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Abstract: Successfully promoting drought tolerance in wheat genotypes will require several proce-
dures, such as field experimentations, measuring relevant traits, using analysis tools of high precision
and efficiency, and taking a complementary approach that combines analyses of phenotyping and
genotyping at once. The aim of this study is to assess the genetic diversity of 60 genotypes using
SSR (simple sequence repeat) markers collected from several regions of the world and select 13 of
them as more genetically diverse to be re-evaluated under field conditions to study drought stress
by estimating 30 agro-physio-biochemical traits. Genetic parameters and multivariate analysis were
used to compare genotype traits and identify which traits are increasingly efficient at detecting
wheat genotypes of drought tolerance. Hierarchical cluster (HC) analysis of SSR markers divided
the genotypes into five main categories of drought tolerance: four high tolerant (HT), eight tolerant
(T), nine moderate tolerant (MT), six sensitive (S), and 33 high sensitive (HS). Six traits exhibit a
combination of high heritability (>60%) and genetic gain (>20%). Analyses of principal components
and stepwise multiple linear regression together identified nine traits (grain yield, flag leaf area, stom-
atal conductance, plant height, relative turgidity, glycine betaine, polyphenol oxidase, chlorophyll
content, and grain-filling duration) as a screening tool that effectively detects the variation among the
13 genotypes used. HC analysis of the nine traits divided genotypes into three main categories: T,
MT, and S, representing three, five, and five genotypes, respectively, and were completely identical
in linear discriminant analysis. But in the case of SSR markers, they were classified into three main
categories: T, MT, and S, representing five, three, and five genotypes, respectively, which are both
significantly correlated as per the Mantel test. The SSR markers were associated with nine traits,
which are considered an assistance tool in the selection process for drought tolerance. So, this study is
useful and has successfully detected several agro-physio-biochemical traits, associated SSR markers,
and some drought-tolerant genotypes, coupled with our knowledge of the phenotypic and genotypic
basis of wheat genotypes.

Keywords: genetic diversity; SSR markers; mantel test; multivariate analysis

1. Introduction

Wheat (Triticum aestivum L.) is native to southwest Asia and is cultivated on a world-
wide scale [1]. It is estimated that wheat is the second most important and widely cultivated
crop in the world [2]. It is used as a staple crop by a third of the world’s population and
is referred to as the “king of grains” given its importance [3]. Grains are rich in carbo-
hydrates, making them a good source of energy [4,5]. Agricultural productivity could
fall dramatically due to extreme environmental events, such as reduced water availability,
which is a serious concern for the entire Arab region [1,6]. This results in more adverse
effects threatening the sustainability of production from grain crops, coupled with the
inferior quality. The challenge is increased because of the loss of arable land to sustainable
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urbanization and the steady rise in population, coupled with the declining availability of
natural resources owing to climate change, which represents a serious threat to the safe
production of wheat [6–8]. For those reasons, we aim to constantly increase productivity by
2–3% each year by targeting breeding efforts toward increasing wheat productivity through
the provision of improved varieties that are high-yielding and tolerant to drought, coupled
with other environmental stresses, to replace degraded varieties [1,6,9].

Drought stress affects plants differently during each stage of growth, causing many
physiological and biochemical problems, leading to the overproduction of reactive oxygen
species (ROS) in plants, which negatively affects the morphological and physiological
characteristics of wheat crops, including plant height, leaf area, relative water content,
stomatal conductance, chlorophyll content, osmotic capacity, leaf water potential, and
the final product, which is the yield according to [2,10–12]. The production of ROS is
dangerous, as it causes significant damage to cellular organelles, such as mitochondria,
nucleic acids, membrane lipids, chloroplasts, and metabolic enzymes in plant cells [12]. This
causes an imbalance in the physiological and biochemical processes that lead to cell death
during oxidative stress induced by dehydration [13,14]. Damage to photosynthesis and
desiccation-induced stomatal closure are some of the most sensitive activities to drought
stress [15]. According to reports, closing the mouth reduces photosynthesis, which in
turn reduces the amount of carbon dioxide available [15,16]. Therefore, when searching
for genotypes that are tolerant to drought, it is very important to study the antioxidants,
proline and glycine betaine, which have a significant role in removing oxygen-free radicals
that cause damage to plant cells and their components. These parameters directly and/or
indirectly affect different stages of plant growth, making them important for helping plant
breeders choose genotypes that are drought tolerant [1,17].

Drought tolerance is a complex genetic trait regulated by a large number of genes. In
addition to being genetically unstable due to genotypes being affected by their interaction
with the environment that surrounds them, it is a difficult and complex process. The
selection and production process of high-yielding and drought-tolerant genotypes are the
basis for overcoming drought-related problems and are essential to ensure sustainable
food production [2,7,18]. So, plant breeders face several key challenges in achieving this
goal through close cooperation with researchers and experts in relevant areas [19]. Most
recently, a molecular DNA marker was used, showing promise in facilitating and enhancing
sustainable agriculture since it can provide renewable genetic inputs [1,20]. These markers
have been used in many studies (genetic diversity, molecular-assisted selection (MAS),
paternity analysis, mapping of quantitative trait loci, cultivar identification, phylogenetic
relationship analysis, and genetic mapping), and DNA fingerprinting markers played a
major in the early detection of polymorphisms [17,21–23]. The selection process is more
accurate and fully transparent when genetic markers (not influenced by environmental
factors) work alongside phenotypic traits (influenced by environmental factors) and can
be genotype-assessed accurately and more objectively by markers required to produce a
specific pattern of bands for each individual [7,17,24].

SSR markers are one of the main molecular markers characterized by multi-allele,
co-dominant inheritance between generations, information-rich, relatively highly abundant,
distributed on a massive scale across the genome, and potential for replication [1,7,17,25].
SSRs are very beneficial for various studies in genetics and breeding, assisted selection for
crop improvement, and genetic diversity estimation, coupled with population structure
and gene mapping analyses [17,21,26,27]. Therefore, SSR markers are a suitable choice
for genetic diversity studies of wheat genotypes. Some recent studies have highlighted
using SSR markers, which have succeeded in wheat genetic diversity analysis and shown
that genotypes have diverged to a large extent—an essential consideration in breeding
programs for drought tolerance [21,25,28–31]. The discovery of QTLs (quantitative trait
loci) has made a revolution in the selection process for genes conferring quantitative traits
(such as drought tolerance) in MAS, which are mostly located in the A and B genomes on
chromosomes 2B, 3A, 4A, 4B, 7A, and 7B [7,8,28,32]. There is, therefore, an urgent need
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to integrate molecular tools with precise high-throughput phenotyping to confirm their
interdependence [17,33].

