its graceful
pirouette. The active site, staged in two domains, intricately interfaces the Fe(II)Zn(II)
core and the substrate-binding location [12]. In the genetic script, intron 1 of human GLO
II features a p53-responsive region activated by p63 and p73, leading to increased GLO
II expression. This orchestrated symphony, directed by GLO II, plays a role in prostate
tumorigenesis, influenced by the androgen receptor and the p53-p21 axis [1].
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The plot thickens with PTEN loss, a herald of GLO I and GLO II upregulation. This
rise to prominence is facilitated by the activation of the PI3K/AKT/mTOR pathway via
the ERa axis and p-PKM2(Y105), ultimately propelling prostate tumor development [29].
Cells lacking GLO II find themselves at the mercy of MG or apoptosis triggered by DNA
damage [8]. GLO II, a potent catalyst, warrants deeper exploration of its regulatory
intricacies. GLO3, present in bacteria, suggests a human counterpart akin to a DJ-1 homolog,
converting MG to α-D-lactate without GSH. The identity of human GLO3 remains elusive.

Shifting to pathology, dysregulated MG levels and a compromised glyoxalase system
play a pivotal role in various diseases. Diminished system activity allows the accumulation
of AGEs from MG, emerging as key players in age-related diseases. The interplay of
MG and AGEs is crucial in diabetes, contributing to complications like nephropathy,
neuropathy, and retinopathy. GLO I overexpression stands out as a guardian against
diabetic nephropathy [30].

MG intertwines with atherosclerosis, attributed to low GLO I levels in plaques and
AGEs like MG-H1 inducing LDL glycation and THP. Hypertension is linked to elevated
MG levels, observed in rats with higher-than-normal MG amounts in kidney and aortic
tissues [31,32]. In the realm of genetic maladies, KRIT1 (CCM1), associated with CCM,
reveals a connection with GLO I, suggesting its involvement in CCM [5,33]. Neurodegener-
ative disorders become protagonists in the presence of AGE accumulation. GLO I finds
itself entwined in the pathogenesis of these disorders.

On the contrary, anxiety disorders see an elevation in GLO I expression and a reduction
in brain MG concentration, orchestrated by a decrease in the γ-aminobutyric acid pathway,
a recognized anxiety mediator [34]. The tale extends to aging and epigenetics, fostering a
tapestry of ailments [4]. GLO-I and GLO-II genes find expression in oocytes and cumulus
cells in mice, with GLO-I playing a role in the viability of newborn Sertoli cells in pigs,
casting them as pivotal actors in the intricate dance of infertility [35–37].

In cell death, MG emerges as a key player, while elevated GLO I expression and
activity act as saviors for drug-resistant tumor cells with high glycolytic rates [27]. This
positions GLO I as a potential target for antitumor drugs and a source of tumor diagnosis
biomarkers, offering insights for chemotherapy strategies. The glyoxalase system, with its
enzymatic ensemble, plays a central role in the drama of health and disease, woven with
molecular intricacies and cellular symphonies.

Cells employ various detoxification mechanisms to prevent the harmful effects of MG.
The glyoxalase system, a widespread enzymatic pathway in eukaryotic cells, serves as the
primary defense against MG and other reactive dicarbonyl compounds [38]. This system,
crucial for cellular protection against glycation and oxidative stress, involves two consecutive
enzymatic reactions catalyzed by Glo-1 and Glo-2, with glutathione as a co-factor. Glo-1
converts the hemithioacetal produced by the non-enzymatic reaction of reduced glutathione
(GSH) with MG into S-D-lactoylglutathione. Glo-2 then transforms S-D-lactoylglutathione into
D-lactate, a less metabolizable enantiomer of L-lactate, recycling glutathione in the process [39].
As S-D-lactoylglutathione is non-toxic, the metabolism of MG by Glo-1 is a pivotal step in
detoxification, indirectly influencing MG toxicity and advanced glycation end product (AGE)
formation rates. Additionally, the recycling of glutathione during S-D-lactoylglutathione
metabolism underscores the importance of maintaining balanced Glo-2 activity, as inadequate
activity may lead to GSH trapping and reduced availability for other cellular processes,
including defense against oxidative stress [40].

It is crucial to recognize that GLO1 activity is linked to GSH levels, which diminish
under conditions such as oxidative stress. Unfortunately, GSH reduction also compromises
the ubiquitin–proteasome system, reducing the cellular ability to degrade AGEs and han-
dle glycation-derived damage [41]. This glyoxalase system is involved in metabolizing
additional substrates like glyoxal, phenylglyoxal, and hydroxypyruvaldehyde. GLO1,
being the rate-limiting enzyme, plays a pivotal role in preventing the accumulation of
reactive α-oxoaldehydes, making it a key protector against glycative stress-induced AGE
formation [42].
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In the absence of glyoxalase activity, various systems, though not extensively explored,
contribute to dicarbonyl detoxification. Alternative routes include aldehyde dehydroge-
nases (ALDHs), aldo-keto reductases (AKRs), DJ-1, and acetoacetate scavenging to form
3-hydroxyhexane-2,5-dione (3-HHD) [43]. AKRs, a large protein superfamily, reduce MG to
hydroxyacetone or lactaldehyde, protecting against MG-induced cytotoxicity [44]. AKR1B3,
studied in diabetic mice, showed increased MG and AGE levels [45]. Human studies
indicated AKR1B1’s role in MG detoxification when GSH levels were low [46]. Schwann
cells lacking glyoxalase activity exhibited increased AKR1B3 activity [47]. ALDHs, ox-
idizing MG to pyruvate, showed induced activity in response to MG treatment and in
glyoxalase-deficient models [48]. Levels of 3-deoxyglucosone (3-DG), formed during sugar
metabolism, were elevated in diabetic patients, with ALDH1A1 metabolizing it to 2-keto-
3-deoxygluconic acid [49]. DJ-1 exhibited glyoxalase activity, preventing MG-induced
damage and repairing MG-glycated proteins [50]. However, DJ-1’s contribution to MG ac-
cumulation was not observed in DJ-1 knockdown models [51]. Acetoacetate, a ketone body,
non-enzymatically decreased MG levels during diabetic and dietary ketosis, demonstrating
potential in preventing diabetes progression [52].

2. MG and GLO in Metabolic Syndrome

Elevated levels of MG and a malfunctioning glyoxalase system are implicated in vari-
ous diseases, particularly those associated with metabolic syndrome [53]. A compromised
glyoxalase system, marked by reduced activity and expression, leads to the accumulation
of MG and its byproducts, recognized as AGEs. This scenario is notably connected to
age-related illnesses such as diabetes, heart problems, and neurological conditions [54].

The synthesis of MG and MG-derived AGEs is essential in the setting of diabetes
for the pathogenesis of problems such as neuropathy, retinopathy, and nephropathy [55].
Studies in diabetic nephropathy have shown that reducing MG modification through
increased expression of GLO I can prevent oxidative stress and mitigate kidney-related
complications [30,56].

