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Abstract: Post-traumatic stress disorder (PTSD) is a psychiatric disorder that causes debilitating
functional impairment in patients. Observations from survivors of traumatic historical events solidify
that this disease is not only associated with personal experiences but can also be inherited from
familial traumas. Over the past decades, researchers have focused on epigenetic inheritance to
understand how responses to adverse experiences can be passed down to future generations. This
review aims to present recent findings on epigenetic markers related to PTSD and research in the
intergenerational inheritance of trauma. By understanding the information, we hope that epigenetic
markers can act as biochemical measurements for future clinical practice.

Keywords: DNA methylation; histone modification; intergenerational epigenetic; maternal inheritance;
non-coding RNA; paternal inheritance; transgenerational epigenetic

1. Introduction

Environmental factors have been attributed to the individual’s susceptibility to psy-
chiatric disorders [1], and the underlying mechanisms have been under extensive research.
One of the psychiatric diseases that is greatly subjected to environmental stimuli is post-
traumatic stress disorder (PTSD). PTSD is a trauma- and stressor-related disorder with
the required criteria of exposure to traumatic events before the development of related
symptoms [2]. The trauma events, including not only a repercussion of catastrophic life
experiences such as a past or ongoing war, physical or sexual trauma, but also schoolyard
and workplace bullying [3] as well as adverse childhood experience [4], could also serve
as disease triggers [5]. To understand how the effect of environmental triggers persist
throughout one’s lifetime, over the past decades, scientists have turned to epigenetics in
an attempt to look for interactions between the environment and the individuals in which
it immerses.

Epigenetics can be simply described as transcriptional regulation which subsequently
alters the resulting phenotype of the organism [6]. In other words, epigenetic processes
do not interfere with the DNA code itself but make changes in the chromosome and the
expression level of mRNA transcripts [6]. This allows for an organism to make immedi-
ate responses to the environment, without permanently changing its genetic making [6].
However, this does not mean that epigenetic changes can only be temporary; when an
individual is exposed to a certain environmental stressor for the appropriate amount of
time, epigenetic changes persist for the body to accommodate the new norm [6].
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The inheritance of both physiological and psychological stress through epigenetic
mechanisms has been extensively studied in the past few decades. From the keen obser-
vations on offspring of Dutch famine survivors, periconception exposure to physiological
stress (starvation) has been first found to contribute to long-lasting hypomethylation in the
IGF2 DMR gene for human development [7]. In recent decades, increasing literature on the
epigenetics of psychological stress emerged. Researchers have also observed epigenomic
differences in offspring of devastating historical events, including but not limited to the
Holocaust [8], maltreatment toward First Nations in Canada [9], Quebec ice storm [10],
and the 9/11 World Trade Center terrorist attack [11]. Therefore, we will elaborate on
the epigenetic impact of traumatic experiences on future generations, as well as current
skepticism on epigenetic inheritance.

This review article has four aims: starting with providing background information on
epigenetic mechanisms, we will present updates on recently discovered epigenetic markers
of psychological stress; furthermore, we collate human studies on the inheritance of trauma
utilizing epigenetics; finally, we end with suggestions on directions for future studies in
the hope of providing the readers a comprehensive understanding on this growing field of
biological psychiatry.

2. Epigenetic Mechanisms

To promptly react to environmental changes and increase fitness, the expression of
genes is under epigenetic control. Epigenetic mechanisms modify the level of transcripts
that could subsequently proceed to translation. These changes are flexible yet durable, as
they could be changed within a cell cycle and maintained throughout a lifetime [6]. Some
of the epigenetic mechanisms commonly used in the human body are DNA methylation,
histone modifications, and non-coding RNAs.