Statistical analyses are required to obtain accurate selection criteria and efficient
screening methods in breeding programs. Screening tests of large amounts of data require
appropriate statistical analysis to formulate conclusions and make recommendations con-
cerning genotypes that are tolerant and/or sensitive [14,34]. Naturally, the performance of
agro-physio-biochemical and molecular responses will differ from one genotype to another,
so it is superior in some traits and lesser in other traits [1,17,24]. The aim of this study is to
assess the genetic diversity of 60 genotypes using SSRs collected from several regions of
the world and select more genetically diverse genotypes for studying drought stress. The
effective use of multivariate analyses and divergent traits serves as confident screening
criteria for evaluating genotypes under drought stress. Furthermore, this study intends to
obtain genotypes that are highly drought-tolerant and high-yielding.

2. Materials and Methods
2.1. Genomic DNA Extraction and SSR Markers

Sixty genotypes were used for screening the genetic diversity of drought-tolerance
genotypes (35 genotypes obtained from CIMMYT (International Maize and Wheat Im-
provement Center), twenty-two genotypes obtained from Professor Abdullah Al-Doss,
two genotypes obtained from the Agricultural Research Center, Egypt, and one geno-
type (DHL2) obtained from Professor Ibrahim Al-Ashkar) (Table S1). All genotypes were
germinated in growth chambers, with the seeds placed on Petri dishes. Once the plants
reached the fourth leaf stage, the leaves were collected for DNA extraction. Genomic
DNA extraction for all genotypes followed the CTAB procedure, as described by Saghai-
Maroof et al. [35]. To determine the quantity and quality of the extracted DNA, UV–vis
spectrophotometry was employed, measuring the absorbance at 260 nm. Additionally,
electrophoresis using a 0.8% agarose gel was conducted to assess the DNA samples further.
Eighty SSR markers associated with drought stress in wheat were selected, according to
many scientists [36–42].

PCR reactions were conducted following the protocol [43] utilizing a 96 thermocycler.
Each PCR reaction was performed in a 20 µL volume, using Promega Green master mix,
which consists of dNTPs, Taq polymerase, and a 10× PCR buffer. The reaction mixture
also contained 1 mM MgCl2, 15 pmole of each primer, and 100 ng of genomic DNA as the
template. After PCR amplification, the resulting products were subjected to electrophoresis
on 3% agarose gels. To visualize the DNA fragments, the gels were stained with ethidium
bromide (EtBr) and placed in a Gel doc system. A 100 bp ladder was used as a size standard
for comparison. The DNA fragments separated in the agarose gel were visually examined
and scored. Each fragment, also known as an allele, was scored as either 1 (indicating its
presence) or 0 (indicating its absence) for each marker.

2.2. Plant Materials and Experimental Design

Thirteen genotypes (DHL2, 16HTWYT-22, KSU115, 16HTWYT-38, KSU105, Yecora
Rojo, Klassic, ksu106, 16HTWYT-30, 16HTWYT-20, 16HTWYT-9, 16HTWYT-12, and Line-
47) were selected between tolerant and sensitive depending on the results of SSR markers
for further phenotypic and genetic analyses of studied traits. In the 2021/22 growing
season, these thirteen genotypes were planted in rows measuring 2.0 m in length, with a
spacing of 0.20 m between rows in three repetitions using a randomized complete block
design for separate irrigation (I) treatments (control (C) and drought (D)). Fertilization
rates were 3.1 g m−2 P2O5 (with the tillage operation) and 18 g m−2 N (during watering in
batches). The drought treatment was applied two weeks after sowing (irrigation when soil
moisture was at thirty-three percent of the field capacity), and the control treatment was
applied (irrigation when soil moisture was at eighty percent of the field capacity).
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2.3. Measurements of Traits
2.3.1. Agro-Physio-Biochemical Traits

Twenty-six agro-physio-biochemical traits were studied (six physiological traits, twelve
Agronomic traits, and nine biochemical traits). The physiologic traits (relative water con-
tent (RWC), relative turgidity (RT), net photosynthetic rate (Pn), stomatal conductance
(Gs), intercellular carbon dioxide (Ci), and transpiration rate (E)) and the agronomic traits
(days to heading (DH, days), days to maturity (DM, days), duration of grain filling (GFD,
day), grain filling rate (GFR g/day), plant height (PH, cm), flag leaf area (FLA) and spike
length (SL, cm), spikes per square meter (NS, m2), spikelets per spike (NSS, per spike),
grain yield (GY, ton ha−1), and thousand-kernel weight (TKW, g)) were measured as
explained in detail by Al-Ashkar et al. [2]. The biochemical traits (chlorophyll content
(Chl), superoxide dismutase (SOD), polyphenol oxidase (PPO), catalase (CAT), peroxidase
(POD), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), total phenolic content (TPC), Glycine
betaine (GB), and proline content (Pro)) measured as shown below:

- The estimation of Chl in leaves was performed using a colorimetric method by measur-
ing absorbances at 663 nm and 646 nm with 80% acetone as the solvent. Approximately
0.5 g of leaf tissue was crushed in liquid nitrogen, and about 100 mg of the crushed
tissue was taken. Then, 2 mL of acetone was added to the sample, which was then left
in a dark place in the refrigerator for 48 h. Afterward, the sample was centrifuged, and
the extract obtained was used for spectrophotometer readings to estimate Chl. The
calculations for estimating Chl were based on the equations provided by Lichtenthaler
and Wellburn [44].

- To measure the activity of antioxidant enzymes, including SOD, CAT, POD, and PPO,
fresh leaf samples weighing 0.5 g were utilized. The extraction of these enzymes
involved crushing the leaves in liquid nitrogen and suspending them in a buffer
containing 50 mM potassium phosphate buffer (pH 7.8) and 1% (w/v) polyvinyl
polypyrrolidone. Afterward, the samples were subjected to centrifugation at 14,000× g
for 10 min at 4 ◦C. The resulting supernatant, as described in references [45–47], was
used as an enzyme extract for the subsequent tests assessing the activity of CAT, POD,
PPO, and SOD.

