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Abstract: This study investigates the intricate interplay between social class, sex, and self-reported
health (SRH) using data from the European Health Survey of Spain 2020 (EESE2020). Employing a
cross-sectional design and a representative sample of 22,072 individuals, the analysis explores the
persistence of disparities after adjusting for covariates, focusing on health-related variables. The study
employs logistic regression models and directed acyclic graphs (DAGs) to delineate the direct effects
of social class and sex on SRH, identifying a minimum adjustment set to control for confounding
variables. Results reveal a gradient effect of social class on SRH, emphasizing the enduring impact of
socioeconomic factors. Sex-based disparities in SRH diminish after considering additional health-
related variables, highlighting the importance of a holistic approach. DAGs serve as transparent tools
in disentangling complex relationships, guiding the identification of essential covariates. The study
concludes that addressing health inequalities requires comprehensive strategies considering both
individual health behaviours and socio-economic contexts. While recognizing limitations, such as
the cross-sectional design, the findings contribute to a nuanced understanding of health disparities,
informing evidence-based interventions and policies for a more equitable healthcare system.

Keywords: health inequalities; self-reported health; social class; sex disparities; directed acyclic
graphs (DAGs); cross-sectional study; European Health Survey; logistic regression; minimum
adjustment set; socioeconomic factors

1. Introduction

Health inequalities persist as a complex and pervasive challenge demanding rigorous
scrutiny within the field of public health research [1]. The multifaceted nature of these
disparities, cutting across diverse demographic and socio-economic strata, underscores the
critical need for comprehensive investigations [2]. Beyond merely reflecting disparities in
health outcomes, these inequalities highlight systemic and structural issues contributing
to differential health experiences among various population groups [3]. Addressing these
disparities is crucial, not only for promoting individual well-being but also for fostering a
more equitable and just healthcare system [4]. A nuanced exploration of health inequali-
ties is thus paramount to informing evidence-based interventions and policies aimed at
mitigating these disparities and promoting health equity.

Building upon this recognition of persistent health inequalities, this investigation aims
to address two key dimensions: sex-based disparities and social class differentials in self-
rated health (SRH). Robust evidence underscores a sex-based inequality in SRH, revealing
that women consistently report lower SRH compared to their male counterparts [5–9].
However, this observed sex disparity tends to diminish with the inclusion of other health
status variables in the analytical framework [10,11], suggesting a dynamic relationship
between sex, SRH, and their determinants. Simultaneously, social class emerges as another
significant determinant of SRH [12–15], elucidating a discernible hierarchy wherein individ-
uals from lower social strata exhibit compromised SRH. This complex interplay necessitates
a thorough investigation into the intricate determinants of SRH inequalities, providing a
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foundation for targeted interventions to address the nuanced factors contributing to health
disparities among diverse population groups.

Our study is meant to enrich the ongoing discourse surrounding the intricate rela-
tionship between sex/gender and SRH, building upon recent empirical research findings.
Notable contributions from investigations such as Ryou et al. (2019) and Zeng et al. (2023)
shed light on gender differences in the impact of SRH on mortality and emotional support’s
association with SRH, respectively, among older adults [16,17]. Similarly, Park et al. (2020)
and Akhtar et al. (2023) delved into the gender-specific dimensions of SRH, with the former
exploring its connection to inflammation in Koreans and the latter revealing a clear gender
gap in SRH among older adults in India, suggesting that women may be more sensitive to
certain determinants of SRH [6,18,19]. Additionally, Vafaei et al. (2021) utilized intersection-
ality analysis to uncover the complex interplay of sex and social factors in shaping older
adults’ perceptions of health in Canada [20]. Furthermore, Lysberg et al. (2021) explored
age group changes in SRH over a 20-year period in Norway, noting a trending shift with a
reduction in poor SRH among the youngest age group and an increase among middle-aged
and older age groups, with women generally scoring lower than men [21]. In Eastern Euro-
pean countries, Gil-Lacruz et al. (2022) analyzed the gender gap in SRH from a generational
perspective, revealing that individual characteristics, such as educational level or smoking,
have a stronger effect on women’s perceived health than on men’s [22]. Lastly, Cui et al.
(2021) investigated gender differences in the trajectories of SRH among Chinese older adults,
finding no significant gender differences in the trajectories of SRH over time [23]. These
diverse findings underscore the need for tailored health interventions that acknowledge the
subtle ways in which sex and gender intersect with subjective health perceptions. Our study
aims to contribute to this growing body of knowledge, examining sex-specific patterns
in SRH within the context of a representative population-based study. The relationship
between social class and self-rated health (SRH) has been a subject of extensive research
as well, reflecting the multifaceted nature of health disparities. A comprehensive under-
standing of these disparities requires consideration of various aspects, including property
ownership, authority, and credentials/skill, as suggested by the application of relational
class theory to the United States by Eisenberg-Guyot & Prins (2020) [24]. A pilot study by
McGarity-Shipley et al. (2023) investigating chronic shame as a potential mediator between
subjective social status and SRH sheds light on the psychological pathways in middle-aged
adults [25]. Furthermore, the English Longitudinal Study of Aging by Coustaury et al.
(2023) emphasizes the importance of considering wealth, an often-neglected dimension,
in understanding the association between subjective socioeconomic status and SRH [26].
In the Czech Republic, Hamplová et al. (2022) contributed to the concurrent validity of
SRH by assessing the relative importance of physiological, mental, and socioeconomic
factors [27]. Additionally, a study from Southwest China by Hu et al. (2021) explored health
self-management as a mediator, revealing that lower social class predicts lower physical
and mental health due to differences in health self-management abilities [28]. Trends in
social class inequalities in disability and SRH among oldest old populations in Finland and
Sweden, as studied by Enroth & Fors (2021), indicate increasing disparities over time [29].
In Spain, an intersectional analysis of gender, social class, and regional development by
Pedrós Barnils et al. (2020) reveals both cumulative and heterogeneous SRH inequalities,
emphasizing the joint contributions of material and psychosocial factors [30]. Lastly, a
study by Lai et al. (2021) from Hong Kong demonstrates a social gradient of SRH in older
people, highlighting the moderating role of the sense of community in the association
between socioeconomic status and SRH [31]. This diverse array of studies underscores the
need for a nuanced exploration of social class and its multifactorial impact on SRH across
different contexts.