2.1. DNA Methylation

DNA methylation is the most studied epigenetic mechanism of all. It was originally
discovered in 1944 by Hotchkiss. In the 1980s, it was confirmed that methylated cytosine is
involved in gene expression [12]. DNA methylation typically functions as a repressor of
transcription of the modified gene, especially when it occurs in the promoter region [13].
It plays a critical role in processes such as silencing retroviral elements, regulating tissue-
specific gene expression, imprinting, and X chromosome inactivation [12,14]. The entire
process, from placing and removing markers to the recognition of DNA silencing, requires
a writer, an eraser, and a reader. The methylation of DNA is regulated and maintained by
the DNMT (DNA methyltransferases) family (DNMT, DNMT3a, DNMT3b, and DNMTl)
typically on the C5 (carbon number 5) position of cytosines that are followed by a guanine
nucleotide; such sites are termed CpG sites [12]. Although the majority of methylations
occur on CpG sites, methylations have also been found on cortices non-CpG (CpC, CpA,
CpT) sites [12]. The existence of a single demethylation enzyme remains debatable; however,
a consensus has been reached on the involvement of Tet enzymes and base excision repair.
The ten–eleven translocation (Tet) enzymes (Tet1, Tet2, and Tet3) catalyze the formation
of the 5hmC (5-Methylcytosine) intermediate, which could then be converted via further
hydroxylation by Tet and deamination by AID/APOBEC to molecules (Thy, 5hmU, 5fC,
and 5caC) that will be excised by BER and replaced by a cytosine. Finally, the methylated
cytosines are read by the MBD (methyl-CpG binding) proteins, the UHRF (ubiquitin-like,
containing PHD and RING finger domains) proteins, and the zinc-finger proteins to silence
the expression or reinforce the methylation during replication. As one can infer from its
role, the CpG site undergoes extensive differential methylation during gametogenesis and
embryonic development. DNA methylation dysregulation is associated with numerous
diseases, including Rett syndrome, hereditary sensory and autonomic neuropathy type 1
(HSAN1), Prader–Willi Syndrome, and Angelman Syndrome.



Life 2024, 14, 98 3 of 12

2.2. Histone Modification

Histones are protein molecules that provide the scaffold for DNA to be organized into
nucleosomes and later into chromatins, and the modifications on histones will therefore
affect chromatin structure as well as the recruitment of nucleosome-remodeling enzymes.
Histone modification primarily includes histone (de)acetylation, histone methylation, and
histone phosphorylation. Histone acetylation on lysine residues is catalyzed by histone
acetyltransferase (HAT). Lysines on both the histone core and tail could be acetylated.
Acetylated lysine has a weaker affinity to the DNA molecule, allowing for it to be easily
accessible by transcriptosomes for transcription. Deacetylation of lysine by histone deacety-
lases (HDAC) creates effects opposite to those of histone acetylation, as it condenses the
chromatin, repressing gene expression. Lastly, serine, threonine, and tyrosine residues, pre-
dominantly those on the histone tail, can undergo histone phosphorylation. A few kinases
responsible for histone phosphorylation have been identified, as well as their antagonizing
phosphatases [15].

2.3. Non-Coding RNAs (ncRNA)

The final epigenetic processes we will be discussing are non-coding RNAs (ncRNA).
Only a fraction of the human transcriptome encodes protein [16]. Each class of RNA
has unique cellular functions, some of which are types of machinery modulating gene
expression levels by chromatin remodeling at the transcriptional or post-transcriptional
level [16]. RNAs with epigenetic functions include micro RNA (miRNA), small interfering
RNA (siRNA), promoter-associated RNA (PAR), enhancer RNA, and long non-coding
RNA [17]. The most abundant ncRNA is the lncRNA. MiRNA and siRNA regulate the
expression of around 50% of human genes by binding to and cleaving complementary
mRNA transcripts [17]. PAR has been found to have repressive or activation effects in
different studies [17]. When associated with the polycomb protein group, PARs exhibit a
repressive function. As their name suggests, the enhancer RNAs activate the transcription
of genes. LncRNA are the most abundant of all ncRNA, and they recruit chromatin-
remodeling proteins [17]. However, since ncRNA asymmetrically segregates into the
daughter cells, its role as an epigenetic marker has been under debate [18].