- The determination of DPPH radical scavenging ability involved assessing the decrease
in absorbance at 517 nm [48]. The analyses were conducted using a UV–vis spec-
trophotometer in 3 mL cuvettes. To facilitate the analysis, a freshly prepared stock
solution of DPPH (3.94 mg/100 mL methanol) radicals in methanol was utilized. Sub-
sequently, 3 mL of the DPPH working solution was mixed with 0.5 mL of the extract
and left in darkness for 30 min. The presence of an antioxidant agent in the reaction
medium led to the disappearance of the purple color associated with DPPH radicals.
In parallel, a reference sample consisting of 0.5 mL of the solvent was prepared. The
maximal absorption of the newly prepared DPPH radical solution was observed at
517 nm. All analyses were performed in 3 replicates, and the absorbance was recorded
at 517 nm. The blank sample referred to the reaction mixture that lacked any test
compounds [49,50]. DPPH scavenging effect (%) = [A0 − A1)/A0] × 100.

- The quantification of TPC was conducted using the Folin–Ciocalteau method, as
previously described by Sarker and Oba [51]. In this procedure, extracts (100 µL)
or a series of standards (12.5, 25, 50, 100, 150, and 200 µg mL−1 gallic acid) were
added. Following reagent mixing and the ensuing reaction, 300 µL of the solution
was transferred to a 96-well plate, and the absorbance was measured at 740 nm. The
obtained results were expressed as the equivalent amount of gallic acid standard (mg
GAE/g FW).

- To quantify the contents of GB, leaf samples were ground using liquid nitrogen to
ensure proper homogenization, as described by Grieve and Grattan [52]. Subsequently,
1 mg of the sample was transferred to a glass tube, and 1.5 mL of 2 N H2SO4 was
added to it. The mixture was then placed in a water bath at 60 ◦C for ten minutes to
extract Glycine betaine. After centrifugation at 3500× rpm for 10 min, the supernatants
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were collected for further analysis. To analyze the GB concentration, 125 µL of the
supernatant sample was combined with 50 µL of cold Potassium tri-iodide KI-I2,
which was prepared by dissolving 15.7 g of iodine and 20 g of potassium iodide in
100 mL of distilled water. This mixture was left at 0–4 ◦C for 16 h and then centrifuged
at 10,000× rpm for 15 min. The upper liquid was discarded, leaving behind small
crystals in the chamber of the tube. These crystals were dissolved by adding 1.4 mL
of 1,2-dichloroethane and incubating the solution for 2–2.5 h. The samples were then
examined using a spectrophotometer at 365 nm (U-2000, Hitachi Instruments, Tokyo,
Japan). To determine the GB concentration, a standard curve was prepared using stock
solutions of betaine with concentrations of 1, 2, 4, 6, and 8 µL. These stock solutions
were used to calculate the GB concentration in the samples.

- For proline content, the estimation of proline was performed using the protocol
described by Boctor [53] with certain modifications. Initially, the sample was ground
using liquid nitrogen. Then, 100 mg of the sample was taken and mixed with 500 µL of
3% Sulpho salicylic acid. The mixture was vortexed and placed on ice for five minutes,
followed by centrifugation at the highest speed for five minutes at room temperature.
Next, 200 µL of the supernatant was combined with 200 µL of 3% Sulphosalicylic acid,
400 µL of glacial acetic acid, and 400 µL of ninhydrin acid. The reaction components
were vortexed thoroughly and placed in a water bath at 100 ◦C for one hour. To halt
the reaction, the tubes were then placed on ice. In the final step, 1 mL of toluene was
added to the reaction mixture. The solution was vigorously shaken by hand and left
undisturbed for five minutes to allow the components to separate into two layers. The
top layer was extracted, and the absorbance was measured using a spectrometer at
520 nm, with toluene serving as the blank.

2.3.2. Quality Traits

Four traits (protein content (pc), wet gluten content (WGC), dry gluten content (DGC),
and gluten index (GI)) were estimated as explained in detail by the Committee [54].

2.4. Statistical Analysis

- Genotyping Analysis: SSR bands were scored (present (1) or absent (0)) to create a
binary matrix. The genetic dissimilarity (matrix of pairwise) between genotypes was
calculated using the coefficient of Jaccard dissimilarity. Agglomerative HC analysis
was implemented using the unweighted pair group average method (UPGAM).

- Phenotypic analysis: ANOVA (split-plot design) and genetic parameters for 30 traits
were implemented using SAS v9.2 software (SAS Institute, Inc., Cary, NC, USA).
The variance (mean squares) of data for 30 traits was used to compute variance
components that are used to compute genetic parameters (genetic variance (σ2G),
residual variance (σ2e), phenotypic variance (σ2Ph), heritability (h2 %), genotypic
coefficient of variability (G.C.V. %), phenotypic coefficient of variability (Ph.C.V. %),
genetic advance (GA), and genetic gain (GG)), as described by Al-Ashkar et al. [14].
Principal component analysis (PCA) was carried out based on data provided by the
correlation matrix to find out the variables contributing the most to the variance and
the components loading the most on the variables. PCA is useful for trait reduction,
dealing with the problem of multicollinearity, and identifying important traits that are
located in the first two components, and its outcomes were used to detect the drought
tolerance index, which was used in SMLR (Stepwise multiple linear regression), PC
(path coefficient), HC (hierarchical cluster), and LD (liner discriminant) analyses.
PCA eliminated five traits that exhibited high multicollinearity. Twenty-five out of
thirty traits (index) were used in SMLR to determine the key traits that contribute to
enhancing and developing the variable of interest (GY), after which PC analysis was
used to divide variation into direct and indirect effects. The effective indices (nine out
of twenty-five traits) were used in the HC analysis to evaluate the genetic dissimilarity
matrix between thirteen genotypes, characterized into three tolerance groups using
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Euclidean distance and Ward’s method of agglomeration. LD Analysis was employed
to validate the genotype tolerance categories (the nine indices used as quantitative
variables) with the three categories (as qualitative variables). Statistical analyses (PCA,
SMLR, PC, HC, and DFA) were implemented through XLSTAT statistical package
software (vers. 2019.1, Excel Add-ins soft SARL, New York, NY, USA).

3. Results
3.1. Screening Genetic Diversity of Drought Tolerance Genotypes

The microsatellite (SSR) data were used to determine genetic dissimilarities (based
on levels of tolerant drought) for 60 genotypes according to the Jaccard coefficient. The
hierarchical cluster (HC) analysis divided genotypes into five main categories: The first
category (HT, high tolerant) covered four genotypes (16HTWYW-22, KSU105, KSU115, and
DHL2) (Figure 1). The second category (T, tolerant) covered eight genotypes (KSU 114,
SAWYT31, Line 277, Line 4, 16HTWYW-12, Line 213, Klassic, and Line 11). The third
category (MT, moderate tolerant) covered nine genotypes (Line 87, KSU110, Line 30, lang,
Line 47, Line 60, Line 66, SAWYT42, and ksu106). The fourth category (S, sensitive) covered
six genotypes (Line 76, 16HTWYW-21, 16HTWYW-31, 16HTWYW-20, 16HTWYW-9, and
Line 25), while the fifth category (HS, high sensitive) covered 33 remaining genotypes.
Thirteen genotypes were selected depending on the results of SSR markers for further
phenotypic and genetic analyses of studied traits.