Cardiovascular diseases, specifically atherosclerosis and hypertension, are influenced
by MG and GLO I (Figure 2) [57]. MG contributes to atherosclerosis via methods like low
GLO I levels in ruptured plaques, the occurrence of MG-induced glycation, and AGEs
produced from MG in atherosclerotic plaques of LDL [58]. The connection between MG and
hypertension was evident in studies where elevated MG levels were observed in the kidney
and aorta tissues of rats [59,60]. In the realm of neurodegenerative conditions, AGE buildup,
driven by MG, affects brain function, contributing to conditions such as schizophrenia,
Alzheimer’s, and Parkinson’s disease. GLO I’s involvement in these disorders underscores
its role in maintaining cellular health [61].

Interestingly, in anxiety disorders, there is increased expression of GLO I, coupled
with a reduction in MG concentration in the brain. This phenomenon is linked to decreased
activation of the GABAA-receptor-GABA pathway, a known mediator of anxiety [34,62].
Aging and epigenetics further amplify the spectrum of diseases associated with MG and
GLO I. The intricate roles of GLO I and GLO II genes in processes like infertility and cell
death highlight their significance in maintaining overall health [5].

In the cancer context, the heightened activity of GLO I promotes the survival of cancer
cells by decreasing MG levels. This underscores GLO I’s potential as a target for developing
anticancer drugs and as a reservoir of biomarkers to diagnose tumors [63]. In essence, the
interplay between MG and the glyoxalase system unfolds as a critical player in the complex
landscape of metabolic syndrome-related diseases. MG and the glyoxalase system play intricate
roles in the context of metabolic syndrome [64]. Here is a breakdown of their involvement:

2.1. Insulin Resistance (IR) and Diabetes

Elevated MG levels are associated with IR, a hallmark of metabolism-related syndrome
and a precursor to type 2 diabetes. Dysregulation in the glyoxalase system, particularly re-
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duced activity of GLO I, contributes to the buildup of MG. This, in turn, exacerbates IR and
promotes the progression of diabetes, a key element of metabolic syndrome (Figure 2) [65].

2.2. Cardiovascular Implications

Metabolic disorder significantly surges the risk of cardiovascular diseases. MG,
through its role in the development of AGEs, contributes to vascular damage. The glyox-
alase system, particularly GLO I, has a vital part in mitigating this damage by detoxifying
MG. Dysfunction in this system could exacerbate cardiovascular complications associated
with metabolic syndrome [66] (Table 1).

2.3. Obesity and Adipose Tissue Dysfunction

Dysfunctional adipose tissue is a main characteristic of metabolic syndrome. MG has
a part to play in the deterioration of adipocyte function and the development of obesity-
associated complications. The GLO system, by regulating MG levels, may influence the
health of adipose tissue and its contribution to metabolic syndrome (Figure 2) [67].
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2.4. Oxidative Stress and Inflammation

Metabolic syndrome, marked by chronic inflammation and oxidative damage, may
involve MG, a pro-oxidant molecule. The glyoxalase system serves as a defense, neu-
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tralizing MG to prevent its harmful effects. Impaired glyoxalase function could worsen
inflammation and oxidative stress in metabolic syndrome [68].

Recent research has identified MG as a potent immunosuppressor. A study by Price
et al. demonstrated that elevated MG levels inhibit T-cell proliferation, leading to reductions
in both pro- and anti-inflammatory cytokines, including IFN-γ in myeloid cells and TNF-α
and IL-10 in T cells [69] (Table 1). MG also diminishes the metabolic activity of myeloid-
derived suppressor cells, a subset of regulatory immune cells with myeloid origin [70].
This immunosuppressive effect extends to CD8+ cytotoxic T cells, where MG transfer
contributes to further immunosuppression [70]. Modification of histone H2A by MG
increases immunogenicity, suggesting a potential role in autoimmune responses in cancer
and the generation of autoantibodies [71].

In vitro studies on MG-AGE (methylglyoxal-derived advanced glycation end products)
accumulation revealed that MG-AGEs impair inflammasome activation in macrophages, com-
promising innate immunosurveillance [72] (Table 1). This effect is independent of MG-AGEs
binding to RAGE (receptor for advanced glycation end products) but results from the sup-
pression of macrophage M1 polarization. M1 polarization, which induces a pro-inflammatory
state conducive to phagocytosis, is hindered by MG-AGEs [72]. However, conflicting findings
by Jin et al. suggested that MG-AGEs elevate RAGE expression in macrophages, subsequently
triggering M1 polarization through NF-κB pathway activation [73].

2.5. Neurological Impact

Emerging research suggests that metabolic syndrome may have implications for
neurological health. MG and AGEs, with their ability to induce oxidative stress, may
contribute to neurodegenerative disorders often associated with metabolic syndrome. GLO
I’s role in mitigating MG-related damage becomes crucial in maintaining neurological
wellbeing(Table 1) [68].

Table 1. Interactions of MG and GLO I in metabolic syndrome-related diseases.

Disease
Category

Associated
Conditions Role of MG Role of GLO I Implications and

Findings Reference

IR and
Diabetes

Elevated MG
levels, IR

Exacerbates IR,
precursor to type 2

diabetes

Dysregulation leads to
MG accumulation,

worsening IR

Contributes to diabetes
progression, central to
metabolic syndrome

[65]

Cardiovascular
Implications

Increased risk of
cardiovascular

diseases

Contributes to
vascular damage

through AGE
formation

GLO I mitigates
vascular damage by

detoxifying MG

Dysfunction in glyoxalase
system exacerbates

cardiovascular
complications associated
with metabolic syndrome

[66]

Obesity and
Adipose

Dysfunction

Dysfunctional
adipose tissue

Impairs adipocyte
function, contributes

to obesity-related
complications

GLO I regulation of
MG levels may

influence adipose
tissue health

MG and glyoxalase
system play roles in

adipose tissue dysfunction
in metabolic syndrome

[67]

Oxidative
Stress and

Inflammation

Chronic
low-grade

inflammation,
oxidative stress

Pro-oxidant role,
contributes to

oxidative stress and
inflammation

GLO I acts as a
defense mechanism,
neutralizing MG to

prevent damage

Impaired glyoxalase
function could worsen

oxidative stress and
inflammation in metabolic

syndrome

[68]

Neurological
Impact

Implications for
neurological

health

MG and AGEs induce
oxidative stress,
contributing to

neurodegenerative
disorders

GLO I’s role is crucial
in mitigating

MG-related damage in
the brain

Metabolic syndrome may
have neurological

implications, with MG
and GLO I playing key

roles in maintaining brain
health

[68]
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3. Roles of MG and Glyoxalase in T2D

When human RBCs were exposed to elevated glucose concentrations in short-term
in vitro culture, the constant-state levels of S-D-lactoylglutathione and MG rose [7]. GLO
I and GLO II activities, along with cellular GSH concentration, remained unchanged,
while D-lactate concentration increased over incubation duration. Similar results were
observed in human and cow aortic endothelial cells, as well as HMEC-1 cells in vitro.
These findings, marked by elevated methylglyoxal (MG) production flux and steady-
state concentrations, were linked to reduced GLO I activity, resembling conditions seen
in hyperglycemia, a characteristic of diabetes [74]. Significantly, the excessive GLO I
expression in endothelial cells grown with high glucose concentrations effectively barred
the augmented AGE formation and reduced the development of tube-like structures.
This reduction in tube-like structures represents impaired angiogenesis in the context of
diabetes [75] (Table 2).