3. Identifying Epigenetic Markers of PTSD

The epigenome-wide association study (EWAS) is the most recent approach to iden-
tifying epigenetic markers. Analogous to the genome-wide association study (GWAS)
method, which assesses the entire genome for disease association, EWAS aims to assess
whole-genome epimutations about diseases, without a hypothesis. Despite many epige-
netic mechanisms, due to technological restrictions, most EWAS to date have been focusing
on DNA methylations [19]. Compared to GWAS, an ideal EWAS design requires a more
deliberate selection of experimental and control samples as well as statistical corrections
to account for the dynamic epigenome [20] that varies between populations. The whole-
genome data of methylation sites are then obtained from the tissue of interest through
various typing and profiling technologies [21], and differences between groups can be com-
pared in a site-specific, CpG-cluster, or regional fashion after the aforementioned statistical
corrections [22].

Much like genome-wide association studies, the EWAS method [23] commonly ac-
quires methylome data from peripheral blood samples instead of the tissue of interest (i.e.,
brain tissue for PTSD), considering the accessibility and simplicity of study design. How-
ever, controversy surrounds such a choice of sample tissue, due to the tissue-specific nature
of epigenetic markers [20]. All cells in the human body share the same genome, and thus
obtaining genomic data from blood samples for GWAS is deemed to be appropriate [20].

Noticeably, the methylome and epigenome do not exhibit uniformity across different
tissues [20]. Cells in different tissues perform their distinct tasks and maintain expression
patterns through cycles of cell division using epigenetics [20]. Therefore, the resulting
data should be interpreted carefully, keeping in mind the epigenetic differences between
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blood cells and the experiment’s cell of interest [20]. Similarly, the tissue-specific nature of
epigenetic markers also requires careful comparison, commonly with statistical analysis,
between the acquired data and original epigenetic markings of the discussed tissue to
ensure the identified deviation as epimutation [20].

Despite the hardship of conducting epigenetic studies, many advancements have
been made in identifying PTSD-related DNA methylation sites. Epigenetic changes in
genes participating in physiological processes such as the HPA axis, immune function,
neuroplasticity, circadian rhythms, and cell adhesion are of particular interest.

Specifically, PTSD has been linked to dysregulation of the hypothalamus–pituitary–
adrenal axis (HPA axis). This stress response pathway develops in early fetal stages [9]
and is easily affected by the environment. When the HPA axis is incapable of returning
to a normal physiological state, a prolonged state of stress occurs. Among the many
genes involved in the HPA axis, two of them are most extensively studied: NCR3C1, the
glucocorticoid receptor gene, and FKBP5, the co-chaperone that inhibits glucocorticoid
receptor (NR3C1 product) function [24–26]. Multiple CpG sites on variants of these genes
have been found to contribute to PTSD symptoms and resilience to trauma [26].

Interestingly, methylation on the cg19645279 site on the NR3C1 gene and the cg07485685
site on the FKBP5 is found to be associated with both symptom severity and resilience.

Other methylation differences related to PTSD and trauma include the BRSK1 (tumor
suppressor), LCN8, NFG, DOCK2 (immune cells chemotaxis), ZFP57(transcriptional re-
pressor), RNF39 (synaptic plasticity), NRG1(cell–cell signaling), HGS (lysosome-dependent
degradation) genes, MAN2C1 (apoptosis regulation), TPR (cellular trafficking), ANXA2
(signal transduction and cellular growth), CLEC9A (myeloid cells activation), ACP5 (gly-
coprotein), TLR8 (pathogen recognition), CXCL1 (chemoattractant of immune cells) and
BDNF(neuroplasticity) [25,27,28]. Differential expressions of these genes are not only
associated with PTSD but also cause comorbidity of other psychiatric diseases.

