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Abstract: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) con-
tinues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a
range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis
(MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close
intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and
advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines,
with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in
people with MASLD, and recent research has shed light on the crucial role played by adipokines in
regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease
is a multifaceted condition that affects various aspects of health beyond liver function, including
its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet
functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more
attention is being given to imbalanced adipokines as causative agents in causing disturbances in
hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of
MASLD, and the interrelation between these biological components and the hemostasis pathway
is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the
potential to serve as the shared elements within this complex interrelationship. The objective of this
review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis
in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of
the disease.

Keywords: dysfunctional hemostasis; NAFLD; MASLD; adipokines; coagulation; platelet;
endothelium; inflammation; insulin resistance

1. Introduction

Recently, the classification of non-alcoholic fatty liver disease (NAFLD) and non-
alcoholic steatohepatitis (NASH) has been revised to provide more precise and accurate
descriptions of these disorders [1]. The revised categorization system suggests the utiliza-
tion of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic
dysfunction-associated steatohepatitis (MASH) as appropriate terms [1].

The prevalence of MASLD continues to rise, making it one of the most prevalent
chronic liver disorders [2,3]. The global incidence of MASLD is estimated to be 47 cases
per 1000 individuals in the population, with a higher prevalence observed among males
compared to females [2,3]. MASLD encompasses a range of liver pathologies, from simple
steatosis to MASH with inflammation, hepatocyte damage, and fibrosis [4–6]. These
pathological conditions are frequently correlated with several physiological alterations [7,8]
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and with obesity or overweight [5,9], both of which are established risk factors for the
development of MASLD [10]. In fact, epidemiological studies have demonstrated that the
prevalence of MASLD in individuals who are overweight ranges from 22.5% to 44.0% [10].
Conversely, the prevalence of MASLD among obese individuals can reach as high as
90% [10–13]. However, MASLD disease is a multifaceted condition that affects various
aspects of health beyond liver function, including its impact on hemostasis [14–16]. Several
studies suggest that alterations in coagulation parameters, the fibrinolytic process, and
endothelial and platelet functions may play a role in the increased vulnerability and severity
of MASLD [14–19]. This is not unexpected since the liver fulfills a crucial function in the
production of coagulation factors and the maintenance of hemostatic equilibrium [17,20,21].
On the other hand, the liver exhibits close intercommunication with adipose tissue [22,23].
Interestingly, adipose tissue may contribute to the etiology and progression of MASLD
by delivering free fatty acids derived from triglyceride lipolysis through the bloodstream
to the liver [24] and also acting as an endocrine organ that releases several hormones
and cytokines [25–27], with adipokines assuming a pivotal role [23,28,29]. Adipokines
are involved in regulating energy expenditure, inflammation, and fibrosis in obesity and
MASLD [30,31]. Numerous clinical trials have demonstrated altered serum profiles of
adipokines in patients with MASLD [30,32]. There is increasing interest in the role of
imbalanced adipokines as significant contributors to the altered hemostatic mechanism
in MASLD. Gradually, adipokines are being recognized as significant contributors to the
dysregulated hemostatic mechanism in MASLD [30,32]. For example, Dalbeni et al. (2022)
recently found a positive correlation between the severity of MASLD/MASH and the levels
of the hormone leptin, as well as an increase in platelet activation and aggregation, thereby
potentially leading to the facilitation of arterial thrombosis [33].

MASLD is associated with increased levels of inflammation [32,34], which are fre-
quently associated with insulin resistance (IR) [35–39]. IR could result in altered serum
levels and the activity of adipokines [35,40], which could directly impact hemostasis [41–44]
or indirectly affect it through the induction of augmented inflammation and IR [33,36,45,46].
The interplay between these factors results in a vicious cycle that perpetuates the develop-
ment and progression of MASLD [33,36,45,46]. One of the effects of MASLD-exacerbated
inflammation related to hemostasis may be the alteration of platelet function. Platelets’
uncontrolled aggregation contributes to thrombotic risk [33,45] and causes damage to the
vascular endothelium [14,47,48]. The endothelium, a monolayer of specialized cells lining
the interior surface of blood vessels, plays a crucial role in maintaining vascular health [47].
A healthy endothelium possesses antithrombotic properties that hinder the formation of
blood clots [47]. Conversely, when endothelial function is compromised, it may lose its
protective properties, thereby promoting thrombosis [14,47–49].

The purpose of this review is to conduct an exhaustive examination of the existing
scientific literature concerning the disruption of hemostasis in MASLD and its association
with adipokines (Figure 1).
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Figure 1. MASLD, hemostasis, and adipokines. Patients with MASLD have modifications in the 
physiological process of hemostasis. Adipokines, principally produced by the adipose tissue, could 
play a significant role in the pathogenesis of MASLD and could contribute to the disruption of 
hemostasis. Created with https://BioRender.com (accessed on 27 November 2023); MASLD: 
metabolic dysfunction-associated steatotic liver disease. 

