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Abstract: Identifying breast masses is relevant in early cancer detection. Automatic identification
using computational methods helps assist medical experts with this task. Although high values have
been reported in breast mass classification from digital mammograms, most results have focused on a
general benign/malignant classification. According to the BI-RADS standard, masses are associated
with cancer risk by grade depending on their specific shape, margin, and density characteristics.
This work presents a methodology of testing several descriptors on the INbreast dataset, finding
those better related to clinical assessment. The analysis provides a description based on BI-RADS
for mass classification by combining neural networks and image processing. The results show that
masses associated with grades BI-RADS-2 to BI-RADS-5 can be identified, reaching a general accuracy
and sensitivity of 0.88 ± 0.07. While this initial study is limited to a single dataset, it demonstrates
the possibility of generating a description for automatic classification that is directly linked to the
information analyzed by medical experts in clinical practice.

Keywords: breast masses; BI-RADS grade; automatic classification; mass characterization

1. Introduction

Mammography is a comprehensive imaging tool for the early detection of breast
cancer (BC), and several features like the density of the tissue [1], the presence of micro-
calcifications, and visualization of breast masses are essential to evaluate the risk of BC.
According to GLOBOCAN data, by 2040, there will be about 3.16 million incidences of
breast cancer, and mortality is estimated at 1 million women, making it the most common
disease among women [2]. Health campaigns have focused on obtaining a mammogram
after the age of 40, and the efforts in health education have not been sufficient in preventing
and reducing deaths associated with BC. According to the Breast Imaging Reporting and
Data System (BI-RADS), the diagnosis of BC with mammography is ranked into seven
categories from 0 up to 6, with each number having a significance of being benign or ma-
lignant; four categories are also described as related to breast density (ACR-BI-RADS) [3]
arranged from mostly fatty (ACR-A) tissue to mostly dense tissue (ACR-D). Breast density
is one of the most critical features to verify on a mammogram, which does not allow the
radiologist to visualize guide elements for categorizing the mammogram according to the
BI-RADS [4]. Suppose the patient has a breast lesion belonging to categories BR-3 to BR-5,
related to calcifications and mostly breast masses. In that case, the next step is to conduct a
complementary study, such as an ultrasound with elastography or a biopsy, to determine
the nature of the lesion.
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The assessment and assignment of the BI-RADS and breast density by radiologists
may constitute the worst situation that can occur in medical practice: a mass hidden
in dense breasts if they do not have enough experience in categorizing mammograms
or are experiencing work overburden. These are everyday situations in health centers;
therefore, the development of emerging technologies that help radiologists quickly identify
the characteristics associated with breast cancer could have a profound impact in the
near future on this disease [5–7]. A study performed by Lameijer et al. [8] in 2021 found
that a delay in diagnosis between 4 and 24 months tends to be more likely related to
invasive cancer and that the main reason for the delay was an incorrect classification
by the radiologist. Therefore, developing automatic systems for detecting breast lesions,
such as masses in mammograms, provides a practical alternative to help support medical
diagnoses [9].

In recent years, relevant contributions related to mass characterization using machine
learning methods have been reported. Texture descriptors have often been used to an-
alyze breast mass regions, as reported in [10], where a gray-level co-occurrence matrix
(GLCM) was used to differentiate benign from malignant masses, reaching an accuracy
of 94%. Khan et al. [11] used directional texture descriptors based on Gabor filters to
identify masses (benign/malignant) and normal tissue. The best results were obtained
using linear discriminant analysis (LDA), with an accuracy of 97%. In [12], the local photo-
metric attributes (LPAs), local texture descriptors, were used to identify malignant masses,
reaching a competitive accuracy (87%) compared to methods that use global texture filters.
Breast mass form is also relevant since it can be analyzed with statistical and geometric
measures, capturing invariant and noise-resistant characteristics [13,14]. In [15], several
texture descriptors were used to identify if a region was suspicious as a mass or a nonmass
with an accuracy of 92% and 95% on the MIAS and DDSM databases, respectively. Also,
it specifically addressed the characterization of the shape of the mass, one of the features
stated by the BI-RADS standard, to determine benignity/malignancy. A CAD system
to identify abnormalities that could indicate benignity/malignity in breast masses with
texture and shape features was developed in [16], reaching an accuracy of 94% for MIAS
and 90% for DDSM. Recently, Singh et al. [17] explored feeding several classifiers with a
mixture of previously selected textural and geometric characteristics. The results showed
that an accuracy of 90.4% was reached by classifying benign and malignant masses by k-NN
(k-nearest neighbors) and an exhaustive feature selection process. Sparse representations
were also explored to perform mass characterization of benign/malignant masses [18].
The mammograms were divided into patches to build a dictionary with spatially localized
ensemble sparse analysis (SLESA), achieving an accuracy of 90%.