The objectives of this study include interrogating the persistence of these disparities
after the adjustment for pertinent covariates, particularly self-reported health status vari-
ables. This inquiry begets a central question: What underlying determinants contribute to
the association between social class and SRH? Moreover, how might these dynamics differ
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from patterns elucidated in gender-based health inequalities? The study aims to provide
a comprehensive understanding of the nuanced factors contributing to health disparities,
with a specific focus on the interaction between social class, sex, and SRH. Notably, the
foundations of this inquiry rest upon a comprehensive and representative dataset sourced
from the general population in Spain, extracted from the European Health Survey of Spain
2020 (EESE 2020) [32]. This dataset provides a rich source of information, enabling us to
conduct in-depth analysis and draw meaningful insights into the multifaceted determinants
of SRH across diverse social and demographic dimensions.

2. Materials and Methods

For this study, we employed a cross-sectional research design, utilizing data from the
EESE 2020, a comprehensive survey conducted between 15 July 2019 and 24 July 2020 by the
Ministry of Health and the Spanish National Institute of Statistics (INE) [32]. The EESE 2020,
in its third edition, aimed to provide extensive health-related information for individuals
aged 15 years and above in Spain, contributing to health planning and evaluation. Trained
professionals conducted structured interviews to collect detailed information on a wide
range of health-related topics, including demographic characteristics, lifestyle factors,
preventive practices, and health outcomes.

The participants, selected by the INE using a three-stage stratified sampling method-
ology, included 22,072 individuals aged 15 years and older. Multi-stage sampling is a
sampling technique used in survey research to select a sample from a large population [33].
It involves dividing the population into smaller subgroups called units and selecting a
sample of units at each stage. This method is particularly useful for sampling large, ge-
ographically dispersed populations, as it can reduce the cost and time of data collection.
This robust sampling strategy involved selecting census sections (municipalities), main
family dwellings, and individuals to be surveyed, ensuring representation across diverse
social and demographic dimensions. Initially, the primary sampling unit was identified
as census sections, meticulously stratified based on the size of the municipality. These
sections were then chosen with a probability proportional to their size, gauged by the
number of main family dwellings they encompassed. In the subsequent stage, main family
dwellings were systematically selected within each chosen section, guaranteeing an equal
probability of selection. Finally, to obtain individual responses, an adult (aged 15 or older)
was randomly chosen within each household for the interview. The overall sample size
amounted to approximately 37,500 households, strategically distributed across 2500 census
sections, with an average of 15 households selected per section. The stratification process
involved categorizing municipalities based on their population size, ensuring the formation
of a diverse and nationally representative sample. The analysis of the recovery rate for
the survey, a crucial metric assessing the effectiveness of data collection, revealed that at
the national level, the effective sample represented almost 59% of the theoretical sample,
signifying that nearly 59% of the total households in the theoretical sample were success-
fully surveyed. Drilling down to the regional level, it was observed that most autonomous
communities exhibited effective sample percentages ranging between 50% and 73%. Addi-
tional details regarding the multi-stage sampling technique and the survey methodology
are available elsewhere [34]. It is important to underscore that the comprehensive approach
employed and the unwavering adherence to established sampling procedures significantly
contributed to the robustness and reliability of the survey data.

Approval from an accredited ethics committee was not required, as the EESE 2020 data
were considered non-confidential, obtained from public and anonymous files. Informed
consent was not necessary as the data were obtained from public and anonymous files.
Participants selected for the EESE 2020 were informed by letter about their inclusion in the
survey, the confidential nature of data collection, and the regulations protecting them.

For the study we employed a comprehensive set of variables derived from the survey,
capturing various dimensions of health and well-being:
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• Sex: Biological sex; distinguished between male and female participants. No in-
formation on gender identity, sexual orientation, LGBTQ, or X-gender individuals
was captured.