Cells with significant glucose uptake through the GLUT1 transporter, like mesangial
cells, vascular endothelial cells, lens fiber cells, and pericytes, often exhibit elevated MG
concentrations at steady state when incubated in high glucose concentrations [76]. This
phenomenon arises from the heightened degradation of triosephosphates, DHAP, and
GA3P, mainly through a step-in mammalian metabolism that is not enzymatic [77]. In-
creased cellular levels of GA3P and DHAP in hyperglycemia may result from reduced
GA3PDH activity and heightened glucose consumption via anaerobic glycolysis. In this
context, elevated MG concentrations may occur due to decreased in situ GLO I activity,
influenced by reduced cellular GSH levels, potential glutathionylation, S-nitrosylation, and
diminished GLO I expression [78].

Experimental diabetes research in STZ-induced diabetic mice revealed a surge in RBC
GLO I activity and GLO II action, accompanied by a twofold increase in blood concentration
of MG. Proteomic analysis further confirmed elevated GLO I protein levels in the glomeruli
of diabetic rats compared to healthy normal controls [79]. In STZ-induced diabetic rats, a
multifaceted response was observed in various tissues. This included reduced activities
of both GLO I and GLO II in hepatic cells, while the activities of these enzymes were
amplified in skeletal muscle [80]. The blood, lens, and renal medulla all had higher
concentrations of MG. Blood levels of S-D-lactoylglutathione also rose. D-lactate expression
levels displayed noticeable increases in the lens and blood [81]. These discoveries were
consistent with observations in diabetic patients, where the levels of MG in plasma and
red blood cells rose, and RBC GLO I activity was elevated. Notably, diabetic patients
with microvascular complications exhibited elevated GLO I activity in RBCs compared
to uncomplicated individuals, indicating a possible connection between increased GLO I
activity and vascular complications in diabetes [82] (Table 2).

In diabetes, MG metabolism extends beyond the glyoxalase system, involving AKR,
specifically aldose reductase. While aldose reductase contributes to MG metabolism,
the glyoxalase system is expected to be the primary route in most human tissues under
normal conditions, except for the renal medulla, which has unusually high levels of aldose
reductase [83]. The function of the GLO system in MG metabolism is compromised under
oxidative stress conditions, particularly when there is a decrease in GSH. In addition, GLO
I may be inhibited through a process known as glutathionylation. Furthermore, GLO I
expression has been downregulated in response to inflammatory signaling [82] (Table 2).

In pancreatic beta-cells, glyoxalase system-mediated MG metabolism influences insulin
secretion. Elevated MG concentrations depolarized isolated rat pancreatic beta-cells, inducing
increased cytosolic calcium concentration. While MG slightly and transiently stimulated
insulin secretion, glucose-induced insulin secretion was suppressed [84]. The glyoxalase
system’s presence in rat pancreatic islets was confirmed, with GLO I activity accounting for
approximately 25% of that in the rat liver. However, the impact of GLO I inhibition on insulin
secretion was weak, indicating a potential compensatory mechanism [85].

In protein modification, glyoxal and MG act as potent glycating agents, generating
lysine-derived adducts (CML and CEL residues), bis(lysyl) crosslinks (GOLD and MOLD),
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and AGEs (G-H1 and MG-H1). These modifications can impact the degradation of AGE-
modified proteins through cellular proteolysis and potentially contribute to vascular issues
associated with diabetes [86,87].

Table 2. Overview of the key findings related to MG, the GLO system, and diabetes.

Aspect Key Findings

In Vitro Exposure to Elevated
Glucose

- RBCs exposed to high glucose show increased MG and
S-D-lactoylglutathione levels.—GLO I and GLO II
activities, GSH levels remain unchanged.—D-lactate levels
increase over time [82].

Glucose Uptake via GLUT1
- Cells with predominant GLUT1 uptake exhibit increased

MG levels in high glucose concentrations.—Heightened
degradation of triosephosphates (GA3P, DHAP) through
non-enzymatic processes [88].

Experimental Diabetes Studies
(Animal Models)

- STZ-induced diabetic mice show increased RBC GLO I
and GLO II activities, twofold increase in blood MG
concentration.—Complex tissue-specific responses in
STZ-induced diabetic rats [82].

GLO I Activity in Diabetic
Patients

- Diabetic patients exhibit elevated MG levels in plasma
and RBCs.—RBC GLO I activity is higher in patients with
microvascular complications [89].

MG Metabolism Beyond
Glyoxalase System

- AKR, particularly aldose reductase, plays a role in MG
metabolism.—Glyoxalase system is the primary pathway
in most human tissues, except in renal medulla [83].

Pancreatic Beta-Cell Studies
- MG impacts insulin secretion in pancreatic

beta-cells.—MG induces depolarization, inhibits
glucose-induced insulin secretion.—GLO I accounts for
25% of activity in rat liver [90].

Protein Modification and
AGEs Formation

- Glyoxal and MG act as potent glycating agents, forming
AGEs.—Impact on turnover of AGE-modified proteins,
contributing to vascular complications in diabetes [55].

In summary, the intricate interplay of MG and the diabetes-related glyoxalase system
involves alterations in MG concentrations, GLO I activity, and the formation of AGEs,
impacting various tissues and contributing to the pathogenesis of vascular complications
in diabetes. These findings underscore the complex nature of MG metabolism and its role
in cellular dysfunction associated with diabetes.

4. Roles of MG and GLO in T2D Neuropathy

Diabetic neuropathy is a pervasive and challenging complication of diabetes, signif-
icantly impacting the quality of life of affected individuals [91]. Beyond the immediate
discomfort and pain associated with neuropathy, it poses a considerable economic burden
in diabetes care due to increased healthcare costs and potential disability. The syndrome en-
compasses both somatic and autonomic aspects of the peripheral nervous system, leading
to a spectrum of symptoms that range from pain and tingling to numbness [91]. Alarmingly,
approximately half of all individuals with diabetes experience some form of neuropathy,
with a 15% risk of lower extremity amputation—an extreme consequence that underscores
the severity of the condition [92].