In a large-scale EWAS in 2020, Logue et al. [21] identified ten new methylations that are
strongly associated with PTSD and genes that confirmed previous findings. Some of these
genes and their functions are noteworthy for future PTSD studies, including G0S2 (lipid
metabolism, downregulated in response to stress), APBA1/2 (protein transportation and
synaptic function in brain tissue), CHST11(extracellular signaling and neuronal plasticity in
brain tissue), and AHRR (xenobiotic metabolism) [29]. A recent study investigating 10 co-
horts discovered hypermethylation in the AHRR gene, these methylations are independent
of cigarette-smoking status, and the researchers elaborated that such changes could explain
the association between PTSD and immune dysregulation [30].

Another study performed on American military cohorts suggests differential SPRY4
methylation, long non-coding RNA SPRY4 expression (associated with suicidal behavior),
MAD1L1 (mitotic spindle-assembly checkpoint), and HEXDC gene expression [25,31].

Two studies in 2021 narrowed their subject of interest to female sexual violence
survivors. An analysis focusing on female rape survivors identified epigenetic markers
specifically associated with PTSD triggered by sexual trauma [32,33]. On top of NR3C1
hypermethylation [34,35], statistically significant results have been found in the CpG
site cg01700569 close to the SLC16A9 gene, although the protein is less known to be
associated with mental disorders. Aligning with previous studies, participants with PTSD
are found to have decreased BRSK2 methylation at 3 months post-rape, and similar results
have been found in BRSK1 methylation in other PTSD cohorts. Both the BRSK2 and
BRSK1 are expressed in the hippocampus, a brain region associated with trauma, memory,
and the fight-and-flight response. Also consistent with the other PTSD research, the
decrease in AHRR methylation (at cg05575921 and cg26703534) remained significant in this
cohort. Another similar study on war-time sexual violence survivors discovered differential
methylation patterns in SLC6A, OXTR promoter, and NINJ2 [33]. Epigenetic modifications
relating to PTSD are summarized in Table 1.



Life 2024, 14, 98 5 of 12

Table 1. Table summary of mentioned epigenetic modifications relating to PTSD.

Gene Gene Function Modification Modification Site Reference

ACP5 glycoprotein Methylation - [27]
AHRR xenobiotic metabolism Methylation - [30]

AHRR xenobiotic metabolism Demethylation cg05575921 and
cg26703534 [33]

ANXA2 signal transduction and cellular growth Methylation - [27]

APBA1/2 protein transportation and
synaptic function in brain tissue Methylation - [29]

BDNF neuroplasticity Methylation - [27]
BRSK1 tumor suppressor Methylation - [27]

CCDC88C coiled-coil domain containing 88C Methylation [25]

CHST11 extracellular signaling and
neuronal plasticity in brain tissue Methylation - [29]

CLEC9A myeloid cells activation Methylation - [27]

CXCL1 chemoattractant of immune cells interacting with
BDNF to regulate neuroplasticity Methylation - [27]

DOCK2 immune cells chemotaxis Methylation - [27]
FKBP5 co-chaperone inhibiting glucocorticoid receptor Methylation cg07485685 [25,27,28]

G0S2 lipid metabolism, downregulated
in response to stress Methylation - [29]

HGS lysosome-dependent degradation Methylation - [28]
HEXDC enables beta-N-acetylhexosaminidase activity Methylation [31]
LCN8 ligand transportation Methylation - [27]

MAD1L1 component of the mitotic spindle-assembly
checkpoint Methylation [31]

MAN2C1 apoptosis regulation Methylation - [27]
NCR3C1 glucocorticoid receptor Methylation cg19645279 [25,34,35]

NRG1 cell–cell signaling Methylation - [28]
RNF39 synaptic plasticity Methylation - [28]
SPRY4 associated with suicidal behavior Long non-coding RNA - [29]
TLR8 pathogen recognition Methylation - [27]
TPR cellular trafficking Methylation - [27]

ZFP57 transcriptional repressor Methylation - [28,36]

4. Intergenerational and Transgenerational Inheritance of Epigenetic Markers

The identification of epigenetic markers is a big step towards understanding the non-
genetic cause of PTSD. Furthermore, genetic or epigenetic changes made in the germline
indirectly affect the epigenetics of future generations. Nonetheless, when the epigenetic
effect is observed in later generations, it could be passed down via multiple routes which
are classified into two categories: intergenerational inheritance and transgenerational
inheritance [37]. Even though some researchers consider these two terms to be interchange-
able, we feel that it is beneficial to differentiate these inheritance processes according to
Skinner’s definition. Please note that in the following sections, when referring to trans-
generational/intergenerational inheritance studies, corrections will be made according to
Skinner’s definition [37].