Although these methods have achieved relevant improvements in benign/malignancy
identification in breast masses, most analyses are neither based nor related to the BI-RADS
characteristics, making it difficult for medical experts to use or interpret them. In general,
the relevance of detecting breast masses is related to monitoring their evolution and taking
preventive actions [5]. Thus, describing and quantifying standardized characteristics of
breast masses is essential. Since the characteristics established by the -RADS are visually
assessed, it is possible to relate them to descriptors of the digital image. In this work, it
was hypothesized that quantifying breast mass features in mammograms could provide
a suitable description that agrees with the BI-RADS standard and would be helpful for
the radiologist in assessing benign/malignancy. Moreover, the utility of the proposed
description was explored for specific identification of the BI-RADS classes, aiming for a
graduated classification. The results were evaluated by an automatic classifier, reaching an
accuracy of 0.90% in benign/malignancy classification and 87% in the specific identification
of BI-RADS classes.
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2. Materials and Methods
2.1. Masses Features in Terms Of BI-RADS

The BI-RADS standardizes the terminology and systematic of the mammography re-
port, categorizing lesions according to the degree of suspicion of the findings [3]. Among the
analyzed findings are the breast masses: the tridimensional lesions circumscribed in the tis-
sue. If the radiologist detects a mass in the mammography, the next step is to determine its
characteristics to establish a risk level or the need for more specific studies [19–21]. Masses
are described by their morphology, margin, and density, as shown in Figure 1. A mass is
more likely benign if it has a well-defined shape, circular or oval. Also, a contour (margin)
observed to continue without abrupt changes (spicules) is associated with a benign mass.
Finally, the density descriptor relates the inner density of the mass to the density of the
tissue around it [22]; dense tissue appears shiny on a mammogram. Thus, these three
characteristics are used to classify masses in the BI-RADS standard. For example, a mass
with a round shape, circumscribed margin, and low density could be cataloged as a benign
lesion (BR-2 or BR-3 in clinical terms). In contrast, a lobular mass with a speculated margin
and high density could be diagnosed as a tumor (BR-4 or BR-5) [5].

Figure 1. Characteristics associated with the benignity/malignancy of breast masses.

2.2. Data Augmentation

Variations in scanners’ technical parameters generate gray-level variations in capturing
tissues with similar characteristics. Aiming to consider this aspect of real mammograms,
changes in mammogram contrast were induced, generating data augmentation. A gamma
correction was used according to the intensity level of the image. To assess the intensity,
the proportion of gray levels was computed with Equation (1), where µI y σI corresponds to
the mean and standard deviation of the mammogram and L to the highest value in the gray
level. This ratio determines if the image has high or low intensity, allowing the contrast to
change proportionally. After experimentation, ρ > 70 was associated with brighter images.
Then, gamma corrections of γ = 0.5 and γ = 0.3 were set for low and high-brightness
images, respectively.
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ρ = 100 × (µI + σI)

L
(1)

Also, a morphological opening with a circular structuring element of radius five was
applied in a second augmentation. This operation aimed to increase the local values within
the region of the structuring element, allowing an increase in luminance but preserving
the morphology of the regions and avoiding outlier values. Figure 2 depicts the resulting
contrast augmentation images.

Figure 2. Changes in contrast of original dataset with data augmentation.

2.3. Dataset

INbreast is a digital repository of full-field mammograms annotated by experts [23]. It
includes diverse lesions with the corresponding binary mask (groundntruth) of reference,
density type, and the BI-RADS grade assessed by an expert. There are 107 mammograms
containing masses in breast densities from type ACR-A (low density) to ACR-D (high
density). Additionally, these samples also are classified with their corresponding BI-RADS
grade (BR).

In a mammogram, breast tissue with low density has low grey levels (dark), while
dense tissue presents high grey levels (bright); masses could also present high grey levels.
Therefore, the contrast between mass and breast density is relevant for its localization. The
four ACR types were tested to evaluate the performance of the automatic localization. Data
augmentation was performed (Section 2.2) only for the mass location task, obtaining 321 im-
ages to consider condition variations in contrast related to different acquisition devices and
a balanced dataset. Classes BR-2 to BR-5 were considered for mass classification since BR-1
does not contain masses, and BR-6 has a positive malignancy by biopsy. The distribution
of masses per BI-RADS grade in the dataset was 20 for BR-2, 13 for BR-3, 22 for BR-4,
and 21 for BR-5.