Glycemic control, a cornerstone of diabetes management, is intricately linked to the
progression of diabetic neuropathy [93]. Persistent hyperglycemia and oxidative stress play
pivotal roles in initiating and perpetuating the damage observed in the nerves, Schwann
cells, and microvasculature. The initial structural alterations in the microvasculature of
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peripheral nerves serve as the foundation for the sequence of events that ultimately result
in neuropathy [94]. The role of glycation, specifically focusing on MG and glyoxalase, has
emerged as a pivotal contributor in the development of diabetic neuropathy. Neuronal
tissues, with their high energy demands and insulin-independent glucose absorption,
are particularly susceptible to the deleterious effects of MG accumulation [66]. Studies
have indicated elevated MG levels in sciatic nerves, especially in the context of STZ-
induced diabetes [95,96]. Interestingly, higher MG levels have been identified as significant
risk factors for the development of diabetic polyneuropathy, particularly in the early
years following type 2 diabetes diagnosis. Preliminary investigations hint at a potential
association between higher plasma MG levels and neurological pain in individuals with
type 2 diabetes [97,98].

However, the complexity of these interactions is evident in conflicting results from
larger studies, suggesting that serum MG levels might not be a precise reflection of MG
concentrations in nervous tissue [99]. AGEs, such as MG-H1 derived from MG, have shown
associations with the progression of neuropathy, particularly in type 1 diabetes. Insights
from cell systems and animal models have further elucidated the importance of MG in
diabetic neuropathy [100]. MG activation of signaling pathways in Schwann cells and
its impact on neuronal cell viability underscore its significance. The glyoxalase system,
particularly GLO I, is instrumental in detoxifying MG and plays a critical role in mitigating
diabetic neuropathy. Diminished expression and activity of GLO I in diabetes contribute to
increased MG concentrations and thermal hyperalgesia [79,101].

In diabetic neuropathy, unraveling the roles of MG and the glyoxalase system high-
lights targeting MG as a promising therapeutic approach. Strategies aimed at reducing
MG levels, including novel peptide scavengers, hold potential for mitigating diabetes-
induced hyperalgesia. Understanding these molecular mechanisms is crucial, offering
avenues for therapeutic interventions to alleviate neuropathic symptoms and enhance
overall diabetes management.

5. Roles of MG and GLO in Stroke

Stroke, a leading cause of morbidity and mortality globally, necessitates a comprehen-
sive exploration of the intricate biochemical processes contributing to its pathogenesis [102].
MG, a metabolite derived from glucose metabolism, and the glyoxalase system, a critical
defense mechanism against MG-induced damage, have recently emerged as key players in
neurological health [103]. This section delves into the nuanced role of MG and glyoxalase
in the context of stroke, shedding light on their potential implications for understanding
and managing this complex cerebrovascular event.

Oxidative stress and neuroinflammation are hallmark features of stroke, significantly
contributing to neuronal damage [104]. MG, known for its pro-oxidant properties, may
exacerbate these conditions. Elevated MG levels have been observed in ischemic stroke,
suggesting a potential role in amplifying oxidative stress and inflammatory responses [103].
Moreover, MG acts as a precursor in AGE formation, implicated in vascular complications.
In the context of stroke, the accumulation of AGEs may contribute to vascular dysfunction
and exacerbate the damage caused by the initial ischemic event [105].

The GLO system, composed of GLO I and GLO II enzymes, detoxifies MG. GLO I
converts MG into S-D-lactoylglutathione, and GLO II further converts it to D-lactate. In
heightened MG conditions, the glyoxalase system serves as a vital defense, preventing detri-
mental effects linked to MG accumulation. Upregulation of the GLO system is suggested to
offer neuroprotection in stroke scenarios. By efficiently clearing MG, the glyoxalase system
reduces AGE formation and lowers the risk of MG-induced neuronal damage.

In stroke management, the glyoxalase system emerges as a promising therapeutic
target. Boosting glyoxalase activity through pharmacological interventions or lifestyle
modifications holds potential to mitigate MG-induced damage and contribute to neuropro-
tection in stroke [106]. Further research is needed to assess the feasibility and efficacy of
interventions targeting glyoxalase. Monitoring MG levels could provide insight into stroke
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diagnosis and prognosis, serving as biomarkers for oxidative stress and neuroinflammation.
Integrating MG assessments into diagnostics may enhance our understanding of stroke
subtypes and inform personalized treatment strategies.

Advancements in MG and glyoxalase system understanding pave the way for targeted
therapies and precision medicine. Tailoring interventions to individual MG metabolism
and glyoxalase activity profiles could revolutionize personalized stroke management. Com-
binatorial approaches addressing oxidative stress, neuroinflammation, and MG-induced
damage may be promising. Integrating glyoxalase modulators with existing stroke ther-
apies could enhance overall efficacy. The intricate interplay between MG and the GLO
system unfolds a complex narrative in the context of stroke [107]. MG poses a dual threat,
potentially intensifying oxidative stress and inflammation. The glyoxalase system acts as a
guardian, shielding against MG-induced damage. Exploring the therapeutic potential of the
glyoxalase system and understanding MG’s diagnostic significance opens new avenues in
stroke research and management. Bridging scientific exploration with clinical application
is crucial for advancing stroke care and enhancing outcomes for those affected by this
formidable cerebrovascular event.

6. Roles of MG and GLO in CVD

CVD stands as a formidable threat to individuals with diabetes, emerging as a principal
cause of mortality. The key element underlying this risk is atherosclerosis, (atheromatous
plaques formation within the walls of arteries). These plaques, consisting of a necrotic
core and a fibrous cap, become particularly ominous when ruptured, leading to thrombus
formation and heightened risk of critical CVD events such as myocardial infarction or
stroke [108]. The intricate dance between diabetes and macrovascular complications unfolds
through the formation of AGEs [109]. Within this context, the reactive metabolite MG takes
center stage, earning attention for its potential in atherosclerosis onset. Studies directly
administering MG have demonstrated a clear association with increased atherosclerosis,
positioning MG as an active participant in the progression of this pathology [110]. Notably,
MG has also been recognized as a predictor of intimal thickening in individuals with type 2
diabetes [111]. The modification of lipoproteins, specifically LDL and HDL, by MG further
fuels the flames of atherosclerosis. MG’s modification of arginine residues in proteins,
such as apolipoprotein B100, leads to the creation of MG-H1 and a more atherogenic LDL
particle. Similarly, MG alters HDL, leading to decreased antioxidant and anti-inflammatory
activities (Figure 3) [112].