• Age: Represented the age of the participants in years.
• Social Class: Initially classified participants into six categories [35]: Class I (directors

and managers of establishments with 10 or more employees and professionals tra-
ditionally associated with university degrees), Class II (directors and managers of
establishments with fewer than 10 employees, professionals traditionally associated
with university degrees and other technical support professionals, and sportsmen and
sportswomen), Class III (intermediate occupations and self-employed workers), Class
IV (supervisors and workers in skilled technical occupations), Class V (skilled workers
in the primary sector and other semi-skilled workers), and Class VI (unskilled work-
ers). To enhance interpretability and streamline the analytical approach, a recoding
strategy was employed, collapsing the six original categories into three broader classes:
High (Classes I and II), Middle (Classes III and IV), and Low (Classes V and VI). This
strategic adjustment aligns with the flexibility endorsed by the Spanish Society of Epi-
demiology, which recognizes alternative groupings in social class categorization [35].
Moreover, our decision is reinforced by recent research within the same dataset, where
the three-category approach was consistently utilized to characterize social class while
investigating factors influencing screening test uptake for colorectal cancer [36]. Also,
the consistency observed in contemporary epidemiological studies across diverse
datasets in Spain further support our rationale [37,38]. This approach not only ensures
methodological alignment but also enhances the applicability and comparability of
our findings within the broader epidemiological context in Spain.

• Chronic Conditions: Indicated the presence or absence of any chronic condition.
• Health Issues (last 12 months): A dichotomous variable capturing the occurrence of any

of the 32 health conditions originally included in the survey. Participants responded
to specific questions related to various health issues such as high blood pressure, heart
attack, angina, arthritis, allergies, mental health conditions, and others over the last
12 months. Each health condition was initially coded separately, resulting in a set of
binary variables indicating the presence or absence of each specific condition. The final
variable was derived by summing the binary indicators for all 32 conditions. It serves
as a dichotomous measure, classifying participants as either having experienced one or
more health conditions or having no reported health conditions over the last 12 months.
This consolidated variable simplifies the representation of the complex array of health
issues, facilitating a comprehensive analysis of the overall health burden within the
study population.

• Health Limitation (≥6 Months): Distinguished between individuals with or without
health limitations.

• Pain (last 4 weeks): Categorized as “None”, “Very mild/mild”, “Moderate” or “Se-
vere/Extreme”.

• Medicines (last 2 weeks): Indicated the use or non-use of medicines.
• Hospitalization (last 12 months): Distinguished between those who were or were not

hospitalized.
• Body Mass Index (BMI): Categorized participants as ”Normal/Underweight”, ”Over-

weight”, or ”Obese”.
• Depression (last 12 months): Indicated the presence or absence of depression.
• Self-Reported Health (last 12 months): A binary variable representing ”Good/Very

good” or ”Fair/Poor/Very poor” health perceptions.

The selection of these variables was guided by a conceptual model, as depicted
in Figure 1, with the intention to determine the factors that contribute to SRH. In the
figure, we employed a directed acyclic graph (DAG) to visually depict and analyse the
relationships between the study variables [39–42]. The primary purpose of the DAG was
to offer a conceptual model for investigating the complex interactions within the dataset,
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aiding in causal thinking. In the figure, the rectangular boxes represent DAG nodes, each
corresponding to a specific variable, and arrows between nodes indicate hypothesized
directional relationships. Notably, the graph is acyclic, ensuring a clear and non-circular
representation of variable relationships. Within this conceptual model, the presence of an
oval-shaped node signifies a latent variable (denoted as “Unknown”). This latent variable
implies the potential influence of unobservable or unmeasured factors on health issues,
chronic conditions, depression, and BMI.
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Figure 1. Directed acyclic graph (DAG) showing the relationships between study variables.

The complex web of relationships among the selected study variables is grounded
in existing literature. The arrow from Sex to Age signifies well-established connections
between biological sex and the aging process [43], while the arrow to Social Class is
informed by studies highlighting sex and gender-based disparities in socio-economic
status [44]. Sex’s association with health issues, chronic conditions, and depression reflects
a body of research demonstrating sex-specific health disparities, where women often report
different health outcomes than men [45–48]. Age’s relationship with health issues, chronic
conditions, depression, and social class aligns with extensive literature showcasing the
impact of age on health status and its interaction with socio-economic factors [49–52]. Social
Class’s association with health issues, chronic conditions, depression, and obesity reflects
a robust body of research demonstrating the profound impact of socio-economic factors
on various health outcomes [53–56]. Obesity, in turn, is linked to health issues, chronic
conditions, and depression [57–61]. Health issues and chronic conditions are central nodes
influencing health limitations, pain, medicines, hospitalization, and depression [62–70].
Depression, in its relationship with health limitations, pain, medicines, and hospitalization,
further underscores its pervasive influence on overall health [71–75]. Finally, the arrows
from health limitations, pain, medicines, and hospitalization collectively shape individuals’
self-reported health, emphasizing the comprehensive nature of health-related determinants
in subjective health assessments [76–79]. These connections, rooted in established literature,
provide a solid theoretical foundation for our DAG.