2.4. Mass Location and Segmentation

Since the ROI is focused on the mass, this must be separated from the rest of the breast
area. For this task, a pretrained convolutional neural network (CNN) model YoloV4 (You
Only Look Once V4) was used for locating the mass area [24], using the configuration
parameters of Table 1. In its working process, YoloV4 divides the image into quadrants to
identify the ROI, marking regions where a significant similarity is found according to its
probability value. Images were resized to 416 × 416 to improve the online training of the
model [25]. As an output, YoloV4 returns the region most likely to contain the object of
interest (mass). Figure 3 depicts an example of the general ROI detection process, where
the bounding box in magenta indicates the most likely region containing a mass with its
respective probability value.
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Table 1. Configuration parameters used for YoloV4.

Parameter Values

ANN size 416 × 416
Batch 64

Max_batches 4000
Steps 5400
Filters 18

Subdivisions 16
Image size 416 × 416

Classes 1

Figure 3. From quadrant analysis (left) to similarity estimation among regions (center) and the
selection of the region with the most significant probability represented in the magenta bounding box
(right) with YOLOV4.

Although YoloV4 provides the location of the mass indicated within a bounding box,
this region also contains part of the breast tissue that is not of interest for the characterization
of the mass. A breast mass is high-density tissue associated with high gray levels on
mammograms. Therefore, the mass within the bounding box is related to the upper values
of the histogram, adopting a slightly skewed Gaussian distribution. The bias depends
on the tissue surrounding the mass and usually tends to the left. It was found in the
experiments that the central tendency (median) minus one standard deviation allowed
the elimination of the pixels mainly associated with the background of the mass. When
followed by a morphological opening, small artifacts were also eliminated, as shown in
Figure 4c. The area of the remaining regions in the image was estimated, and since the
bounding box centered in the mass, only the larger object was preserved. After a simple
threshold, the binary mask of the mass was obtained (Figure 4d), helping to analyze its
characteristics further.

(a) (b) (c) (d)

Figure 4. (a) The bounding box of a mass detected with YoloV4 and (b) the median and standard
deviation of its gray-level distribution used as a reference to (c) eliminate background and artifacts of
the mass; (d) an area criterion allows the separation of the most significant region (mass) from the
rest to obtain its binary mask.
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2.5. Mass Characterization

Digital descriptors were computed to find the quantification that expresses a relation-
ship with the qualitative description of the BI-RADS characteristics in mass characterization.

2.5.1. Shape Descriptor

The shape descriptor seeks to relate and quantify the characteristics associated with a
probability of malignancy. For instance, a round mass is less likely to be malignant than an
irregularly shaped mass. The shape was described based on the mass skeleton S, calculated
through thinning, identifying its endpoints and bifurcations. First, distances from the endpoints
to the center of the skeleton were obtained as the set p = {d1(c, p1), d2(c, p2), · · · , dk(c, pn)}.
Afterward, the asymmetry, average, kurtosis, and variance measures were calculated for p.
In addition, the endpoints were related to the number of mass lobes associated with the
irregularity of the shape (IS) mass with Equation (2), where Np and Nb are the numbers of
endpoints and the number of bifurcations, respectively.

IS = Np + Nb (2)

An example of how Np and Nb are relevant in the shape description can be seen in
Figure 5a, which corresponds to the binary mask of a BR-3, suggestive of benignity, and
has an oval shape. The skeleton of the mass (Figure 5c) can be observed with equidistant
symmetric branches with endpoints and bifurcations. It can be observed that the number
of endpoints and bifurcations is reduced in a regular shape (Figure 5e). On the other hand,
Figure 5b shows the binary mask of an irregularly shaped mass of a BI-RADS 6 type with a
confirmation of malignancy. The skeleton in Figure 5d shows a higher number of branches,
increasing the number of endpoints and bifurcations (Figure 5f). Also, the distances from
the center to the endpoints show more significant variation. Therefore, IS and p allow
the degree of malignancy to be evaluated by associating the number of endpoints and the
dispersion of their distances with the regularity of the mass shape.