Expanding the narrative, MG extends its influence to PDGFRβ, recognized as a target
of MG modification. This modification may contribute to smooth muscle cell proliferation,
potentially culminating in the development of rupture-vulnerable plaques [99]. Intriguingly,
studies exploring GLO system function, specifically GLO I overexpression, yield conflicting
results in mitigating atherosclerotic lesions in diabetic models (Figure 3) [82]. While GLO
I overexpression does not consistently reduce lesion size, exposure to MG, either exoge-
nously or through GLO I inhibition, has been demonstrated to augment atherogenesis. In
addition to atherosclerosis, diabetes is intricately linked with impaired neovascularization,
elevating the risk of mortality, post-ischemic events, lower limb amputations, and heart
failure [79]. MG is an active player in this impairment, directly modifying HIF1α and
reducing SERCA2a, resulting in defective new vessel formation and cardiac dysfunction,
respectively (Figure 3) [99]. Beyond its implications in diabetes-related cardiovascular
complications, MG significantly contributes to non-diabetes-related CVD. Two prominent
cardiovascular complications associated with MG and its interplay with the glyoxalase
system are atherosclerosis and hypertension [79] (Figure 3).
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6.1. Atherosclerosis

MG’s influence on atherosclerosis extends to both diabetic and non-diabetic contexts.
In atherosclerotic plaques, MG-derived AGEs, including MG-H1 and THP, are detected,
with MG-H1 specifically linked to rupture-prone plaque phenotypes [113] (Figure 4). No-
tably, this association holds true regardless of diabetic status, highlighting the overriding
impact of metabolic dysfunction within atherosclerotic plaques [113]. Macrophages in
atherosclerotic plaques accumulate elevated MG levels due to heightened glycolytic activ-
ity and glucose uptake in the inflammatory and hypoxic environment. MG formation in
macrophages is not solely from glycolysis but also results from lipid oxidation, connecting
higher lipid content to increased MG-H1 levels [114]. MG modifies LDL, resulting in
altered particle characteristics, heightened atherogenicity, and reduced clearance, thereby
contributing to the progression of atherosclerosis (Figure 4). Within the complex milieu
of atherosclerotic lesions, MG co-localizes with markers of apoptosis, hypoxia, oxidative
stress, and inflammation, indicating its multifaceted role [115]. Additionally, impaired
detoxification of MG by the GLO system is observed in atherosclerotic lesions, with re-
duced levels of GLO I observed in ruptured plaques as compared to stable plaques. In
essence, MG significantly influences atherosclerosis onset through both enhanced levels
and compromised GLO I detoxification, positioning it as a potential therapeutic target for
comprehensive intervention [79].
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6.2. Hypertension

MG’s influence extends to hypertension, a major global health threat. Studies in rats
demonstrated enhanced MG levels in aortic and renal tissues, correlating with elevated
systolic blood pressure [64]. Administration of MG to rats induced a significant rise in
BP and increased plasma levels of catecholamines, angiotensin, aldosterone, and renin.
Rat studies indicated that diets rich in fructose (MG precursor) led to the development
of hypertension and renal injury [116]. Notably, the induction of hypertension by MG is
observed in conditions of enhanced renal oxidative stress. Mechanistically, MG-induced
hypertension involves the AT1-R-mediated pathway and enhanced cytosolic calcium levels,
contributing to vascular retention [64]. Aminoguanidine, an MG scavenger, shows promise
in mitigating MG-induced hypertension in rats. Clinically, multiple regression analysis
identified MG as an independent risk factor for the elevation of systolic BP over a 5-year
period in humans [117]. This underscores the potential utility of MG as a therapeutic target
or biomarker for managing hypertension.

7. Roles of MG and GLO in Obesity

Obesity, now reaching epidemic proportions, plays a significant role in the rising
prevalence of type 2 diabetes and CVD. Various factors associated with obesity contribute
to the augmented formation of MG in obese individuals [118,119]. Studies in obese Zucker
rats revealed the buildup of MG in adipose tissue, accompanied by increased serum MG
levels [120]. Experiments on cell proliferation have demonstrated that straight incubation
of adipocytes with MG leads to enhanced cell proliferation [120], suggesting the potential
involvement of MG in the development of adipose tissue in obesity (Figure 4). In vivo
studies involving long-term MG administration to normal rats (14 weeks) showed struc-
tural changes. Elevated tissue glycation and decreased apoptotic and angiogenic marker
expression were linked to these effects, but not IR [121,122]. Conversely, short-term ad-
ministration of MG for 8 weeks led to less severe effects, even though there was tissue
accumulation of CEL [123].



Life 2024, 14, 263 14 of 27

In the context of obesity-related diseases, db/db mice (obesity model), exhibited low-
ered GLO I activity in the renal cortex [124]. Nonetheless, in RBCs of obese mice, there was
a notable increase in GLO I activity by 50–60% when compared to their lean counterparts,
and GLO II activity showed a corresponding rise of 20–30% [125]. Proteomic studies fur-
ther revealed increased GLO I expression in rats (skeletal muscle) subjected to a high-fat
diet [126]. Additionally, elevated transcription and GLO I enzyme activity were associated
with mice preferring high-carbohydrate diets [127]. Conflicting findings highlight the need
for further research to clarify GLO I’s precise role in obesity. Despite contradictions, these
studies emphasize understanding MG and GLO I in obesity progression and adipose tissue
dysfunction, suggesting potential implications for initiating type 2 diabetes (Figure 4).
However, additional research is required to elucidate the underlying mechanisms and GLO
I’s role in obesity.

8. Roles of MG and GLO in Cancer

Early research on MG revealed its antiproliferative impact, inhibiting DNA and pro-
tein synthesis, cellular respiration, and inducing DNA modifications associated with in-
creased mutation frequency, strand breaks, and cytotoxicity [128]. MG’s toxicity selectively
targeted proliferating and malignant cells, inhibiting cell growth in vitro, particularly
in leukemia cells, while sparing mature peripheral leukocytes [129]. Additionally, MG
treatment showed selectivity for mitochondrial respiration inhibition in malignant cells
compared to normal cells [130].

MG demonstrated apoptotic induction in various cancer cell types, affecting cell cycle
progression and glycolytic pathways [131]. It triggered the activation of MAPK family proteins
and downregulation of Bcl-2 and MMP-9, impairing cell viability, proliferation, migration,
invasion, and promoting apoptosis in cancer cells [132]. In liver cancer cells, lower MG
concentrations reduced migration, invasion, and adhesion in a p53-dependent manner [133].
In vivo studies on rodents confirmed MG’s antitumor activity, inhibiting tumor growth, but
limitations arose with tumor regrowth post-therapy cessation. The potential side effects of
MG in chronic inflammatory conditions like obesity and diabetes remain unclear.

Cancer cells may exhibit survival mechanisms to counter high MG levels, such as in-
creased Glo1 expression and activity. Glo1 overexpression has been associated with several
cancers and multidrug resistance, presenting itself as a potential therapeutic target [134].
Amplification of the Glo1 gene is a common genetic event in various cancers, with higher
expression observed in aggressive and invasive tumor cells. Silencing Glo1 inhibits tumor
growth and induces apoptosis, suggesting its potential as a therapeutic target and prognos-
tic indicator. In conclusion, MG and Glo1 play pivotal roles in cancer biology, influencing
cell proliferation, survival, and apoptosis. Understanding these mechanisms may lead to
targeted therapeutic strategies and improved prognostic assessments in cancer patients.