We utilized descriptive statistics to summarize the demographic characteristics and
prevalence rates of the variables in the study. We conducted logistic regression analyses to
assess the odds ratios (OR) and 95% confidence intervals (CI) for each predictor variable.
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With these analyses, we aimed to reveal the individual impact of each predictor on the
likelihood of reporting levels of self-rated health.

To scrutinize the complex interplay of variables within the conceptual model in
Figure 1, we conducted a multiple logistic regression analysis. The model incorporated
all variables, including sex, age, social class, chronic conditions, health issues, health lim-
itations, pain, medicines, hospitalization, BMI, and depression. The logistic regression
provided estimates of the associations between these variables and self-reported health,
allowing for a comprehensive exploration of the determinants of subjective health as-
sessments. We assessed the contribution of each variable in explaining the variance in
self-reported health, yielding coefficients, standard errors, Wald statistics, and significance
levels. Importantly, we employed the Hosmer and Lemeshow goodness-of-fit test to eval-
uate the Figure 1 model’s fit to the data, ensuring its appropriateness. Additionally, we
calculated the Nagelkerke R Square, which is commonly used in logistic regression to assess
the goodness-of-fit of the model. Unlike the R-squared in linear regression, Nagelkerke R
Square does not measure the proportion of variation explained in the model in the same
manner, as chi-square units are being assessed rather than linear sums of squares for a
continuous dependent variable. Instead, it provides a measure of the improvement in
model fit over a null (intercept-only) model, with higher values indicating better model fit.
This statistic is useful for evaluating the overall explanatory power of the logistic regression
model in capturing the relationship between the predictors and the binary outcome.

We used SPSS version 28 [80] for statistical analyses, encompassing descriptive statis-
tics and logistic regression models.

Utilizing DAGs in our study was pivotal for disentangling the intricate relationships
within the data. DAGs function as graphical tools that aid researchers in visually repre-
senting and understanding the complex interplay of variables [41]. One of the primary
purposes of employing DAGs in our investigation was to identify crucial variables that
needed to be controlled for to obtain precise estimates of the direct effects of independent
variables on the outcome [81]. The concept of “direct effect” is central to DAGs, denoting
the unmediated influence that an independent variable exerts on the outcome. This is vital
for isolating and comprehending the specific impact of variables of interest without the
confounding influence of other variables.

Figure 2 provides a visual representation of these methodological concepts. The grey
rectangular boxes highlight the minimum set of variables requiring control for accurate esti-
mation, including health limitations, pain, medicines, and hospitalization. These variables
were selected based on the application of a web-based tool, DAGitty [40]. DAGitty employs
principles from causal inference and graph theory to construct DAGs that represent the
relationships between variables [40]. In our study, each variable is represented as a node
in the graph, and arrows between nodes indicate causal relationships. The acyclic nature
of the graph ensures a clear direction of causation. The tool systematically identifies the
minimal adjustment set (MAS) by assessing the graphical structure. The MAS consists of
a minimal set of variables that need to be controlled for to estimate the direct effect of a
particular variable on the outcome without introducing bias from confounding factors [81].
To illustrate the concept mathematically, let’s consider a causal relationship between two
variables, A and B, where A influences B. If we want to estimate the direct effect of A on
the outcome B, DAGitty helps identify the minimal set of variables (C, D, E, etc.) that,
when controlled for, ensures an unbiased estimation of this direct effect. This is achieved
by blocking all backdoor paths from A to the B, where a backdoor path is any path that
ends with an arrow pointing into A. DAGitty’s mathematical algorithms are designed to
systematically identify and present this minimal adjustment set, ensuring a robust and
unbiased estimation of causal effects in observational studies.
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need to be controlled for to estimate the direct effects of sex and social class on self-reported health.

Transitioning from this methodological groundwork, we applied a logistic regression
model to examine the associations between the identified minimum set of variables and
SRH, focusing on the direct effects. As in the full model, we used standard goodness-
of-fit statistics to evaluate model performance. This minimal approach ensured a robust
and consistent methodological approach for analysing the essential determinants of SRH,
providing valuable insights without unnecessary complexity.

3. Results

Table 1 presents the demographic characteristics of the study participants, providing
a comprehensive overview of key variables. Notably, the sample of 22,072 individuals
exhibited a balanced distribution of sex, with 52.9% being female and 47.1%, male. Re-
garding age, the mean was 54.6 years (SD = 19), reflecting a diverse age ranging from 15 to
104 years. The social class distribution revealed representation across High (18.9%), Middle
(34.5%), and Low (46.6%) categories. Notably, 70.6% of participants reported their SRH
as Very good or Good, while 29.4% rated it as Fair, Poor, or Very poor. These baseline
characteristics set the stage for exploring the relationships between sex, social class, and
SRH in subsequent analyses.

Table 1. Demographic characteristics of participants (n = 22,072 1).

Sex

Male 47.1%

Female 52.9%

Age

Range, years 15–104

Mean (SD) 54.6 (19)
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Table 1. Cont.