(a) (b)

(c) (d)

(e) (f)

Figure 5. (Top) Binary masks of (a) benign and (b) malignant masses, (c–d) the simplification of their
shape by a skeleton, and (e–f) their corresponding estimated distances to each endpoint considered
for the IS descriptor.
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2.5.2. Margin Descriptor

The margin descriptor provides information about how clearly defined the contour
of a mass is. For example, contrary to a speculated one, a continued contour with soft
curvature relates to a lower probability of malignancy. A roundness measure could be
linked to the margin description of the mass. Three metrics were tested since some could
be more sensitive to changes than others. The mean roundness (MR) considers the radius
from the center of the border to each pixel on it, as shown in Equation (3), where n is the
number of pixels in the border, rj is the radius to the j-th pixel, and r̄b is the average radius.
In contrast, the radius ratio (RR) (Equation (4)) considers the longest (rbmin) and shortest
radii (rbmax). MR and RR showed more sensitivity to changes in the margin to determine
how round the shape was. Therefore, they could be adequate for detecting differences
among round, lobulated, and speculated masses [26].

MR =
1
n

n

∑
j=1

r̄b
|rj − r̄b|+ r̄b

(3)

RR =
rbmin
rbmax

(4)

The MOR measure [27], based on the radii of the circle in which an object is circum-
scribed, assesses the degree of regularity of a shape. This descriptor has helped identify
objects with slight shape differences [28,29]. It is computed, based on the probability distri-
bution of the radius f (r) from the center of the object to each point of its contour, as the
ratio between the area centered in the highest probability f (r) with the deviation of its local
minima k1 and k2 and the total area (Equation (5)).

MOR =

∫ k2
k1

f (r)dr∫ +∞
−∞ f (r)dr

(5)

2.5.3. Density Descriptor

A mass has a shiny appearance on mammography and must be analyzed with the
surrounding breast tissue since their relationship is relevant in malignancy assessment [5].
Although there is no specification of the extent of the surrounding area to be analyzed,
breast tissue varies in distribution from dense to fatty. This area must represent the local
condition in which the mass develops. Therefore, 20% of the bounding box dimensions
were taken as a reference to delimit the area surrounding the mass.

A density map [30] is a representation that allows distinguishing the density differ-
ences in tissue independent of the gray-level range of the image and is obtained with
Equation (6), where I is the original image; H is the homogeneity value computed for
the subregion centered in I(x, y), comprising the pixels within a defined distance (usu-
ally 1), from which the co-occurrence matrix and its probabilities p(i, j) are computed for
N gray levels [31]. Homogeneity identifies whether a region has high or low variation in
its gray levels.

DM(x, y) = I(x, y)H(I(x, y)) = I(x, y) ∗
N

∑
i=1

N

∑
j=1

p(i, j)
1 + (i − j)2 (6)

The density map helps differentiate tissue, highlighting the variation between the
region of interest (mass) and the surrounding tissue. Low values are associated with fatty
tissue, increasing as the tissue became more dense. Therefore, the scale of DM was divided
into four classes using C-means clustering with an associated value c: fatty tissue (c = 1),
low (c = 2), medium (c = 3), and high density (c = 4). Also, C-means was applied in
the gray scale of the original image, aiming to differentiate the tissue directly; similarly,



Life 2024, 14, 1634 8 of 18

a vector with four classes was obtained. Based on the density classes, both representations
were considered for describing mass density (Figure 1).

With the help of the binary mask (Figure 4d), a vector with pixels occurring in these
classes of DM is obtained for the mass and its surrounding area, helping to describe the BI-
RADS density characteristic. The representative value associated with each region depends
on the class c with the maximum occurrence. Then, the class of mass cm and the class of its
surroundings cs are compared, considering the class with a higher value to describe the
relationship between the density of the mass and its surroundings (dms = max{cm, cs}).
Low density indicates that the mass mainly comprises pixels of a class lower than the
class of its surrounding (cm < cs), i.e., a higher occurrence of dense classes outside the
mass, and the sample is labeled as dms = 1. On the contrary, a high density implies that
the class concentrating most of the pixels within the mass is higher than the class outside
the mass (cm > cs); therefore, dms = 3. An equal density (dms = 2) suggests a similar
predominant distribution inside and outside the mass (cm ≃ cs) considering a difference
of ≤ 10%. Fat-containing density was not considered because there were no samples of
this type.

Consider, for instance, the mass in Figure 6a. Clustering performed over gray levels
was shown to distinguish the different dense tissues from the fatty tissue (Figure 6b).
However, this representation tended to normalize close regions with small changes under
the same class. The density map was more sensitive since it considered the variations
among near pixels, noticed in the inner of the mass, showing that it was not entirely dense
(Figure 6c). This difference could be relevant when fatty and dense tissues are widely
mixed in a region. In this case, both descriptors matched when describing a highly dense
mass with respect to its surroundings.