Intergenerational inheritance implies a transmission process between two genera-
tions [38]. As the gamete of the trauma-exposed F0 generation is already present during the
exposure, the definition of intergenerational inheritance does not rule out the possibility of
direct traumatic exposure of F1 genetic material within the gamete, embryo, and fetus. This
means of inheritance is widely studied due to the high malleability of the epigenome during
embryogenesis. Transgenerational epigenetic inheritance has a more rigorous criterion
based on biological sex and pregnancy status. The affected individual: when the affected
individual is male or a non-gestating female, the environmental stressor affects both the
individual and their germline cells and, in such cases, the epigenetic change must persist
to the third generation to be considered transgenerational inheritance [39]. In gestating
females, however, germline cells developing withing within the fetus could also be directly
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affected by the stimuli [37]. Therefore, any stressor applied is considered a direct stressor
to all three generations [40], which renders the next generation to be the first without
direct traumatic experience. In short, transgenerational inheritance is only said to occur
when the epigenetic marker is present in the first exposure-free generation to the original
stressor; this criterion ensures that epigenetic markers are transmitted. For the above
reasons, preconception trauma in women, fetoplacental interactions, and improper parental
care are considered to be intergenerational inheritance [41] and shall not be confused with
the transgenerational inheritance of trauma, as in these scenarios the subject of interest
receives direct traumatic experience. The concept of transgenerational, preconceptional,
and fetoplacental inheritance is illustrated in Figure 1.
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Figure 1. A color-coded schematic drawing of stimulus application timing of each route intergenera-
tional inheritance, with the same color indicating the same individual. (a) For true transgenerational
inheritance, stress response should be recorded in the first generation that is not directly affected by
the stressor. If a fetus is exposed to stressors during pregnancy, we cannot exclude the epigenetic
changes in F1 are independent of changes in F0. Therefore, for male/non-gestating female F0, a
response should be recorded in the F2 generation. However, for gestation female F0, stressors directly
affected the F0, F1, and F2 generation; therefore, a response would have to be recorded in the F3
generation. (b,c) Preconceptional and fetoplacental inheritance both concerns 2 generations to which
the is stressor directly applied, the F0 and the F1 (the gamete or the fetus of F0).

5. Different Timings of Trauma Exposure and Intergenerational Inheritance Studies

There has been compelling evidence suggesting physiological changes in the offspring
of parents who experienced traumatic events. In 2018, Yehuda et al. reviewed human
studies of the epigenetic intergenerational inheritance of stress [9]. The routes of intergen-
erational inheritances were categorized by the time of trauma exposure: maternal care
(post-natal exposure), fetoplacental interaction (in utero exposure), preconception trauma
(gamete exposure), and transgenerational inheritance. Differential findings might suggest
that inheritance routes play a significant role in stress inheritance. For the above reason, we
will report the latest findings of human epigenetic inheritance classified based on the route
of transmission.

5.1. Post-Natal Exposure

Although perturbation caused by insufficient parental care should not be deemed as a
means of inheritance, mood disorders can impair the interaction between the patient and
their offspring, acting as a form of childhood adversity [42]. Adverse childhood experiences
(ACE) have a large impact on the neural development of an individual. ACEs have
been associated with psychiatric diseases such as PTSD, anxiety, depression, and bipolar
disorder, as well as physical illnesses such as diabetes and cardiovascular diseases. Diseases
are caused by differential methylation patterns on genes relating to neurotransmission,
specifically the decrease in methylation on FKBP5 (heat shock protein for GR) and MAOA
(degradation of monoamine neurotransmitter; also, the increase in methylation on NR3C1
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(GR gene), HTR (serotonin receptor), SLC6A4 (serotonin reuptake transporter), and BDNF
(promote neuroplasticity)) [43]. On top of these findings, it has been found that maternal
overprotection can also cause alterations in hormone expression in holocaust survivors [44].
The complexity of human parenting style has also added to the complication of mood
regulation studies.