Social Class 2

High 18.9%

Middle 34.5%

Low 46.6%

Chronic Conditions 3

No 39.1%

Yes 60.9%

Health Issues (last 12 months) 4

No 34.6%

Yes 65.4%

Health Limitation (≥6 Months) 5

Not limited 72.3%

Limited 21.9%

Severely limited 5.8%

Pain (last 4 weeks)

None 56.0%

Very mild, Mild 21.9%

Moderate 14.9%

Severe, Extreme 7.2%

Medicines (last 2 weeks) 6

No 41.3%

Yes 58.7%

Hospitalization (last 12 months) 7

No 91.8%

Yes 8.2%

Body Mass Index

<25 (normal, underweight) 44.8%

25–29.9 (overweight) 39.0%

≥30 (obese) 16.2%

Depression (last 12 months)

No 92.9%

Yes 7.1%

Self-Reported Health (last 12 months)

Very good, Good 70.6%

Fair, Poor, Very poor 29.4%
1 Variables with missing values (%): Social class (4.5), Chronic conditions (0.1), Pain (0.1), BMI (5.3). 2 Based on
occupation. 3 Chronic or long-term health condition or problem. 4 From a list of 32 health conditions. 5 Degree of
limitation for at least 6 months due to health problems. 6 Prescribed by a doctor. 7 Hospital admission in the last
12 months, excluding birth or C-section.

Table 2 provides a detailed examination of the association between various indepen-
dent variables and participants’ SRH. The influence of sex on SRH is evident, with females
being 53% more likely than males to report Fair, Poor, or Very poor health (OR = 1.53,
95% CI: 1.44–1.62). Age exhibited a modest impact, with each additional year being associ-
ated with 5% higher odds of reporting poorer SRH (OR = 1.05, 95% CI: 1.048–1.052). Social
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class revealed a gradient effect, as individuals in the Low social class category showed
153% higher odds of reporting poorer SRH compared to the High social class (OR = 2.53,
95% CI: 2.31–2.78). Chronic conditions, health issues, health limitations, pain, medicines,
hospitalization, higher BMI, and depression all exhibited substantial associations with SRH.
Notably, participants with severe limitations faced markedly increased odds of reporting
poorer SRH.

Table 2. Association between each of the independent variables investigated and the self-reported
health of participants.

Independent
Variables

Self-Reported
Health

OR (95% CI)
Very Good,

Good
Fair, Poor,
Very Poor

Sex

Male 75.2% 24.8% 1

Female 66.5% 33.5% 1.53 (1.44–1.62)

Age

Mean, years 50.07 65.40 1.05 (1.048–1.052)

Social Class

High 82.5% 17.5% 1

Middle 73.2% 26.8% 1.73 (1.57–1.90)

Low 65.0% 35.0% 2.53 (2.31–2.78)

Chronic Conditions

No 95.2% 4.8% 1

Yes 54.9% 45.1% 16.14 (14.55–17.91)

Health Issues

No 95.3% 4.7% 1

Yes 57.6% 42.4% 14.91 (13.35–16.7)

Health Limitation

Not limited 88.0% 12.0% 1

Limited 29.3% 70.7% 17.73 (16.4–19.18)

Severely limited 9.5% 90.5% 69.81 (57.54–84.70)

Pain

None 87.6% 12.4% 1

Very mild, Mild 65.5% 34.5% 3.73 (3.45–4.04)

Moderate 38.6% 61.4% 11.27 (10.31–12.31)

Severe, Extreme 21.1% 78.9% 26.40 (23.15–30.12)

Medicines

No 92.7% 7.3% 1

Yes 55.1% 44.9% 10.36 (9.50–11.29)

Hospitalization

No 74.0% 26.0% 1

Yes 32.4% 67.6% 5.95 (5.37–6.60)
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Table 2. Cont.

Independent
Variables

Self-Reported
Health

OR (95% CI)
Very Good,

Good
Fair, Poor,
Very Poor

Body Mass Index

<25 (normal, underweight) 78.3% 21.7% 1

25–29.9 (overweight) 69.3% 30.7% 1.59 (1.49–1.70)

≥30 (obese) 58.0% 42.4% 2.61 (2.40–2.84)

Depression

No 74.3% 25.7% 1

Yes 22.9% 77.1% 9.71 (8.59–10.97)

Table 3 presents the outcomes of the full multiple logistic regression model, aligning
with the comprehensive conceptual framework illustrated in Figure 1. Building upon the
significant bi-variate associations identified in Table 2, which highlighted the initial impact
of socio-demographic variables on SRH, the full model provides a better understanding of
these relationships. Initially, both sex and social class exhibited noteworthy associations
with SRH. Females were 53% more likely than men to report Fair, Poor, or Very poor health,
while social class displayed a clear gradient effect, indicating higher odds of poorer health
in lower classes. However, upon consideration of the full model, which accounts for the
spectrum independent variables simultaneously, a compelling shift is observed. Controlling
for age, chronic conditions, health issues, health limitations, pain, medicines, hospitalization,
BMI, and depression, the association between sex and SRH disappeared (OR = 0.97, 95% CI:
0.89–1.06). This suggests that the initial disparities in SRH between males and females can
be largely explained by these additional factors. In contrast, social class retained a robust
association with SRH even after accounting for these variables, underscoring the persistent
impact of socioeconomic disparities on health outcomes within the studied population.