(a)

(b) (c)

Figure 6. (a) Example of an ACR-C (50–75% dense) mass and the separation of fat and dense tissues
by C-means over its (b) gray-level and (c) density map representations. The white line corresponds
to the mass marker.
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2.6. Mass Classification

After locating the mass, the next step is to classify it into one of the BI-RADS categories.
A multilayer perceptron (MLP) is a fully connected feed-forward artificial neural network.
MLP has at least three layers of nodes: the input, hidden, and output layers. MLPs are
trained using the backpropagation technique [32]. The connections within the MLP are
randomly initialized and then progressively adjusted based on the available data. These
data are input as a vector into the input layer and distributed to the hidden layers to help
the network learn to recognize patterns in the training dataset. MLPs are versatile and
effective for classification tasks, often achieving impressive performance [33]. They are
relatively straightforward to implement, and their tuning parameters have been extensively
studied. Table 2 presents the configuration parameters used for the MLP.

Table 2. Configuration parameters used for MLP.

Parameter Value

Number of layers 2
Neurons per layer 10
Activation function ReLU
Learning rate 0.001

2.7. Feature Selection

After obtaining the region containing the mass and its segmentation, the following
process is proposed to obtain a description based on the BI-RADS. The mass characteristics
described in Section 2.5 were extracted and analyzed to obtain the relevant ones. First,
the BI-RADS shape description was quantified through the number of lobes, irregularity
(IS), and distances from the endpoints of the lobes to the center (p); from the p set, we also
computed the measures of kurtosis, average, variance, and standard deviation. Correlation
analysis determined the relevance of these characteristics with the BI-RADS class of each
mass, as shown in Figure 7a. This analysis aimed to find those characteristics better related
to the changes in shape that a mass presents depending on how likely it is to be malignant
(BI-RADS class). According to the analysis, the number of lobes, IS, average, and standard
deviation of the endpoints were the most correlated to the BI-RADS class.

The margin evaluation is associated with the malignancy of the masses through the
continuity or variations in the mass contour. It could be detected by measures related to
circularity with different sensitivities to variations in the margin of the shape (Section 2.5).
The correlation matrix in Figure 7b shows that the highest correlation with the BI-RADS
class occurs with the roundness metric. The negative correlation indicates that a higher
roundness value is associated with low-malignancy classes in the standard BI-RADS,
coinciding with what the standard describes (Figure 1).

Regarding density, the samples were labeled with their more likely BI-RADS class
according to the information extracted from the representations based on DM and gray
levels, as described in Section 2.5. It was assumed that the variations in values in both
representations could provide relevant information about the environment where the mass
had developed. The correlation analysis of the variables showed that DM is a more suitable
description for the density relationship inside and outside the mass (Figure 7c).



Life 2024, 14, 1634 10 of 18

(a)

(b) (c)

Figure 7. Correlation values between the proposed (a) shape, (b) margin, and (c) density characteris-
tics and the BI-RADS classes. The dots indicate the sample values for each characteristic, and the line
indicates the dispersion of the samples around a positive/negative correlation.

3. Results

The distributions of the dataset described in Section 2.3 for mass location and classi-
fication were used to carry out the experiments. A 10-fold cross-validation was applied
for mass detection, considering a 90/10 dataset division for training and testing, respec-
tively, and using YoloV4 (Section 2.4). The general performance in mass detection reached a
90± 0.08 precision and 91± 0.07of recall. Table 3 shows the percentages of correctly detected
masses per density class. Also, the overlap between a predicted bounding box and the
bounding box of the ground truth reached 0.90 ± 0.05 according to the IoU value. Once the
bounding box containing the mass was obtained, the segmentation of the mass (Section 2.4)
was applied, obtaining a Dice score index of 0.83 when compared with the mark of the
expert. Therefore, the performed mass location method was suitable for continuing the
mass description and classification processes. Based on the proposed characterization
(Section 2.7) and MLP with 10-fold cross-validation, the classification per BI-RADS class
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was performed. The metrics commonly used in machine learning for medical applications,
including accuracy, recall, and F1 score, were computed to assess the results [34].

Table 3. Samples per density class after data augmentation of the INbreast database [23].