9. Roles of MG and GLO in Retinopathy

Limited information exists on the glyoxalase system’s role in ocular tissues, despite
extensive research on non-ocular tissues. Emerging evidence suggests a connection be-
tween glyoxalase system alteration and diabetic retinopathy (DR). GLO1 and GLO2 ex-
pression is downregulated in DR patients, implicating a failure in the detoxification sys-
tem [135]. In vitro studies indicate glyoxalase activity promotes pericyte survival under
hyperglycemic conditions [136]. Transgenic rats overexpressing Glo1 showed inhibited
retinal AGE formation and DR lesions were prevented, suggesting a potential therapeu-
tic avenue [137]. Caution is warranted regarding expectations of GLO1 overexpression,
especially in the lens. GLO1 is likely concentrated in the lens epithelium, where glu-
cose is received from the aqueous or vitreous humor, potentially explaining age-related
glycation-related browning, particularly in the lens core. As the efficacy of the glyoxalase
system decreases with age, enhancing GLO1 activity could serve as a therapeutic strategy
to counteract the accumulation of toxic compounds in the lens and retina.
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However, caution is warranted in expecting GLO1 overexpression benefits, especially
in the lens. GLO1 may primarily function in lens epithelial layers, potentially explaining
glycation-related browning upon aging. Considering the decline in glyoxalase system
efficacy with age, enhancing GLO1 activity might be a therapeutic strategy against toxic
compound accumulation in the lens and retina.

Transcriptional modulators like metformin and candesartan, along with dietary com-
pounds, exhibit GLO1-stimulating properties and show promise in mitigating glycation-
related damage [138]. Further research is needed to explore nutritional and pharmacological
approaches for DR associated with glycative stress.

10. Treatment Options with GLO I and MG; Therapeutic GLO 1 Inducers and
GLO 1 Inhibitors

Dicarbonyl stress refers to the abnormal accumulation of dicarbonyl metabolites, caus-
ing heightened modifications of proteins and DNA. This phenomenon contributes to tissue
and cell dysfunction in aging and various diseases. A crucial player in physiological sys-
tems is MG, a reactive dicarbonyl metabolite and major substrate for the GLO system [139].
In mammals, MG primarily forms through the spontaneous degradation of glycolytic
intermediates [77]. The glyoxalase system, particularly GLO I, steps in to metabolize MG
in the cytosol of all cells. GLO I facilitates the conversion of MG with reduced glutathione
to S-D-lactoylglutathione, preventing the non-enzymatic reaction of MG with proteins and
DNA [140]. However, when MG escapes metabolism, it can react with DNA and proteins,
resulting in the formation of AGEs such as MG-H1 and MGdG. These AGEs are implicated
in various metabolic and vascular diseases. MG-H1 formation in proteins leads to the
substitution of charged hydrophilic arginine residue with hydrophobic uncharged MG-H1
residue. This process results in protein misfolding and triggers UPR [101].

Functional genomics studies on GLO I suggest that small-molecule GLO I inducers could
have therapeutic potential. These benefits include preventing and reversing T2DM, treating
microvascular complications in diabetes, and addressing conditions such as cardiovascular
diseases, NAFLD, chronic kidney disease, age-related conditions, and respiratory issues [101].

Conversely, GLO I inhibitors are being explored for their potential in cancer chemother-
apy and as adjunct therapies for malaria and MDR tumors. The reasoning behind this
approach is to induce a substantial elevation in MG levels, selectively targeting rapidly
proliferating malarial protozoa and tumors. This strategy exploits the observed selective
toxicity of GLO I inhibitors toward tumors, as they tend to have higher glycolytic rates,
increased MG formation, and often exhibit a hypoxic microenvironment [101].

The delicate balance of the glyoxalase system and its modulation using GLO I inducers
and inhibitors present compelling avenues for therapeutic interventions in diseases linked
to dicarbonyl stress. Exploring GLO I-inducing compounds, such as trans-resveratrol
and hesperetin, along with GLO I inhibitors like BBGD, hints at the exciting potential of
targeting this system for tailored treatment approaches [141].

10.1. Glyoxalase 1 Inducers

As the connection between increased MG formation and the development of dicar-
bonyl stress became understood as a critical factor in vascular complications of diabetes,
efforts were made to decrease cellular MG concentrations through clinical strategies [65].
Early chemical scavenging agents, such as phenacylthiazolium bromide and aminoguani-
dine, demonstrated potency against MG but were discovered to be toxic or unstable [101].
A more promising approach involved boosting the expression and activity of GLO I, a cata-
lyst in MG metabolism. GLO I induction was achieved through small-molecule activators
of the transcription factor Nrf2, which binds to the GLO I genes ARE. The compounds
tRES and HESP emerged as a potent combination, showing pharmacological synergism in
activating GLO I-ARE transcriptional activity.

This combination, referred to as tRES-HESP, exhibited significant effects on various cell
types in vitro and demonstrated promising outcomes in pre-clinical and clinical studies [54].
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In HAECs, tRES-HESP reduced the expression of receptors for RAGE and cell adhesion
molecules, along with a decrease in inflammatory mediator secretion. In fibroblasts and
a hepatoblastoma cell line (HepG2), tRES-HESP enhanced GSH cellular levels (Figure 3).
The combination was also effective in experimental models, accelerating wound healing in
diabetic mice and demonstrating anti-inflammatory effects [101].

The HATFF study with overweight and obese subjects receiving tRES-HESP orally for
8 weeks demonstrated high compliance and increased urinary tRES and HESP metabolite
excretion. Notably, tRES-HESP raised GLO I activity in PBMCs by 22%, leading to a 37%
decrease in MG plasma levels. This reduction was correlated with improved insulin resis-
tance (IR) and reduced low-grade inflammation. Physiologically, tRES-HESP effectively
corrected IR in overweight and obese individuals, restoring insulin sensitivity to levels
observed in lean individuals. The combination also showed potential benefits in addressing
dysglycemia, blood pressure, and dyslipidemia, surpassing the individual effects of tRES
or HESP (Figure 3) [101]. The synergistic effects of tRES-HESP were attributed to improved
bioavailability of tRES facilitated by HESP and pharmacological synergy in Nrf2 activa-
tion. In summary, tRES-HESP emerges as a promising dietary supplement warranting
further clinical assessment, especially in the context of preventing and treating T2DM and
the vascular complications linked to diabetes. Its well-tolerated nature and absence of
reported adverse effects make it a viable candidate for chronic and prophylactic treatment
applications, sparking ongoing evaluations [142].