Table 3. Multiple logistic regression model of the factors associated with self-reported health:
full model.

Variables in
the Model B S.E. Wald Sig. Exp(B) 95% CI for EXP(B)

Lower Upper

Sex

Male
(reference)

Female −0.03 0.046 0.50 0.481 0.97 0.89 1.06

Age (years) 0.02 0.001 119.64 <0.001 1.02 1.01 1.02

Social Class 102.03 <0.001

High
(reference)

Middle 0.36 0.067 28.91 <0.001 1.43 1.26 1.63

Low 0.62 0.064 95.93 <0.001 1.87 1.65 2.12

Chronic
Conditions

No
(reference)

Yes 0.70 0.08 76.86 <0.001 2.01 1.72 2.35
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Table 3. Cont.

Variables in
the Model B S.E. Wald Sig. Exp(B) 95% CI for EXP(B)

Lower Upper

Health Issues

No
(reference)

Yes 0.55 0.085 41.19 <0.001 1.73 1.46 2.04

Health
Limitations 1591.68 0

Not limited
(reference)

Limited 1.74 0.049 1285.46 <0.001 5.70 5.18 6.27

Severely
limited 2.76 0.118 550.51 <0.001 15.87 12.59 19.99

Pain 532.64 <0.001

None
(reference)

Very mild,
Mild 0.58 0.054 115.93 <0.001 1.78 1.60 1.98

Moderate 1.20 0.06 395.10 <0.001 3.32 2.95 3.74

Severe,
Extreme 1.48 0.089 276.39 <0.001 4.41 3.70 5.25

Medicines

No
(reference)

Yes 0.66 0.062 112.58 <0.001 1.94 1.71 2.19

Hospitalization

No
(reference)

Yes 0.87 0.074 137.62 <0.001 2.39 2.06 2.76

BMI 19.75 <0.001

Normal,
underweight

(reference)

Overweight 0.09 0.051 3.32 0.068 1.10 0.99 1.21

Obese 0.28 0.062 19.72 <0.001 1.32 1.17 1.49

Depression

No
(reference)

Yes 1.01 0.083 148.83 <0.001 2.74 2.33 3.22

Constant −5.06 0.107 2242.80 0 0.06

Model Summary: Nagelkerke R Square, 0.58. Hosmer and Lemeshow Test: Chi-square, 14.96, Sig. 0.06. Observed-
predicted self-reported health, overall percentage correct: 85.5. NB: This table presents the outcomes of the full
multiple logistic regression model aligned with the comprehensive conceptual framework illustrated in the DAG
in Figure 1. The model incorporates all the variables in the DAG. The logistic regression provides estimates of the
associations between the independent variables and self-reported health (SRH), allowing for a comprehensive
exploration of the determinants of subjective health assessments.
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The model in Table 3 demonstrated satisfactory goodness-of-fit with a Nagelkerke
R Square of 0.58. The Hosmer and Lemeshow Test yielded a non-significant result (Chi-
square = 14.96, p = 0.06), supporting the model’s adequacy in fitting the observed data.
Additionally, the observed-predicted classification of SRH achieved an overall percentage
correct of 85.5%, affirming the model’s reliability in accurately predicting subjective health
assessments within the study population.

Table 4 presents the results of the multiple logistic regression model employing the
minimal sufficient adjustment set that aligns with the DAG in Figure 2. This model focused
on the direct effects of sex and social class on SRH, providing a nuanced exploration while
maintaining simplicity. In this minimal model, sex showed a negligible association with
SRH (OR = 0.99, 95% CI: 0.91–1.07), indicating that, after accounting for health limitations,
pain, medicines, and hospitalization, the initial sex-based disparities in SRH diminished
substantially. However, social class retained a robust association with SRH, with individuals
in the Low social class exhibiting 1.99 times higher odds of reporting poorer SRH compared
to the High social class (95% CI: 1.77–2.25). This suggests that even in the absence of
mediation by health limitations, pain, medicines, and hospitalization, social class remained
a significant determinant of SRH. The impact of health limitations is also notable in this
minimal model, with individuals experiencing severe limitations having 23.54 times higher
odds of reporting poorer SRH (95% CI: 19.00–29.17). Pain, medicines, and hospitalization
also maintained strong associations with SRH, reinforcing their independent contributions
to subjective health assessments.

Table 4. Multiple logistic regression model of the minimum number of factors associated with
self-reported health: minimal sufficient adjustment set model.