Breast Density Total Samples Mass Location (%)

A 126 80.0 ± 4.8
B 114 94.4 ± 3.2
C 63 90.4 ± 14.2
D 21 85.7 ± 7.7

Some shape tests were performed to measure how suitable these characteristics could
be for mass classification (Table 4). The first test (S1) used all the initial features, achieving
an accuracy of about 0.83 and F1 score of about 0.79, and it was taken as the starting
point for comparing whether feature selection helped classification. The second test (S2)
considered the four features with the highest correlation, achieving an accuracy of 0.85
and F1 score of 0.83. When masses of different shapes were analyzed, it was found that a
circular-shaped mass could be differentiated from the other shapes by a low variance of its
distances. However, an oval, lobular, and irregular mass could have similar variances and
dispersions of distances, although distributed differently. Then, the last test (S3) omitted
the average, variance, and standard deviation. The result showed an increased accuracy
(0.87) and F1 score (0.84), achieving the best general performance. Therefore, the number
of lobes and IS were used for the BI-RADS shape description. In addition, the confusion
matrices were also analyzed to understand how these descriptors were related to the
individual identification of classes. Figure 8 shows that the shape descriptors consistently
differentiated extreme classes BR-2 and BR-5 in the three experiments. Also, reducing the
descriptors in S2 helped to increase the identification of BR-4 samples. However, the shape
description by itself could not easily identify BR-3.

Table 4. Performance of relevant characteristics in shape description for mass classification.

Test Accuracy Recall F1 Score

S1 0.83 ± 0.09 0.62 ± 0.31 0.79 ± 0.20
S2 0.85 ± 0.09 0.65 ± 0.38 0.83 ± 0.17
S3 0.87 ± 0.08 0.71 ± 0.27 0.84 ± 0.11

(a) (b) (c)

Figure 8. Confusion matrices for classification experiments based on shape descriptors (a) S1, (b) S2,
and (c) S3. Blue and orange indicate the correct and incorrect classified sample percentages according
to their intensity.
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Table 5 shows the performance obtained based on the four circularity measures. It
was found that using the four circularity measures (M1) resulted in poor classification
performance with an accuracy and an F1 score of about 0.83 and 0.74, respectively. A sig-
nificant improvement was reached when only the roundness feature was used, reaching
an accuracy of 0.85 and an F1 score of 0.81. It was found that margin irregularity, also
associated with spicules, is one of the characteristics related to the malignancy of masses.
The spicules are particularly difficult to segment as they comprise narrow regions that
can stray significantly from the main area of the mass (Figure 5). This behavior could
be why the roundness characteristic was not enough by itself to describe the margin of
the mass. Therefore, it was complemented by combining it with the number of lobes
of the mass, which had already been identified as relevant, and the roundness measure
(M3). The outlined combination achieved an improved classification performance of 0.86,
providing evidence of the assumption made. The confusion matrices in Figure 9 show the
tracking of how the classification improved when using the descriptors in each of the tests.

Table 5. Performance of relevant characteristics in margin description for mass classification.

Test Accuracy Recall F1 Score

M1 0.83 ± 0.11 0.64 ± 0.27 0.74 ± 0.18
M2 0.85 ± 0.09 0.67 ± 0.31 0.81 ± 0.15
M3 0.86 ± 0.09 0.67 ± 0.39 0.86 ± 0.16

(a) (b) (c)

Figure 9. Confusion matrices for classification experiments based on margin descriptors (a) M1,
(b) M2, and (c) M3. Blue and orange indicate the correct and incorrect classified sample percentages
according to their intensity.

Table 6 presents the evaluation of the results using gray levels and DM for density
description (D1) and only DM (D2). Although both descriptions reached similar perfor-
mance in terms of metrics and confusion matrices (Figure 10), DM was shown to be better
correlated with the description.

Table 6. Performance of relevant characteristics in density description for mass classification.

Test Accuracy Recall F1-Score

D1 0.85 ± 0.03 0.70 ± 0.10 0.77 ± 0.04
D2 0.85 ± 0.02 0.70 ± 0.12 0.78 ± 0.07

In previous tests, classes BR-2 and BR-5 were observed to have higher classification
rates since extreme classes usually show significant differences; therefore, the classifier
could separate them effectively. The characteristics of the masses in classes BR-3 and
BR-4 are more similar, which is reflected in a lower classification rate with respect to
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extreme classes. Moreover, BR-3 is the class with a higher unbalance, which caused poor
performance in its classification.

(a) (b)

Figure 10. Confusion matrices for classification experiments based on density descriptors (a) D1 and
(b) D2. Blue and orange indicate the correct and incorrect classified sample percentages according to
their intensity.