10.2. Glyoxalase 1 Inhibitors

The development of GLO I inhibitors, particularly those that increase the concentration
of MG, holds promise as a potential therapeutic avenue. The rationale for this approach
stems from the understanding that GLO I inhibition leads to intracellular buildup of glyoxal
and MG, which could be cytotoxic at elevated levels. While the initial exploration of GLO I
inhibitors was rooted in anticancer drug development, there is emerging interest in their ap-
plication in metabolic diseases [143]. Considering GLO I inhibitors as potential treatments
for tumors, including TNBC, is relevant in the context of metabolic diseases. TNBC often
exhibits elevated GLO I copy numbers and expression, with conventional chemotherapy
showing limited effectiveness. Inhibitors targeting GLO I, which is associated with de-
creased patient survival, may provide a new therapeutic approach. Additionally, metabolic
diseases like diabetes are linked with enhanced MG levels and dicarbonyl stress [144].
Strategies aimed at modulating GLO I activity could potentially alleviate dicarbonyl stress,
which is implicated in the onset of vascular complications linked with atherosclerosis, CAD,
and diabetes [145]. As research progresses, the development of GLO I inhibitors tailored to
the unique metabolic challenges of diseases like diabetes could open new avenues for ther-
apeutic interventions. By specifically targeting MG-associated pathways, these inhibitors
may contribute to managing metabolic diseases and their associated complications.

Beyond its potential in diabetes and cancer therapy, cell-permeable GLO I inhibitors
like BBGD have shown promise in combating pathogenic microbial infections [101]. In
malaria caused by Plasmodium falciparum, BBGD demonstrated strong antimalarial activ-
ity in red blood cell cultures, inhibiting parasite nucleotide and protein synthesis. BBGD’s
antiviral potential, especially against SARS-CoV-2, is also under exploration, motivated
by historical reports of the antiviral activity of elevated MG concentrations, leading to an
investigation into the SARS-CoV-2 proteome [146]. Analysis revealed significant enrich-
ment of arginine residues, primary targets of MG modification, within functional domains
of the SARS-CoV-2 proteome. This suggests vulnerability to functional impairment by
MG, making GLO I inhibitors like BBGD potential antiviral agents. Ongoing research is
assessing BBGD efficacy against SARS-CoV-2. BBGD serves as a valuable tool in studying
pharmacologically-induced dicarbonyl stress, which is widely found in conditions such as
atherosclerosis, diabetes, vascular complications, NAFLD, osteoporosis, age-related heart
decline, and anxiety-linked behavior [101].
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11. Small-Molecule Regulators of GLO 1
11.1. Small-Molecule Activators of GLO 1

When the GLO I enzyme is not as active as it should be, there is a buildup of MG, a
key player in AGE formation. Mounting evidence indicates that increased levels of MG
and the primary AGEs derived from it are associated with various age-linked issues like
obesity, diabetes, cardiovascular diseases, and neurodegenerative conditions [4]. Thus,
activating GLO I could be a promising approach to tackle these health problems related to
aging. Previous research has identified different types of small molecules that can boost
GLO I expression and activity, potentially preventing the buildup of MG and AGEs [147].

Candesartan, a synthetic drug, has the ability to stimulate GLO I. Research by Miller
et al. in 2010 showed that candesartan restored the role of GLO I and release of nitric oxide
in cells influenced by angiotensin II, which was related to retinal health in bovines. This
is particularly significant in diabetic retinopathy, where candesartan’s GLO I-restoring
function provides protective effects [148] (Table 3).

Moving on to natural compounds, polyphenols like resveratrol and fisetin enhance
GLO I expression. Resveratrol, for example, enhanced the expression of HO-1 and GLO
I, inhibiting oxidative stress and countering IR induced by MG [149]. The amalgamation
of hesperetin and trans-resveratrol synergistically increased GLO I activity and reduced
plasma MG levels, improving metabolic health in overweight and obese individuals [150].

Fisetin, another natural compound, boosted GLO I expression and activity while
increasing the formation of its important co-factor, GSH, making it beneficial for treating
diabetic patients [151] (Table 3).

Mangiferin, a naturally occurring xanthone with C-glucoside, has been found to
prevent diabetic nephropathy by enhancing GLO I function and inhibiting oxidative stress
damage and the AGE/RAGE axis [152].

Table 3. Overview of various small molecules that activate GLO I and their potential benefits in
addressing age-related issues such as diabetes, obesity, cardiovascular diseases, and neurodegenera-
tive disorders.

Small Molecule
Activator Type Mechanism of Action Associated Benefits

Candesartan Synthetic Drug Restores GLO I function and nitric
oxide release affected by angiotensin II

Protective effects in diabetic
retinopathy [148].

Resveratrol Natural Polyphenol Promotes HO-1 and GLO I expression,
inhibits oxidative stress

Counters MG-induced IR, improves
metabolic health [149].

Fisetin Natural Polyphenol Boosts GLO I activity and expression,
increases GSH synthesis

Beneficial for treating diabetic
patients, prevents diabetic
nephropathy [151].

Mangiferin Natural C-Glucoside Enhances GLO I function, inhibits the
AGE/RAGE axis and oxidative stress

Prevents diabetic nephropathy
[152].

Isothiocyanates
Present in
Cruciferous
Vegetables

Activates Nrf2-ARE-GLO I pathway Defends cells against MG and
MG-derived AGEs [153]

Bardoxolone methyl Synthetic Compound Activates Nrf2-Keap1-ARE pathway Protects function of kidneys in
diabetic kidney disease [154].

Pyridoxamine Vitamin B6
Analogue

Induces expression of GLO I and its
activity

Candidate for treating obesity,
prevents retinopathy in diabetic
rats, quenches MG, increases GLO I
activity [155]

Aminoguanidine,
Alagebrium,
Benfotiamine

MG Scavengers Reduce MG levels, but mechanisms
differ from those of GLO I activators

MG scavenging, prevention of
MG-induced damage [4]
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Isothiocyanates, present in cruciferous vegetables, act as activators of Nrf2, increasing
GLO I activity and expression. Nrf2-ARE-GLO I pathway activation is crucial in defending
cells against MG and AGEs derived from MG [153]. Bardoxolone methyl activated the Nrf2-
Keap1-ARE pathway, potentially leading to an increase in GLO I expression and protecting
kidney function in diabetic kidney disease [154]. Pyridoxamine, a natural vitamin B6
analog, induced GLO I expression and activity. It is considered a candidate for treating
obesity and related inflammation and has shown promise in preventing retinopathy in
diabetic rats. Notably, pyridoxamine not only slakes MG but also increases activity of
GLO I [155] (Table 3).

Lastly, MG scavengers reduce MG levels, but their mechanisms differ from those of
GLO I activators. GLO I activators work by enhancing GLO I activity and expression in the
GLO system to catalyze the change of MG to D-lactate. Pyridoxamine, as a unique case,
not only reduces MG levels but also increases the activity of GLO I [4].

11.2. Small-Molecule Inhibitors of GLO

In tumors, GLO I overexpression supports cancer cell proliferation and survival by
reducing intracellular MG levels and contributing to multidrug resistance. GLO I becomes
a potential molecular target, providing an opportunity to improve the effectiveness of anti-
cancer treatments. Recent evidence highlights the importance of finding GLO I inhibitors
for treating diseases linked to inflammation, tumors, and multidrug resistance [63]. Various
research groups are exploring different avenues, delving into drug research to pinpoint or
craft powerful inhibitors for GLO I (Table 4).