5.2. In Utero Exposure

Experiences as early as in utero exposure have been found to contribute to PTSD
vulnerability through DNA methylation [45]. Increased methylation has been found in the
promoter region of the NR3C1/2 gene in both mothers (F0) who were pregnant during
the Tutsi genocide and their children (F1) [9,46]. Similar findings have also been found in
women pregnant while experiencing domestic violence, in the war zones of the democratic
republic of Congo [34], during the Rwanda genocide [46], and the Quebec ice storm. A
study on women who experienced sexual violence showed expression in F1 through fetal
placental differential methylation patterns on the SLC6A4INJ2, OXTR promoter, and NINJ2
genes and related regions [33].

5.3. Preconceptional Inheritance and Transgenerational Inheritance

Among all routes of epigenetic inheritance of stress, preconceptional trauma inheri-
tance and transgenerational inheritance are particularly under debate [47]. This is based on
the understanding that global reprogramming of the epigenome occurs in the mammalian
germline immediately after fertilization to erase acquired epigenetic marks or epigeno-
type [14,48]. Although retention has been found in methylation in some regions of the
genome, the sperm histone PTM, and sperm small ncRNAs, more studies are required to
understand the mechanism behind the preservation of epigenetic markers [39]. Still, obser-
vations of epigenetic changes in later generations provide evidence that some methylations
exhibit meiotic stability [49].

5.3.1. Preconceptional Inheritance

Maternal preconception stress can exert an effect on the oocytes as well as the uterine
environment, and one should keep in mind that it is difficult to discern the route of
transmission even when epimutations are present in both F0 and F1. However, there have
been some studies which focus on the relationship between maternal stress and offspring
stress regulation. In holocaust survivors, associations have been found between F0 stress
and lower FKBP5 methylation in offspring.

Recently, several studies have suggested paternal epigenetic inheritance during sper-
matogenesis [50]. This style of transmission has not received great attention in the early
stages of epigenetic research [51]. Paternal transmission guarantees the absence of fe-
toplacental interactions and maternal care factors [9]. In 2011, it was determined that
miRNA, piRNA, and sncRNA within mature human sperm can act as vertical information
carriers and key regulators of transgenerational inheritance of gene expression [52–54].
Histone modifications that are retained through spermatogenesis have also been found
to be crucial in embryo development [48]. An EWAS performed by Mehta et al. in 2019,
and it identified DNA methylation marks of veterans’ peripheral blood and spermatozoa,
attempting to find overlapping patterns relating to PTSD development and heritability [25].
They have discovered three CpG sites on the CCDC88C associated with PTSD severity
in the genome of sperm. They have also identified an association between 10 CpG sites
and PTSD diagnosis within the offspring of the veterans [25]. However, without data on
the offspring’s epigenome, it is uncertain if the offspring’s PTSD was transmitted through
the germline. The evidence is also insufficient to conclude that methylation could persist
through fertilization [25].
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5.3.2. Transgenerational Inheritance

Unfortunately, to our knowledge, there are few studies on human transgenerational
epigenetic inheritance of PTSD. Human studies on this topic suffer from limitations such
as the generation required for effects to be observed, confounding factors, and ethical
issues [55]. Without transgenerational inheritance evidence, it is uncertain if these biological
memories can be passed down through the germline. Nevertheless, it is observed that
the F2 offspring of holocaust survivors (F0) suffer from psychological impairment. These
symptoms could be due to the increase in FKBP5 expression and decrease in NR3C1
methylation, providing insights into epigenetic transmission across three generations [1].