Now, the aim was to evaluate the complete description for classifying masses according
to the BI-RADS using the specific descriptors previously assessed and selected in the
experiments for shape (S3), margin (M3), and density (D2). The experimental hypothesis
was that using this set of features as a descriptor for mammography mass classification
could lead to competitive results compared to the current state of the art. Since the most
common breast mass classification is binary (benign/malignant), the description was also
tested under this approach. Table 7 shows that an accuracy of 0.90 and F1 score of 0.88
were achieved in the binary classification. For a classification per the BI-RADS grade,
those values correspond to 0.91 and 0.85, allowing a more specific and direct identification.
This provides an advantage since a binary classification could be vague, e.g., indicating
malignancy grades BR-4 to BR-6 under the same label when differences among them
could be broad and significant. The area under the ROC curve (AUC) was also computed,
obtaining 0.94 and 0.95 for binary and grade classification, respectively (Figure 11).

The classification metrics in Tables 4–6 show that using individual features led to
high variability, limiting performance regarding the BI-RADS grade. However, combining
features enhanced the metrics significantly and reduced the dispersion for both the BI-RADS
classification and the binary case. Notably, the recall results for the BI-RADS classification
exhibited high dispersion due to the imbalance in the BR-3 class, where the model needed
more examples to learn the patterns, leading to higher error rates. To complement the
information on the general performance of the classification, balanced accuracy (aB) was
calculated. aB is a metric defined as the mean of the sum of sensitivity and specificity,
specifically focused on imbalanced sets [35]. In this case, class BR-3 showed an imbalance
with respect to the other classes. A value of 1 indicates perfect classification, and 0.5
indicates random guessing. The obtained values of aB were 0.87 and 0.85 for the binary
and BI-RADS grade classifications, respectively.



Life 2024, 14, 1634 14 of 18

(a) (b)

Figure 11. ROC curve for (a) binary and (b) BI-RADS grade classification.

Table 7. Classification performance based on the proposed mass description per class and in general.

Classification Accuracy Recall F1 Score

BI-RADS grade 0.91 ± 0.05 0.80 ± 0.19 0.85 ± 0.10
Binary 0.90 ± 0.10 0.89 ± 0.05 0.88 ± 0.07

Three distinct cases illustrate how selected characteristics effectively classify breast
masses based on BI-RADS descriptors, offering a quantitative assessment that enhances
clinical diagnosis. Figure 12a depicts a BR-2 case with a notable high roundness, reflect-
ing a regular shape and margin, and low density, characteristics associated with a more
likely benign mass. On the other hand, for cases more likely malignant BR-4 and BR-5
(Figure 12b,c), the roundness decreases, suggesting a more irregular shape, the number
of lobes increases and the density of the masses increase. The relationship of these three
cases with the values of the previously identified characteristics are outlined in Table 8,
highlighting the nuances in their variation across different BI-RADS categories.

(a) (b) (c)

Figure 12. Examples of masses graded as (a) BR-2, (b) BR-4, and (c) BR-5.
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Table 8. Three clinical cases reported under the BI-RADS standard and represented under the selected
set of characteristics.

ID # of Lobes IS MR DM Bi-RADS

22678787 0 2 0.90 Low 2
22670324 3 6 0.55 Medium 4
20587612 14 26 0.34 High 5

4. Discussion

Diverse approaches have been used to classify breast masses on mammogram, ranging
from specific classification methodologies to complete processing systems (Table 9). Dhun-
gel et al. [36] proposed a methodology for location to classification based on deep learning
models, proposing a CAD system that works with minimum user interaction and reporting
an accuracy of 0.91 for binary classification on the INbreast dataset. However, the F1
score and AUC values were significantly reduced to 0.76. Zhang et al. [37] used the local-
invariant characteristics from an MR8 bank filter of the first and second derivatives and a
convolutional neural network (CNN) to perform mass classification despite the differences
in image conditions. The method was tested on CBIS-DDSM, and the classification results
were obtained with a vector of 1024 features, achieving an accuracy of 0.94 and an AUC of
0.97. Lbachir et al. [16] developed a CAT system spanning from location to classification of
breast masses. The best classification accuracy was obtained with SVMs (support vector
machines) and the MIAS (Mammographic Image Analysis Society) database, reaching a
value of 0.94 with a binary approach.