Variables in
the Model B S.E. Wald Sig. Exp(B) 95% CI for EXP(B)

Lower Upper

Sex

Male
(reference)

Female −0.01 0.043 0.09 0.765 0.99 0.91 1.07

Social Class 134.23 <0.001

High
(reference)

Middle 0.41 0.065 41.04 <0.001 1.51 1.33 1.72

Low 0.69 0.061 126.88 <0.001 1.99 1.77 2.25

Health
Limitations 2503.97 0

Not limited
(reference)

Limited 2.04 0.045 2033.40 0 7.72 7.07 8.44

Severely
limited 3.16 0.109 833.77 <0.001 23.54 19.00 29.17

Pain 736.83 <0.001

None
(reference)

Very mild,
Mild 0.69 0.051 184.17 <0.001 1.99 1.80 2.20

Moderate 1.34 0.057 549.40 <0.001 3.83 3.42 4.28
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Table 4. Cont.

Variables in the Model B S.E. Wald Sig. Exp(B) 95% CI for EXP(B)

Lower Upper

Severe, Extreme 1.62 0.084 371.88 <0.001 5.06 4.29 5.97

Medicines

No (reference)

Yes 1.36 0.052 683.47 <0.001 3.91 3.53 4.33

Hospitalization

No (reference)

Yes 0.91 0.071 164.81 <0.001 2.49 2.17 2.87

Constant −3.78 0.073 2675.64 0 0.02

Model Summary: Nagelkerke R Square, 0.55. Observed-predicted self-reported health, overall percentage correct:
85.1. NB: This table presents the results of the multiple logistic regression model employing the minimal sufficient
adjustment set of factors described in the DAG in Figure 2. This model is focused on the direct effects of sex and
social class on self-reported health, providing a nuanced exploration while maintaining simplicity.

Comparing these results with Table 3, which represents the full multiple logistic
regression model, we observe that the minimal model captured the essential associations
without unnecessary complexity. Nagelkerke’s R Square (0.55) was consistent with the
full model. Additionally, the observed-predicted classification of SRH achieved an overall
percentage correct of 85.1%, demonstrating the reliability of the minimal model in predicting
subjective health assessments.

4. Discussion

The intricate interplay between social class, sex, and SRH uncovered in this study prompts
a more in-depth examination of the underlying mechanisms driving health inequalities.

Social class, a key determinant of SRH, exhibits a gradient effect where individuals
in lower classes consistently report compromised health compared to their higher-class
counterparts. This gradient, observed even after accounting for a range of health-related
variables, emphasizes the enduring impact of socioeconomic factors on subjective health
assessments. The findings resonate with existing literature on social determinants of
health [4,28,82,83], reinforcing the notion that addressing health inequalities requires com-
prehensive strategies that extend beyond individual health behaviours [5].

The disappearance of sex-based disparities in SRH when considering additional
health-related variables challenges simplistic interpretations of sex inequalities in health
outcomes [84]. The initial observation of women reporting lower SRH compared to men
is nuanced by the inclusion of variables such as chronic conditions, health issues, and
mental health, suggesting that these factors contribute significantly to the observed sex-
based differences. This underscores the importance of adopting a holistic approach to
understanding health inequalities, acknowledging the complex web of factors influencing
subjective health assessments [85].

Social class, identified here as a pivotal determinant of SRH, presents a compelling
case for targeted policy interventions [86]. Policymakers should strategically prioritize
initiatives beyond conventional healthcare measures. By addressing systemic issues like
education, employment, and housing inequalities, policies can actively uplift individuals
in lower social classes [87]. A robust public health agenda must emphasize cross-sector
collaboration and the seamless integration of social determinants into overarching policy
frameworks. This multifaceted approach is essential to effectively narrowing the health gap.

Efforts towards social change should extend beyond a top-down approach. Community-
driven health initiatives play a pivotal role in fostering lasting transformations [88,89].
Policymakers are urged to invest in empowering programs that enable communities to
take an active role in enhancing their health. Whether through educational campaigns
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or job training initiatives, fostering social support networks can yield enduring positive
outcomes. This grassroots involvement is integral to creating a resilient foundation for
improved health on a community level.

In tandem with policy and community efforts, healthcare practitioners bear a respon-
sibility to integrate social determinants into patient care. Routine screening for social
determinants, including socioeconomic status, can serve as a compass for personalized
interventions [90]. This approach acknowledges and addresses the broader contextual
factors influencing health outcomes. By recognizing and acting upon the intricate links
between social determinants and health, healthcare professionals contribute to a holistic
model of care that goes beyond traditional biomedical perspectives.

This recognition of the intricate links between social determinants and health outcomes
can stimulate collective action, prompting a ripple effect that transforms not only individual
behaviours but also societal structures.

DAGs play a pivotal role in unravelling the complexity of these relationships. By
visually depicting hypothesized directional relationships between key variables, DAGs
guide researchers in identifying essential covariates necessary for unbiased estimates of
specific independent variables’ direct impacts on the outcome [81]. The application of DAGs
in this study facilitated a transparent and meticulous approach to modelling, ensuring that
the identified minimum set of covariates captured the true direct effects of social class and
sex on SRH.