Scientists are exploring different types of compounds to inhibit glyoxalase 1 (GLO I)
as part of the quest for innovative antitumor drugs. One group of GSH-based compounds,
which includes PBBG, showed potent inhibitory effects on GLO I [156]. However, the
challenge was that such compounds could not easily penetrate cell membranes. To address
this, derivatives like BBGC were developed. BBGC can efficiently cross cell membranes,
inhibiting the growth of leukemia cells. Another set of inhibitors, S-(N/C-aryl/alkyl-N-
hydroxycarbamoyl)glutathione derivatives, exhibited strong GLO I inhibitory effects. These
inhibitors hold promise as targeted anticancer agents, showcasing potential selectivity as
they serve as substrates for GLO II, which is more active in normal cells than in tumor
cells. To enhance inhibition, researchers explored isosteric replacements and structural
modifications. For instance, the compound CHG demonstrated competitive inhibition of
GLO I, and its suberate diamide derivatives showed even stronger inhibitory effects [156].

Non-GSH inhibitors, including natural compounds like curcumin and flavonoids,
have also been investigated. Curcumin, derived from turmeric, showed strong GLO I
inhibitory effects [157] (Table 4). Flavonoids like myricetin and quercetin exhibited potent
inhibition, with the OH group in the B ring contributing to effectiveness [158]. Moreover,
flavonoid complexes found in nature with a ketone group at C-4 and OH group at C-5, such
as delphinidin, demonstrated significant GLO I inhibitory activity [159]. Methyl-gerfelin, a
derivative of gerfelin, also acted as a competitive GLO I inhibitor [160]. Among non-GSH
inhibitors, NSAIDs, like acemetacin and indomethacin, and α-oxo-carbonic acids esters,
such as ethyl pyruvate, showed inhibitory effects on GLO I [156]. N-hydroxypyridones
and computer-aided drug design were also explored, identifying potent inhibitors like 4,6-
diphenyl-N-hydroxypyridone and thiazolyl carboxylic acid derivatives [156]. The research
encompasses a wide range of compounds, each contributing to the understanding and
potential development of antitumor drugs targeting GLO I.
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Table 4. Overview of different small-molecule inhibitors targeting GLO I, showcasing their types,
mechanisms of action, and potential benefits in the context of antitumor drug development.

Inhibitor Type Mechanism of Action Benefits

PBBG GSH-Based Compound Potent inhibitory effects
on GLO I

Effective GLO I inhibitor, but
challenges with cell membrane
penetration led to the development of
derivatives like BBGC [156].

BBGC GSH-Based Compound
Efficiently crosses cell
membranes, inhibits
leukemia cell growth

Improved membrane penetration
compared to PBBG, potential for
anticancer treatment [156].

S-(N/C-aryl/alkyl-N-
hydroxycarbamoyl)glutathione
derivatives

GSH-Based Compound
Strong GLO I inhibitory
effects, potential selective
anticancer agents

Substrates for GLO II, more active in
normal cells, offering selectivity for
tumor cells [156].

CHG GSH-Based Compound

Demonstrates competitive
inhibition of GLO I,
suberate diamide
derivatives show stronger
effects

Effective competitive inhibitor of GLO
I, with potential for enhanced
inhibition [156].

Curcumin Non-GSH Inhibitor Strong GLO I inhibitory
effects

Derived from turmeric, potential
anti-tumor agent [157]

Flavonoids (myricetin,
quercetin, delphinidin) Non-GSH Inhibitors

Potent GLO I inhibition,
hydroxyl group in B ring
enhances effectiveness

Natural compounds with potential
anticancer properties [158]

Methyl-gerfelin Non-GSH Inhibitor Competitive GLO I
inhibitor

Acts as a competitive inhibitor of GLO I
[160]

NSAIDs (acemetacin,
indomethacin) Non-GSH Inhibitors Inhibitory effects on GLO I

Non-steroidal anti-inflammatory drugs
show potential as GLO I inhibitors
[156]

α-Oxo-carbonic acids esters
(ethyl pyruvate) Non-GSH Inhibitor Exhibits inhibitory effects

on GLO I
α-Oxo-carbonic acid esters as potential
GLO I inhibitors [156]

N-Hydroxypyridones and
thiazolyl carboxylic acid
derivatives

Various Compounds

Identified potent
inhibitors like
4,6-diphenyl-N-
hydroxypyridone

Diverse range of compounds explored,
contributing to the potential
development of antitumor drugs
targeting GLO I [156]

Metformin, a commonly used oral medication for type 2 diabetes, has diverse effects on
GLO I according to various research reports. In diabetes treatment, metformin suppresses
hepatic gluconeogenesis and enhances cellular glucose uptake. Its positive impact on
heart-related issues in individuals with type 2 diabetes has been attributed to metformin
potentially trapping MG [161,162]. Interestingly, metformin treatment not only reduces MG
levels but is also correlated with a notable rise in the activity of GLO I within circulating
cells. This dual action has led to the interpretation that metformin could function as a GLO
I activator in treating type 2 diabetes (Table 4). Beyond diabetes, metformin demonstrates
efficacy in other medical scenarios [161]. For instance, in terms of the correlation between
diabetes and increased risks of endometrial cancer and hyperplasia, metformin has shown
the ability to overcome progestin resistance. It achieves this by reducing the expression of
GLO I and inhibiting activation of PI3K-mTOR, ultimately reversing progestin resistance.
In the context of prostate cancer metastasis, metformin influences the suppression of
the metastatic features of prostate cancer cells by inhibiting GLO I and promoting the
expression of micro-RNA-101, a recognized cancer suppressor, which targets GLO I and
decreases its expression [163]. Metformin-induced elevation of miR-101 and reduction
of GLO I expression inhibited by GLO I-dependent control of EMT, a process linked to
cancer progression. Furthermore, metformin enhanced the susceptibility of endometrial
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cancer cells to chemotherapeutic agents by suppressing the expression of GLO I [164].
This multifaceted impact positions metformin as a GLO I restorer, capable of reinstating
normal GLO I activity and expression, thereby influencing various pathways in different
disease contexts.

12. Conclusions

The quest for small-molecule regulators of GLO I and their impact on MG levels
unfolds a compelling narrative in molecular regulation. Activating GLO I, with compounds
like candesartan, polyphenols, isothiocyanates, and bardoxolone methyl, emerges as a
promising strategy against MG havoc. On the flip side, GLO I inhibitors, such as PBBG
derivatives, curcumin, flavonoids, NSAIDs, and metformin, are spotlighted in cancer
treatment, offering potential against GLO I overexpression. This quest opens avenues in
drug discovery, providing hope for inflammation and multidrug resistance-related diseases.
The delicate balance between GLO I activation and inhibition holds the key to therapeutic
innovation, promising interventions in age-related issues, diabetes, obesity, cardiovascular
diseases, and neurodegenerative disorders. Substantiation through meticulous trials is
crucial, acknowledging individual diversity and health contexts. The small compounds
governing GLO I open possibilities for custom treatments and individualized strategies in
the pursuit of optimal health and wellness.
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