Sparse approximations have also been used for breast mass classification using trained
dictionaries (basis signals) [18]. Spatially localized ensemble sparse analysis (SLESA)
takes individual blocks of interest (mass) and determines the class through a similarity
criterion. An accuracy of 0.90 was obtained with the MIAS database performing 30-cross-
fold validation, reaching an F1 score of 0.93. In a later advance [38], deep learning was
incorporated for the generation of dictionaries in deep feature SLESA (DF-SLESA), which,
combined with SVM, reached 0.72 and 0.77 in accuracy and AUC, respectively. Recently,
Singh et al. [17] performed an exhaustive feature computation, aiming to find the most
relevant features for breast benign/malignant mass description on the INbreast dataset.
Several selection algorithms considered and evaluated textural and shape features until
the best performance was reached with a description based on nine features and the k-NN
classifier with an accuracy of 0.90 and a sensitivity of 0.92.

Table 9. Comparison of results of breast mass classification.

Report Classification Dataset Method Accuracy Recall F1 Score AUC

[36] (2017) Binary INbreast CNN 0.91 ± 0.02 0.98 0.76 0.76 ± 0.23
[37] (2020) Binary CBIS-DDSM CNN 0.94 0.89 – 0.97
[16] (2020) Binary MIAS SVM 0.94 – – 0.95
[18] (2021) Binary MIAS SLESA 0.90 – – 0.93
[17] (2022) Binary INbreast k-NN 0.90 0.92 – –
[38] (2023) Binary MIAS, CBIS-DDSM InceptionV3-SLESA 0.72 – – 0.77
Proposed Binary INbreast MLP 0.90 ± 0.10 0.89 ± 0.05 0.88 ± 0.07 0.95
Proposed BI-RADS INbreast MLP 0.91 ± 0.05 0.80 ± 0.19 0.85 ± 0.10 0.95

–: Not reported.

The proposed method was competitive with other methods under a similar binary
classification approach. However, two relevant aspects must be considered. First, the binary
classification could be helpful in a general evaluation, but the classification of interest in
clinical practice is related to the BI-RADS grading. The binary classification groups two
or more BI-RADS grades into general benign and malignant classes. Nevertheless, some
classes present significant differences, mainly in the higher grades, such as BR-4 and
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BR-6, which often are put together. The second matter relates to the characteristics taken
into account for binary mass classification. The compared methods perform automatic
feature computation and selection without considering if such features are related to
the observations of the expert. Some studies have addressed the complexity of this issue,
finding that some selected characteristics of the image may be intrinsic to the DL models but
not recognized or explainable by the human eye [39]. Another study conducted specifically
for mass classification in mammography [40] reported an analysis of several DL models
and how these can have a significant generalization error by overfitting the classification
model. The study also mentioned that extracting a large amount of features could generate
a feature leakage problem, generating highly optimistic results.

Hence, it is important to base the characterization of masses on the BI-RADS reference
standard, which is used by most radiologists to interpret mammograms. The provided
description outlines the characteristics of breast masses, focusing on their shape, margin,
and density. It demonstrates the ability to differentiate between specific cases and aligns
with standard clinical parameters. As a result, it offers a more detailed and objective
assessment of breast mass characteristics across various risk levels, which can aid in clinical
decision making. This is the first description that employs a BI-RADS grading approach
for classifying breast masses, allowing for a direct correlation between the description and
expert analysis.

The analysis provides an initial basis for exploring new descriptions that align with the
medical community’s reference standard for evaluating breast masses. It was also shown
that digital image descriptors can be related to the characteristics of the masses, allowing
their quantitative evaluation. Although the results are encouraging, this study was limited
to a the INbreast dataset. Therefore, it is imperative to continue testing and refining this
approach to evaluate its generalization on more extensive datasets that better represent the
wide variability in cases occurring in the real world.

5. Conclusions

Automatic breast mass analysis could speed up the mass identification process and
provide complementary information to the expert related to breast density. However, it
requires the description obtained by automatic methods to be closely related to medical
standards. The proposed description is based on the characteristics established by the BI-
RADS standard for identifying masses per grade. The results showed that this description
allows for identifying the BI-RADS grade of breast masses with a performance close to
current methods and that is directly related to the characteristics analyzed by experts.
Thus, competitive results were obtained in binary and per-grade classification, with a
short description of well-identified features and classic machine learning, making the
data explainable.

While this report provides a foundational understanding of the performance of a
simple description, it also highlights the potential impact of further research. Testing on
a dataset with broader variability, closer to what is observed in clinical practice, could
significantly improve the current limitation of training, enhancing the classification and
reducing dispersion in the performance of the model. Moreover, exploring a more extensive
set of features could lead to a breakthrough in search performance while maintaining
interpretability. In future work, we intend to test explainable deep neural networks,
extending the identification of other characteristics related to each BI-RADS category.
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