In this respect, we would like to elaborate on the rationale behind selecting the reduced
model in Table 4 over the more comprehensive model in Table 3. While it is true that the
larger model in Table 3 has significant effects for most predictors and exhibits better fitting
statistics, our decision to emphasize the reduced model was driven by consideration of
the interpretability of a simpler model and the principle of Occam’s razor (i.e., the idea
that, all else being equal, simpler explanations are generally better than more complex
ones). The goal of adopting the reduced model was to distil the essence of the relationships
under investigation. The larger model, albeit statistically sound, may introduce unneces-
sary complexity, potentially clouding the direct associations we sought to highlight. The
application of DAGs was instrumental in this simplification, guiding us to transparently
and meticulously model the relationships. By choosing the reduced model, we aimed to
offer a more straightforward and interpretable representation of the key factors directly
impacting SRH. This strategic simplification, guided by DAGs, allows for clearer insights
into the critical associations between social class, sex, and SRH.

While structural equation modeling (SEM) [91] could be a suitable approach for
estimating the complex interrelationships depicted in our DAG, we opted for multiple
logistic regression for several reasons. Our study focused on examining the associations
between a range of socio-demographic factors and self-reported health, aiming for a more
straightforward and interpretable model. Multiple logistic regression allowed us to assess
the impact of various variables on the odds of reporting different health states, providing
a clear and concise presentation of our findings. However, we acknowledge the robust
analytical capabilities of SEM, particularly in capturing latent constructs and intricate
pathways. Future analyses employing SEM could offer a more comprehensive exploration
of the structural relationships implied by our DAG, providing additional insights into the
subtle interactions among the studied variables.

In the broader context of research exploring the intersections of socio-demographic
factors with SRH, our study makes a significant contribution by delving into the intricate
dynamics of sex and social class. The extensive body of empirical research, as highlighted
in the introduction, underscores the complexity and variability of these relationships across
diverse populations. Our findings, derived from a representative population-based study,
add to this rich tapestry by providing novel insights. We would like to highlight the
cumulative nature of our contribution to the field. As future research endeavors unfold, it
would be advantageous for researchers to consider the insights generated by our study as a
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foundation for designing more comprehensive and contextually informed investigations
into the socio-demographic determinants of SRH.

Despite these contributions, it is crucial to recognize the study’s limitations. The cross-
sectional design restricted our ability to establish causal relationships, and the reliance
on self-reported data introduced the possibility of response bias. While the minimal
sufficient adjustment set model offers a focused exploration, there may still be unmeasured
confounders influencing the observed associations.

We chose to represent age as a continuous variable in our logistic regression model, a
decision made for both simplicity and precision in capturing the overall trend in its associa-
tion with SRH. This methodological choice aligns with common epidemiological practices
and enhances the interpretability of the results. However, it is crucial to acknowledge that
age, when treated as a continuous regressor, assumes a linear relationship with SRH. The
assumption of linearity suggests that the effect of each additional year is constant. Never-
theless, this simplicity may not fully encapsulate a more complex nature of the age–SRH
relationship, and it is a point of legitimate concern raised by a reviewer.

Alternatively, treating age as a categorical variable in a multiple logistic regression
model presents another valid avenue. This approach allows for a more flexible representa-
tion of the age–SRH relationship, capturing potential non-linearities and variations across
different age groups. Categorizing age could provide a more detailed understanding of
how subjective health assessments vary at different life stages. While our study provides
valuable insights, future research endeavours can explore these alternative modelling
approaches.

To deepen the understanding of health determinants, future research should adopt a
longitudinal approach to assess the sustained impact of policies aimed at reducing health
inequalities. Longitudinal studies tracking changes in social class disparities and health
outcomes over time can offer valuable insights into the effectiveness of interventions [92,93].

Moreover, exploring the intersectionality of various socio-demographic factors, in-
cluding age, sex, race, ethnicity, and geographical location, would provide a more nuanced
perspective [50,94]. Understanding how these factors intersect with social class can in-
form targeted and inclusive policies, fostering a comprehensive comprehension of health
determinants.

Given the potential influence of unmeasured variables on the observed social class
effect, evaluating future survey designs becomes imperative. Just as the impact of sex
disparities diminishes after controlling for specific health-related variables, a more targeted
approach to data collection may unveil a more detailed picture of social class determinants.
Future surveys could incorporate additional indicators related to socioeconomic status,
such as access to education, employment stability, and housing conditions. These targeted
questions would allow for a more comprehensive examination of the multifaceted nature
of social class and its intricate relationship with health outcomes [95–97]. Such refined
measures have the potential to dissect the social class effect, revealing specific dimensions
that significantly contribute to health inequalities.

5. Conclusions

The study highlights a clear gradient effect of social class on self-reported health (SRH),
emphasizing the enduring impact of socioeconomic factors on health outcomes.

Initially, women reported lower SRH than men, but this disparity diminished after
accounting for health-related variables, revealing the nuanced nature of gender-based
health inequalities.

The application of directed acyclic graphs (DAGs) provided a methodologically robust
approach, elucidating the minimum set of variables necessary for unbiased estimation of
direct effects.

The findings underscore the need for comprehensive interventions addressing both
individual health behaviours and broader socioeconomic determinants to tackle health
inequalities.
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