6. Cultural Level PTSD

Despite uncertainties revolving around the level of demethylation and re-methylation
during fertilization, it is still exciting to discover epigenetic changes in succeeding gen-
erations. As compelling evidence of transgenerational epigenetic inheritance of PTSD is
brought to light, the alarming subject of epigenetic changes in an entire generation due
to cultural trauma has been broached. In 2018, Ching et al. reviewed studies of PTSD
in people of color and theorized that racial trauma across several generations can have
cumulative epigenetic effects [56]. Disturbingly, racial traumas that are associated with
PTSD are not uncommon in day-to-day life, including workplace discrimination, the use of
racial slurs, and immigration difficulties.

7. Future Directions and Use

The current psychiatric diagnosis described in the DSM-5 or ICD-11 relies on the
psychiatrist’s diagnostic interview for assessing if the individual’s mental status meets
the corresponding listed diagnostic criteria at the time of the medical visit. However, the
categorical system of diagnosis criteria and the patient’s memory recall bias contribute to
diagnosis heterogeneity [57,58]. The easily accessible biological markers help to optimize
precision in the clinical diagnosis of psychiatric diseases [59]. The epigenetic markers
of PTSD on somatic cells may allow for scientists to access a patient’s experience and
family history. Epigenetic data can be obtained from human and cadaver cells, suggesting
the application of this evidence in the legal system [60]. Furthermore, although most
studies have focused on the detrimental effect of trauma inheritance, not all epigenetic
markers cause pathology, and some are associated with resilience. In a small pilot study,
Miller et al. discovered that methylations in different sites of the FKBP5 and NR3C1
could have positive contributions toward mental health, such as increasing the subject’s
resilience [24]. Recently, studies have shown that high-quality parental care results in
increased histone acetylation in hippocampal tissue, decreased methylation of N3CR1 and
BDNF, and increased methylation of TNF. These epigenetic changes are associated with
reduced psychological pathology [55]. We suggest studies with larger sample sizes be
conducted on epigenetic changes that could improve resilience. This knowledge could be
applied to improve the psychological health of workers in particularly stressful workplaces,
such as military personnel and nurses [3].

The revelation of epigenetic markers and their effects sheds light on the prospect
of epigenetic inheritance of resilience, sparking subsequent studies to have led to later
studies on their suitability as diagnostic biomarkers [55]. NR3C1 overexpression and HPA-
axis-related methylation changes in PTSD have been proposed to be used as a diagnostic
marker to assess PTSD treatment efficacy [61]. Most recently, in 2023, Wilker et al. found
that methylation on the cg25535999 CpG site of the NR3C1 intron is negatively associated
with PTSD symptoms (however, this study lacks data on GR expression level) [62]. Other
epigenetic markers have been proposed to be associated with recovery or the prediction
of treatment response [36,63–69]. Lastly, in 2021 Vinkers et al. revealed the possibility
of reversing DNA methylation at the ZFP57 gene as a treatment for PTSD, opening the
window to a new method of PTSD and psychiatric disorder treatment via epigenetics [36].
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8. Closing Statements

For a long time, genetic research has been the focus of scientific research and the main
understanding by laypersons of many psychiatric phenomena, such as criminal behavior,
political participation, or sexual orientation [70]. Now, nature and nurture are no longer
at two ends of the tug-of-war, competing for the cause of psychiatric diseases, but two
interwoven ideas. Epigenetics inheritance demonstrates that the effects of environmental
stimuli can be written into heritable material and could even persist to the next generation.
These inherited traits prime the future generation for their response to more environmental
stimuli. Furthermore, discoveries in the epigenetic field have further opened our eyes to
new ways of diagnosing, understanding, and treating psychiatric diseases.

In this review, we have presented basic knowledge and recent research regarding epi-
genetics’ contribution to PTSD. The advancements in this field provide a strong background
for discovering more epigenetic markers and environmental stimuli relevant to PTSD; they
have also shined light on the epigenetic research of other psychiatric phenomena.
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