2. Abnormal Hemostasis in Metabolic Dysfunction-Associated Steatotic Liver  
Disease (MASLD) 

Hemostasis is a complex biological process marked by a series of interconnected, 
sequential events that finally culminate in the formation of a “thrombus,” which obstructs 
the wounded area of the vascular structure, effectively controlling the bleeding [15,50–53]. 
Concisely, the first stage, known as primary hemostasis, encompasses not only vascular 
constriction but also the aggregation of platelets at an injury site to stop initial blood loss 
[50]. In the second stage of hemostasis, known as secondary hemostasis, the coagulation 
cascade is activated, which involves a series of reactions that result in the conversion of 
soluble fibrinogen into insoluble fibrin, forming a stable clot that reinforces the platelet 
plug [15,50–53]. During the coagulation cascade, several protein factors and enzymes are 
sequentially activated to form a clot. This cascade involves both the intrinsic and extrinsic 
pathways, which eventually merge to activate the final common pathway [15,50–53]. 
Factors within the blood itself start the intrinsic pathway of the coagulation cascade. These 
factors include factors XII, XI, IX, and VIII, whose activation leads to the production of 
thrombin, which plays a central role in clot formation [15,50–53]. The extrinsic pathway 
of the coagulation cascade is initiated by tissue factor, which is released from damaged 
tissues and triggers a series of reactions that activate factor VII and ultimately lead to the 
production of thrombin [15,50–53]. The activation of thrombin in both the intrinsic and 
extrinsic pathways leads to the conversion of fibrinogen to fibrin [15,50–53]. Endothelial 
cells exert control over blood fluidity and tissue perfusion due to their strategic location 
at the interface between blood and tissues [15,50–53]. Additionally, these cells play a 
crucial role in guiding inflammatory cells to specific regions that require defense or repair 
[15,50–53]. Endothelial cells mitigate coagulation by the release of tissue factor and 
thrombin inhibitors, as well as receptors that facilitate protein C activation [15,50–53]. 
Protein C acts as a natural anticoagulant [15,50–53], preventing excessive clot formation 
by limiting thrombin production. Plasminogen activator inhibitor-1 (PAI-1) has a crucial 
role in coagulation and fibrinolysis processes [54,55]. It is an inhibitor of tissue 
plasminogen activator and urokinase-type plasminogen activator, which are enzymes 

Figure 1. MASLD, hemostasis, and adipokines. Patients with MASLD have modifications in the phys-
iological process of hemostasis. Adipokines, principally produced by the adipose tissue, could play a
significant role in the pathogenesis of MASLD and could contribute to the disruption of hemosta-
sis. Created with https://BioRender.com (accessed on 27 November 2023); MASLD: metabolic
dysfunction-associated steatotic liver disease.

2. Abnormal Hemostasis in Metabolic Dysfunction-Associated Steatotic Liver
Disease (MASLD)

Hemostasis is a complex biological process marked by a series of interconnected,
sequential events that finally culminate in the formation of a “thrombus,” which obstructs
the wounded area of the vascular structure, effectively controlling the bleeding [15,50–53].
Concisely, the first stage, known as primary hemostasis, encompasses not only vascular
constriction but also the aggregation of platelets at an injury site to stop initial blood
loss [50]. In the second stage of hemostasis, known as secondary hemostasis, the coagula-
tion cascade is activated, which involves a series of reactions that result in the conversion
of soluble fibrinogen into insoluble fibrin, forming a stable clot that reinforces the platelet
plug [15,50–53]. During the coagulation cascade, several protein factors and enzymes are
sequentially activated to form a clot. This cascade involves both the intrinsic and extrinsic
pathways, which eventually merge to activate the final common pathway [15,50–53]. Fac-
tors within the blood itself start the intrinsic pathway of the coagulation cascade. These
factors include factors XII, XI, IX, and VIII, whose activation leads to the production of
thrombin, which plays a central role in clot formation [15,50–53]. The extrinsic pathway
of the coagulation cascade is initiated by tissue factor, which is released from damaged
tissues and triggers a series of reactions that activate factor VII and ultimately lead to the
production of thrombin [15,50–53]. The activation of thrombin in both the intrinsic and ex-
trinsic pathways leads to the conversion of fibrinogen to fibrin [15,50–53]. Endothelial cells
exert control over blood fluidity and tissue perfusion due to their strategic location at the
interface between blood and tissues [15,50–53]. Additionally, these cells play a crucial role
in guiding inflammatory cells to specific regions that require defense or repair [15,50–53].
Endothelial cells mitigate coagulation by the release of tissue factor and thrombin inhibitors,
as well as receptors that facilitate protein C activation [15,50–53]. Protein C acts as a nat-
ural anticoagulant [15,50–53], preventing excessive clot formation by limiting thrombin
production. Plasminogen activator inhibitor-1 (PAI-1) has a crucial role in coagulation
and fibrinolysis processes [54,55]. It is an inhibitor of tissue plasminogen activator and
urokinase-type plasminogen activator, which are enzymes responsible for the conversion
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of plasminogen into plasmin [54–56]. Plasmin is an enzyme that helps to dissolve fibrin
in blood clots, thereby aiding in clot resolution [54–56]. In the context of coagulation, an
increase in PAI-1 could lead to a decrease in fibrinolysis as there would be less active
plasmin to break down fibrin in the clots [54–56]. In contrast, von Willebrand factor (vWF)
is an essential glycoprotein that facilitates platelet adhesion and aggregation [15,50–53].
Acting as a bridge between platelets and damaged blood vessel walls, vWF promotes
the formation of stable clots during hemostasis. In cases of endothelial dysfunction or
cardiovascular diseases, the balance between protein C and vWF can be disrupted, leading
to an increased risk of thrombosis [57] (Figure 2).
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Figure 2. A simplified diagram illustrating the process of hemostasis. Hemostasis is a complex
physiological process that relies heavily on the intricate interplay between coagulation factors that
facilitate clot formation and those that promote clot dissolution. The maintenance of this delicate
equilibrium is of paramount importance for the prevention of excessive bleeding or thrombosis and
thus forms a critical aspect of the clinical management of many medical conditions. Created with
https://BioRender.com (accessed on 29 November 2023).