3.2. Phenotypic Analysis of Genotypes and Traits
3.2.1. ANOVA, Genetic Parameters, and Genotype Performance

ANOVA detected highly significant (p < 0.01) variations between the two (optimal
and drought-stressed) treatments (I) in 25 measured traits, significant (p < 0.05) variations
in three traits, and insignificant in two traits. The genotypes (G) and interaction (I × G)
showed highly significant (p < 0.01) variations for 30 measured traits (Table 1). The (h2)
showed high values (>60%) for 15 traits [60.57% ≤ h2 ≤ 96.459%] and moderate for 14 traits
[57.42% ≤ h2 ≤ 38.72%]. The (GG) showed high values (>20%) for 11 traits [61.58% ≤ GG
≤ 20.03%] and moderate for eight traits [16.06% ≤ h2 ≤ 10.62%]. The PCV and GCV values
were convergent for some traits and divergent for some other traits. The σ2G was smaller
than the σ2Ph for all traits. The mean values of 21 traits studied in the optimal treatment (C)
were greater than the drought-stressed treatment (D), except for nine physio-biochemical
traits (RT, CAT, POD, PPO, SOD, Pro, DPPH, GB, and GI), as shown in Figure 2. The
maximum values were such that the mean values, which were recorded for the same traits
[13 traits (C) were greater than (D) and 9 traits (D) were greater than (C)].
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Figure 2. Boxplots illustrating the descriptive statistics of 30 measured traits under control (C) and 
drought (D) conditions for 13 wheat genotypes. Letters a and b indicate significant differences based 
on the Duncan test at the 0.01% level. Abbreviations for traits are as described in materials and 
methods. The numbers on the Y-coordinate axis indicate measurement trait units. 

Figure 2. Boxplots illustrating the descriptive statistics of 30 measured traits under control (C) and
drought (D) conditions for 13 wheat genotypes. Letters a and b indicate significant differences based
on the Duncan test at the 0.01% level. Abbreviations for traits are as described in materials and
methods. The numbers on the Y-coordinate axis indicate measurement trait units.
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Table 1. Analysis of variance for 30 traits estimated in 13 wheat genotypes under drought stress and control.

Source DF Pn Gs Ci E Chl PC GI WGC DGC PH DH DM SL NS NSS

Rep 2 0.365 0.0002 25.906 0.277 0.004 0.631 12.747 0.616 0.003 3.128 0.051 13.128 0.474 762.859 0.154
I 1 1365.716 ** 0.292 ** 166,828.1 ** 149.66 ** 30.688 * 17.033 * 211.207 ns 139.361 ** 5.600 ** 4063.705 ** 714.051 ** 5008.013 ** 11.538 ** 213,938.782 ** 149.53 **
Error a 2 0.382 0.00001 103.586 0.188 0.395 0.905 30.756 1.044 0.003 0.359 0.051 13.128 0.115 158.244 1.077
G 12 7.055 ** 0.003 ** 2131.897 ** 0.96 ** 0.964 ** 6.609 ** 555.003 ** 43.507 ** 4.933 ** 167.513 ** 32.218 ** 150.427 ** 14.421 ** 3908.987 ** 8.872 **
I * G 12 3.004 ** 0.001 ** 601.333 ** 0.431 ** 0.215 ** 2.573 ** 54.762 ** 24.021 ** 2.043 ** 87.205 ** 12.218 ** 50.568 ** 0.344 ** 2395.226 ** 2.65 **
Errorb 48 0.632 0.0003 74.685 0.138 0.055 0.721 12.296 1.077 0.021 10.244 0.051 0.517 0.517 425.44 1.004

Genetic Parameters

σ2G 0.675 0.000 255.094 0.088 0.125 0.673 83.374 3.248 0.482 13.385 3.333 16.643 2.346 252.294 1.037
σ2e 0.105 0.000 12.448 0.023 0.009 0.120 2.049 0.180 0.004 1.707 0.009 0.086 0.086 70.907 0.167
σ2Ph 1.176 0.001 355.316 0.160 0.161 1.102 92.501 7.251 0.822 27.919 5.370 25.071 2.432 651.498 1.479
h2 % 57.420 66.667 71.794 55.104 77.697 61.068 90.133 44.788 58.585 47.941 62.077 66.384 96.457 38.725 70.131
G.C.V. % 9.191 7.347 7.662 6.948 13.036 7.579 10.916 9.083 10.185 4.249 2.593 3.698 15.601 3.269 6.507
Ph.C.V. % 12.130 8.998 9.043 9.360 14.789 9.698 11.498 13.573 13.306 6.137 3.291 4.539 15.885 5.253 7.770
GA 1.283 0.031 27.878 0.454 0.642 1.320 17.858 2.484 1.094 5.218 2.963 6.847 3.099 20.362 1.757
GG % 14.348 12.358 13.374 10.625 23.671 12.200 21.348 12.523 16.059 6.060 4.209 6.206 31.563 4.190 11.226

Source DF GFD GFR TKW GY RT FLA CAT POD PPO SOD DPPH TPC Pro RWC GB

Rep 2 0.051 0.304 3.962 0.012 0.279 2.665 0.005 0.94 0.007 0.034 0.096 0.004 0.006 0.279 0.079
I 1 1354.167 ** 44.192 * 1117.30 ** 79.50 ** 13,479.04 ** 4185.28 ** 216.430 ** 230.043 ** 2.619 ** 14.878 ** 34,491.283 ** 0.180 ns 5.865 ** 13,479.05 ** 46.066 *
Error a 2 0.051 0.574 3.882 0.067 62.231 4.203 0.2 0.06 0.009 0.024 0.096 0.168 0.002 62.231 0.735
G 12 57.013 ** 2.76 ** 38.715 ** 1.088 ** 73.831 ** 194.66 ** 6.78 ** 5.312 ** 0.038 ** 0.403 ** 460.565 ** 0.14 * 0.163 ** 73.831 ** 3.371 **
I * G 12 25.333 ** 1.045 ** 13.241 ** 0.416 ** 34.313 ** 54.192 ** 3.208 ** 4.641 ** 0.02 ** 0.222 ** 190.791 ** 0.08 ** 0.062 ** 34.313 ** 1.688 **
Error b 48 0.051 0.531 1.645 0.078 3.248 14.302 0.067 0.139 0.001 0.006 8.877 0.045 0.009 3.248 0.185

Genetic Parameters

σ2G 5.280 0.286 4.246 0.112 6.586 23.411 0.595 0.112 0.003 0.030 44.962 0.010 0.017 6.586 0.281
σ2e 0.009 0.089 0.274 0.013 0.541 2.384 0.011 0.023 0.000 0.001 1.480 0.008 0.002 0.541 0.031
σ2Ph 9.502 0.460 6.453 0.181 12.305 32.443 1.130 0.885 0.006 0.067 76.761 0.023 0.027 12.305 0.562
h2 % 55.566 62.138 65.799 61.765 53.525 72.161 52.684 12.632 47.368 44.913 58.575 42.857 61.963 53.525 49.926
G.C.V. % 5.638 3.259 4.890 4.983 14.227 12.019 35.450 10.005 19.542 32.210 14.267 7.109 37.975 3.131 17.304
Ph.C.V. % 7.564 4.135 6.028 6.340 19.446 14.149 48.840 28.150 28.394 48.062 18.641 10.860 48.243 4.280 24.490
GA 3.528 0.868 3.443 0.542 3.868 8.467 1.154 0.245 0.078 0.240 10.572 0.135 0.210 3.868 0.771
GG % 8.658 5.293 8.171 8.067 21.441 21.033 53.006 7.325 27.707 44.467 22.493 9.588 61.580 4.719 25.188

* = significant at p ≤ 0.05, ** = significant at p ≤ 0.01, ns = insignificant, a = first error and b = second error.
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3.2.2. Multidimensional Analyses in the Classification of Drought-Tolerant Genotypes
Principal Component Analysis (PCA)

The first four PCAs showed eigenvalue >1, which explained 89.79 of the total variances
for the 30 traits studied. PCA1 and PCA2 contributed to explaining 62.56% and 18.83%
of the total variance, respectively. PCA1 (values of ≥0.381) was related to 24 traits (RWC,
RT, Chl, CAT, POD, PPO, SOD, Pro, DPPH, GB, Pn, Gs, Ci, E, FLA, DH, DM, GFD, GFR,
PH, NS, NSS, TKW, and GY). PCA2 was related to five traits (SL, WGC, DGC, GI, and
PC). PCA3 was not related to any trait, and PCA4 was related to the TPC trait (Table 2).
Figure 3 shows the correlations between traits on PCA1 and PCA2, which explained 25
out of 30 traits (five traits were not included due to collinearity). PCA1 had a positive
correlation with sixteen and a negative correlation with nine traits, while PCA2 had a
positive correlation with twenty and a negative correlation with five traits. All genotypes
under drought exhibited negative correlations with PCA1, and five of them exhibited
negative correlations with PCA2.

Table 2. PCA of 13 wheat genotypes: eigenvalues, proportion, and cumulative variance for the first
four components of measured traits under drought.

PCA1 PCA2 PCA3 PCA4

Eigenvalue 18.769 5.648 1.504 1.016
Variability (%) 62.564 18.827 5.013 3.386
Cumulative % 62.564 81.391 86.404 89.790
Eigenvectors:

RWC 0.974 0.004 0.005 0.0002
RT 0.974 0.004 0.0005 0.0002
Chl 0.931 0.020 0.003 0.0001
CAT 0.496 0.372 0.057 0.016
POD 0.549 0.299 0.069 0.000
PPO 0.485 0.383 0.085 0.001
SOD 0.647 0.275 0.034 0.005
Pro 0.534 0.301 0.013 0.0003
TPC 0.069 0.026 0.293 0.381

DPPH 0.646 0.273 0.036 0.008
GB 0.417 0.334 0.0001 0.002
Pn 0.97 0.003 0.003 0.001
Gs 0.959 0.010 0.012 0.003
Ci 0.958 0.021 0.002 0.000
E 0.978 0.007 0.000 0.001

FAL 0.776 0.100 0.0003 0.001
DH 0.776 0.146 0.008 0.005
DM 0.846 0.121 0.010 0.003
GFD 0.822 0.095 0.011 0.002
GFR 0.641 0.040 0.002 0.019
PH 0.645 0.001 0.029 0.033
NS 0.859 0.074 0.001 0.010
SL 0.187 0.440 0.058 0.108

NSS 0.717 0.133 0.040 0.014
TWK 0.817 0.108 0.003 0.006
GY 0.876 0.079 0.005 0.007

WGC 0.098 0.464 0.262 0.135
DGC 0.029 0.515 0.285 0.131

GI 0.001 0.589 0.001 0.109
PC 0.091 0.410 0.173 0.173

Abbreviations are as described in Section 2.
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SMLR and PC Analyses for the Performance of Yield Trait

Since the major purpose is the yield, we used both SMLR and path coefficient analysis
to identify genetically influenced traits. The results from SMLR indicated that the contri-
bution rates of FLA, Gs, PH, and RT were 0.870, 0.049, 0.056, and 0.014, respectively, for
a total of 0.988 (the residual value was 0.109) (Table 3). Given the substantial correlation
of FLA with yield, we searched for the traits associated with it, which were GB, PPO, Chl,
and GFD, with contribution values of 0.827, 0.059, 0.048, and 0.040, respectively, for a total
of 0.975 (the residual value was 0.158). In PC analysis, the four traits of GY were divided
into direct and indirect effects. FLA alone contributed 0.464 (as a direct effect) out of 0.988,
and total direct and indirect impacts for the four traits were 0.681 and 0.307, respectively. If
the FLA trait was its dependent variable, the GB trait alone contributed 0.437 (as a direct
effect) out of 0.975, and total direct and indirect impacts for the four traits were 0.634 and
0.341, respectively.
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Table 3. Stepwise regression analyses for grain yield and flag leaf area (dependent index) with seven
yield-related traits (independent indices).

Stepwise Regression Path Coefficient

Dependent
Variable Source

Partitioning the Correlation R2

Regression
Coefficient p-Value R2 Par. R2 Com.

Direct
Effect

Indirect
Effect

Correlation
Value

Direct
Effect

GY

Intercept 18.876

FLA 14.247 <0.0001 0.870 0.870 0.681 0.230 0.911 0.464

Gs 0.790 <0.0001 0.049 0.919 0.340 −0.371 −0.031 0.115

PH 21.076 0.001 0.056 0.975 0.294 −0.282 0.011 0.086

RT −1.151 0.017 0.014 0.988 −0.128 0.278 0.150 0.016

Total direct effect 0.681

Total indirect effect 0.307

Total R2 0.988 0.988

Residual 0.109 0.109

FAL

Intercept 0.309

GB −0.319 <0.0001 0.827 0.827 −0.661 −0.240 −0.901 0.437

PPO −0.171 0.002 0.059 0.886 −0.257 0.070 −0.186 0.066

Chl −0.380 0.005 0.048 0.935 −0.214 0.114 −0.099 0.046

GFD −0.150 0.007 0.040 0.975 −0.292 0.792 0.500 0.085

Total direct effect 0.634

Total indirect effect 0.341

Total R2 0.975 0.975

Residual 0.158 0.158

Hierarchical Clustering and Linear Discriminant Analyses

Based on SMLR and PC analyses, we used the nine indices (FLA, Gs, PH, RT, GB, PPO,
Chl, GY, and GFD) for HC analysis to assess drought tolerance in the 13 wheat genotypes
used. HC analysis divided genotypes into three main categories based on nine tolerance
indices. The first category (T, tolerant) covered three genotypes (DHL2, 16HTWYT-22, and
KSU115). The second category (MT, moderate tolerant) covered five genotypes (16HTWYT-
38, KSU105, Yecora Rojo, Klassic, and ksu106). The third category (S, sensitive) covered
five genotypes (16HTWYT-30, 16HTWYT-20, 16HTWYT-9, 16HTWYT-12, and Line47), as
shown in Figure 4.

LD analysis was used to strengthen the reliability of the categories. The category of
the three groups (T, MT, and S) (prior and posterior) was verified. LD analysis showed
that the prior and posterior categories were completely identical in the thirteen geno-
types used (% correct = 100%). Membership probability values (>0.5) are indicative of
the extent of compatibility between prior and posterior categories, with membership
probability values = 1 for all thirteen genotypes used (Table 4). The compatibility propor-
tion differed cross-validation of prior and posterior categories, and it was compatible in
nine genotypes (% correct = 69.23%) and incompatible in four genotypes (16HTWYT-30,
16HTWYT-20, 16HTWYT-12, and 16HTWYT-22). The Mahalanobis distance computed
the distance between groups and classified the genotype into the group with the smallest
squared distance [14]. The distance between the MT group and the S group was much less
than that between the T group and the S group.
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Figure 4. Dendrogram showing clustering of 13 wheat genotypes based on Euclidean distance.

Table 4. Posterior probability of membership in drought groupings through linear discriminant analysis.

Genotypes

Classification Cross-Validation

Prior Posterior
Membership Probabilities

Posterior
Membership Probabilities

Pr (MT) Pr (S) Pr (T) MT S T

16HTWYT30 S S 0.000 1.000 0.000 MT 1.000 0.000 0.000
DHL2 T T 0.000 0.000 1.000 T 0.000 0.000 1.000
16HTWYT20 S S 0.000 1.000 0.000 MT 1.000 0.000 0.000
16HTWYT38 MT MT 1.000 0.000 0.000 MT 1.000 0.000 0.000
16HTWYT9 S S 0.000 1.000 0.000 S 0.000 1.000 0.000
KSU105 MT MT 1.000 0.000 0.000 MT 1.000 0.000 0.000
16HTWYT12 S S 0.000 1.000 0.000 MT 1.000 0.000 0.000
Yecora Rojo MT MT 1.000 0.000 0.000 MT 1.000 0.000 0.000
16HTWYT22 T T 0.000 0.000 1.000 S 0.000 1.000 0.000
KSU115 T T 0.000 0.000 1.000 T 0.000 0.000 1.000
Klassic MT MT 1.000 0.000 0.000 MT 1.000 0.000 0.000
Line47 S S 0.000 1.000 0.000 S 0.000 1.000 0.000
ksu106 MT MT 1.000 0.000 0.000 MT 1.000 0.000 0.000

Bold letters indicate misclassified wheat genotypes.

3.3. Genotypic Analysis Based on SSR Markers
3.3.1. Hierarchical Clustering of Genotypes Based on SSR Markers

HC analysis divided 13 genotypes into three main categories based on allelic data of
27 SSRs linked to drought-tolerant genes (Figure 5). The first category (T, tolerant) covered
five genotypes (DHL2, KSU105, 16HTWYT12, 16HTWYW-22, and KSU115). The second
category (MT, moderate tolerant) covered three genotypes (16HTWYT-38, Yecora Rojo,
and Klassic). The three categories (S, sensitive) covered five genotypes (16HTWYT-30,
16HTWYT-20, 16HTWYT-9, KSU 106, and Line47). The clustering of thirteen genotypes
derived from phenotypic distance was associated with genetic distance through the Mantel
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test, which showed a significant positive correlation (r = 0.271, p < 0.018, and alpha = 0.05)
between phenotypic distance and genetic distance. These positive correlations between
the distance of phenotypic and genetic were necessary, as SSR markers were used as an
efficient tool for accessing tolerant genotypes in the early stages of a breeding program.
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3.3.2. Association of SSR Markers with Agro-Physio-Biochemical Traits

SMLR analysis was used to determine SSR markers most closely related to agro-physio-
biochemical traits under control and drought conditions and DTI. In general, different
markers showed a significant association with nine out of thirty agro-physio-biochemical
traits studied. The cumulative R2 under control conditions ranged from 0.313 for GY to
0.911 for RT; under drought conditions, it ranged from 0.356 for GFD to 0.967 for GB, and
DTI ranged from 0.350 for GFD to 0.965 for GB. The marker Wmc326 was significantly
linked with five traits (GY, GB, PPO, Chl, RT, and GFD) under drought conditions (R2

ranged from 0.321 for RT to 0.623 for GB). It also significantly linked with three traits (GY,
GB, and Chl) for DTI (R2 ranged from 0.404 for Chl to 0.456 for GB). The marker Wmc65
was significantly linked with the GB trait under control and drought conditions and DTI,
as well as with the PH trait under control and DTI (Table 5).

Table 5. Selection of influential markers (independent variables) with nine studied traits (dependent
variable) for control, drought, and tolerant index based on SMLR analysis.

Traits Treatments Markres R2 Par. R2 Com. p-Value *

GY
Control Gwm337 0.336 0.336 0.038
Drought Wmc326 0.385 0.385 0.024
index wmc326 0.425 0.425 0.016

FLA Drought Wmc326 0.460 0.460 0.11
index Wmc65 0.359 0.359 0.030
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Table 5. Cont.

Traits Treatments Markres R2 Par. R2 Com. p-Value *

GB

Control
Wmc154 0.579 0.579 0.000
Cfd1 0.204 0.783 0.012

Drought

Wmc326 0.623 0.623 0.000
Wmc503 0.195 0.819 0.001
Wmc65 0.114 0.933 0.001
Cfd9 0.034 0.967 0.22

index

Wmc326 0.456 0.456 0.000
Wmc65 0.219 0.675 0.000
Wmc170 0.211 0.886 0.001
Wmc249 0.049 0.935 0.012
Wmc405 0.030 0.965 0.043

Gs Control Wmc405 0.313 0.313 0.047

PPO

Control
Cfd9 0.389 0.389 0.015
Gwm369 0.222 0.611 0.038

Drought Wmc326 0.458 0.458 0.11

index
Cfd1 0.434 0.434 0.002
Gwm369 0.210 0.644 0.036

Chl

Control Wmc503 0.392 0.392 0.022
Drought Wmc326 0.418 0.418 0.017

index
Wmc326 0.401 0.401 0.005
Cfd9 0.228 0.629 0.033

RT

Control
Gwm369 0.699 0.699 0.000
Wmc326 0.159 0.857 0.006
Wmc154 0.054 0.911 0.044

Drought

Wmc326 0.321 0.321 0.000
Cfd18 0.306 0.628 0.000
Cfd9 0.150 0.778 0.011
Wmc18 0.108 0.886 0.008
Wmc154 0.058 0.944 0.031

index
Gwm369 0.546 0.546 0.017
Cfd1 0.256 0.801 0.000
Wmc177 0.121 0.922 0.005

GFD
Drought Wmc326 0.356 0.356 0.031
index Wmc170 0.350 0.350 0.033

PH Control

Wmc65 0.396 0.396 0.001
Wmc154 0.334 0.730 0.000
Wmc74 0.169 0.899 0.002
Wmc18 0.048 0.920 0.028

index Wmc65 0.464 0.464 0.010

Coefficient partial determination (R2 Par.), cumulative coefficient determination (R2 Com.), * means p-value of
coefficient partial determination. Abbreviations as described in Section 2.

4. Discussion

The abiotic stresses consisting of heat, drought, salinity, mineral toxicity, and water-
logging are major agricultural problems, leading to serious wheat yield losses in affected
countries [55–57]. Recent studies show that drought negatively affects 42% of the wheat
production area [58]. Climatic instability and rising water scarcity are predicted in the
future, which may lead to significant conversion of mega-productive environments into
environments with short-season drought stress [59,60]. These conditions pose a unique
challenge to plant breeders and researchers in relevant fields for breeding climatically
tolerant genotypes. However, it is difficult to understand drought traits given that it is a
polygenic controlled by a large number of genes [2]. Genotyping and recombinant DNA
technology increase the knowledge capacity and create valuable tools to assist the selection
of desirable varieties such as abiotic stress tolerance with better mean performance for
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creating new improved generations (genotypes) of sustainable crops [61]. The advantage
of the marker-assisted selection (MAS) technique is that the DNA content of a cell is not
impacted by the surrounding environment or the age of the plant [1,22,28,62]. However,
phenotyping is impacted by the surrounding environment, so it often requires a large set
of phenotypic data and multiple seasons for evaluation. In addition, the heterogeneity
of agricultural land negatively impacts field evaluation [63]. In this study, 60 genotypes
were screened using an SSR marker, and 13 selected genotypes showed varying results in
drought tolerance.

One of the objectives of plant breeding programs is to produce new varieties that cope
well with different environmental stresses. We phenotyped the selected genotypes using
30 different agro-physio-biochemicals and 4 quality traits under drought stress compared
to the control treatment. Significant differences were found between both conditions,
suggesting that genotypes under drought stress were susceptible to a lack of water. The
genotypes showed high genetic variation, with different rankings in all traits, which
can be leveraged in a phenotypic selection under drought stress and are very popular
in quantitative traits [2,6,17]. The interaction was also highly significant for these traits,
indicating the need for greater evaluation of the genotypes under various environments
and years to examine the drought-related traits. Phenotypic variation in genotypes had a
significant role in dominant GEI for all traits (Table 1). The amount of drought tolerance
enhancement is determined using levels in the genetic variation and heritability of the traits.
The h2 provides information on the variation amount of genetics relative to phenotypic
variation, which can be used for predictive validity and the reliability of phenotypic
values [64–66]. Al-Ashkar et al. [14] and Burton [67] found that the combination of the H2,
GCV, and GA gives credible assessments of the expected GG through phenotypic selection.
Traits with h2 (>60.0%) and GG (>20.0%) together indicate that the variation is largely due
to genetic factors, making them reliable candidates for a selection process [66]. GY alone is
poor in predicting the response, so helping other traits can provide a strong indicator of
indirectly selecting improved GY under drought stress, helping plant scholars in making
more balanced decisions during genotype selection [14].

In this study, nineteen traits were considered: six (SL, FLA, DPPH, ChI, Pro, and GI)
and 13 (Pn, Gs, Ci, E, PC, WGC, DGC, NSS, RT, CAT, PPO, SOD, and GB) combined, with
high h2 (>60.0%) and GG (>20.0%) highly for the former and moderate h2 (>30.0%) and
GG (>10.0%) for the latter, which indicate additive gene effects and can be used as credible
screening criteria for assessing genotypic drought tolerance [66,68]. All measured traits
showed GCV < PCV, despite breeders’ preference to obtain GCV > PCV [69]. Many scholars
used plant traits in breeding programs to evaluate genotypes of drought tolerance [2,6],
especially when the traits are genetically stable traits and easy to measure [14,68,70]. Under
drought stress, the means of all studied traits were lower than under normal conditions
and were more pronounced in sensitive genotypes, unlike many biochemical traits that
increased in values. Similar trends have been reported for wheat genotypes [2,21,71]. The
traits that respond to drought stress in breeding programs are particularly desirable to
evaluate the tolerance of genotypes when the measurement methods are quick, inexpensive,
and easy [2,14,70]. PCA is useful in trait reduction, dealing with the problem of multi-
collinearity, and identifying important traits that are located in the first two components
(loadings ≥ 0.381), as presented in Table 2. Tolerant genotypes (16 HWY-22, KSU105,
KSU110, and DHL2) under drought exhibited high correlations with most physiological
traits (Figure 3). Combining genetic parameters and PCA results, we found six traits (SL,
FLA, DPPH, ChI, Pro, and GI) with high values of heritability and genetic gain and were
located in the first two components, making these traits efficient screening criteria [2,70].

From previous analyses, we used 15 traits for screening drought-tolerant genotypes
while excluding 15 traits with low heritability and/or genetic gain not located in PCA1 and
PCA2. After dealing with the problem of multicollinearity through PCA, we used outcomes
in SMLR, PC, HC, and LD analyses [6]. Drought tolerance is a complex genetic trait and is
significantly affected by environmental factors, so the genotypes’ drought tolerance index
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should not rely solely on GY [2]. We used further statistical analyses to ensure the accuracy
of the results; SMLR and PC analyses are instrumental for understanding the dependent
correlation with independent variables [68,72]. SMLR results indicated that FLA, Gs, PH,
and RT were relevant to GY (R2 was 0.988, p < 0.0001), and their contribution rates were
0.870, 0.049, 0.056, and 0.014, respectively (Table 3). Since FLA was substantially correlated
with yield, we searched for the traits associated with FLA (R2 was 0.975, p < 0.0001), which
were GB, PPO, Chl, and GFD, with contribution values of 0.827, 0.059, 0.048, and 0.040,
respectively. We further conducted PC analysis to separate direct and indirect impacts. FLA
alone contributed 0.464 as a direct effect on GY, and when the FLA trait was the dependent
variable, the GB trait alone contributed 0.437 as a direct effect. A direct effect shows the
correlation between the interpreted trait and its direct effectiveness and suggests its use in
the selection process [1,73].

The FLA is a valuable trait representing overall plant performance, encompassing
radiation use efficiency, photosynthesis, chlorophyll content, and plant competition [74,75].
Genotypes with a high capacity for FLA survival, photosynthesis, and gas exchange under
drought stress are highly desirable. FLA is a robust physiological indicator used in wheat
breeding programs for identifying drought-tolerant genotypes. Plants synthesize GB in
response to abiotic stress, and it plays an important role in osmoregulation by preserv-
ing macromolecule’s activity and membrane integrity against stresses while scavenging
ROS [76,77]. Using the results from SMLR and PC analyses, we used nine traits (FLA, Gs,
PH, RT, GB, PPO, Chl, GFD, and GY) to create an HC analysis with 13 wheat genotypes
used to determine genotype categories for drought -tolerance based on a genetic dissimi-
larity matrix (Figure 4). HC analysis showed three major categories (T, MT, and S) based
on the tolerance range of genotypes under drought. The MT and S categories included
five genotypes each, while the T category included three genotypes. HC analysis has been
used for ranking the drought-tolerant wheat genotypes by many scholars [6,28,29,67,68]
without validating their categories. So, we here verified categories through LD analysis,
which showed that prior and posterior categories were completely identical in the thirteen
genotypes used (Table 4). But cross-validation showed differences in the compatibility
proportion of prior and posterior categories, with compatibility observed in nine genotypes
(% correct = 69.23%) and incompatible in four genotypes (16HTWYT-30, 16HTWYT-20,
16HTWYT-12, and 16HTWYT-22). Therefore, LD analysis is regarded as a distinct statistical
tool (as a selection criterion for accuracy and credibility) for verifying genotype resources
of drought tolerance [62,78,79].

Assessing drought-tolerance genotypes through multiple agro-physio-biochemical
traits may lack accuracy due to the influence of environmental and be costly and time-
consuming. To overcome these limitations, a complementary approach was urgently
required to combine accurate evaluation with rapid and cost-effective methods. Molecular
markers linked to QTLs in MAS are responsible for key agro-physio-biochemical traits
under drought stress as SSR markers and are the best tool to detect genotypes with drought
tolerance [17,33,62,79]. In this study, HC analysis based on SSR markers categorized
13 genotypes into three main tolerance categories (Figure 5). The complementary approach
between phenotyping analysis (phenotypic distance) and genotyping analysis (genetic
distance) revealed a significant positive correlation (r = 0.271 and p < 0.018) through the
Mantel test. These positive correlations are necessary, highlighting SSR markers as an
efficient tool for accessing tolerant genotypes in the early stages of a breeding program. Our
results reinforce similar findings from many studies [17,78–81]. Two genotypes (16HTWYT-
12 and KSU105) within the categories showed greater distance in the genotyping analysis
compared to the categories based on phenotyping analysis, while the genotype (ksu106)
showed even greater distancing. Ten genotypes (16HTWYT30, 16HTWYT20, 16HTWYT9,
Line-47, DHL2, 16HTWYW-22, KSU115, 16HTWYT38, Yecora Rojo, and Klassic) out of
thirteen were completely identical in both analyses of genotyping and phenotyping.

Because of the importance of markers linked to agro-physio-biochemical traits and
their role in drought tolerance, we have identified 12 and 11 markers linked to some studied
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traits under drought conditions and DTI, respectively (Table 5). These findings show that
the nine traits (FLA, Gs, PH, GY, GB, PPO, Chl, RT, and GFD) can be used as reliable
indicators in the process of selecting wheat genotypes for drought tolerance. The markers
(Wmc326, Wmc65, Wmc154, Wmc18, and Cfd9) were highly correlated with various
traits, which validates the phenotypic assessment of genotypes [8,82–85]. These markers
hold great potential for future discoveries in breeding programs focused on selecting and
producing wheat genotypes with drought tolerance.

5. Conclusions

In this study, we studied genetic and phenotypic analyses to detect wheat genotypes
with drought tolerance using multivariate analysis techniques. We found six traits that
exhibit a combination of high heritability (>60%) and genetic gain (>20%), so it represents
a high degree of interest. PC and SMLR analyses together have identified nine traits as
a screening tool that effectively detects variations among genotypes, which were used
in HC analysis. This analysis divided the 13 genotypes into three main categories, a
categorization that was completely confirmed using LD analysis and in ten genotypes
through SSR markers. So, the significant association between several mor-pho-physio-
biochemical traits and SSR markers was revealed through the Mantel test. The traits and
SSR markers identified in our study could be recommended as suitable screening criteria
for detecting drought tolerance. Wheat genotypes (DHL2, 16HTWYT-22, and KSU115)
could be used as promising genetic sources for drought-tolerant breeding programs. Still,
additional efforts are needed to develop new measurement instruments that are rapid,
more accurate, and capable of assessments for these traits across numerous genotypes. This
area will be the focus of our future studies.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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