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex disor-
der that has implications for several aspects of health beyond the functioning of the liver.
According to previous research, this includes its impact on hemostasis [15,17,51,58–61].
In fact, multiple studies have indicated that changes in coagulation parameters, the fibri-
nolytic process, and the activities of endothelial cells and platelets may contribute to the
heightened susceptibility and severity of MASLD [12–15,18,19].

The significance of coagulation, platelet, and endothelial dysfunctions in the patho-
genesis of MASLD will be discussed in the following sections.

https://BioRender.com
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2.1. Coagulation Dysfunctions

MASLD dysfunctional coagulation has been the focus of several studies [16,18,62].
The coexistence of coagulation abnormalities in individuals with MASLD/metabolic
dysfunction-associated steatohepatitis (MASH) highlights the intricate relationship be-
tween liver dysfunction and the mechanism of hemostasis [17,58]. Within the framework
of metabolic dysfunction, it was reported that hepatic damage could contribute to the
initiation of coagulation, hence inducing the initiation of fibrogenesis [28,58,63] and vice
versa [16,18,62,64]. The liver plays a significant role in the regulation of hemostatic balance
and in the synthesis of coagulation factors, which have been shown to diminish as liver
fibrosis advances [65]. Moreover, hepatocytes have a role in the post-translational modifica-
tion of coagulation factors [65]. Therefore, the elevated occurrence of thrombotic events
and changes in coagulation time observed in individuals with MASLD can be attributed to
the compromised hepatic production of coagulation factors [17,20,60].

The presence of a hypercoagulable state in MASLD individuals is supported by
blood-elevated levels of prothrombotic factors, including prothrombin and fibrinogen.
These prothrombotic factors play a role in the initiation and advancement of blood clot
formation [15,50–53]. This suggests that an aberrant coagulation cascade may be at play
in MASLD individuals, predisposing them to thrombotic complications [16,18,62]. In
addition, the presence of elevated levels of D-dimer, a marker that indicates the formation
and breakdown of fibrin, provides further support for this association [58]. Given the
growing incidence of MASLD in the general population, these findings underscore the
importance of vigilant thromboprophylaxis in affected individuals [16,58]. Individuals
suffering from MASLD exhibit heightened levels of factor VIII and reduced levels of protein
C [62]. Valenti et al. revealed an independent association between liver fibrosis indices and
an elevated Factor VIII/protein C ratio in MASLD patients, suggesting the presence of the
procoagulant state [63]. Additionally, they found genetic mutations, mainly the PNPLA3
p.I148M variant, that were linked to the levels of change in factor VIII and protein C [63].
This discovery further supports the idea that liver damage significantly alters the balance of
coagulation [63]. In MASLD patients, there is also an alteration of the levels of antithrombin
and von Willebrand factor (vWF) [66,67], whose altered activation of the latter leads to the
dysregulated formation of a platelet plug [66]. The severity of alteration in hemostasis was
more pronounced in patients with advanced liver disease such as MASH or cirrhosis [68,69],
in which more advanced hepatocellular damage is present [59]. Hepatocellular damage
of a significant degree could result in a compromised production of various coagulation
factors, including fibrinogen; thrombin; and factors V, VII, IX, and X. These factors are
predominantly synthesized in the liver [68,69]. As a result, this gives rise to an increased
vulnerability to both thrombotic and hemorrhagic events [68,69].

The occurrence of insulin resistance (IR) is notably elevated in individuals with
MASLD and further exacerbated in patients diagnosed with MASH [21,37,70,71]. Liver
triglyceride accumulation, increased lipolysis, and increased synthesis of triglycerides
are all linked to IR. This accumulation of fat in the liver can have detrimental effects on
clotting dynamics [21,37,70,71]. Moreover, the presence of visceral fat tissues in MASLD
patients is directly correlated with IR and impaired clotting dynamics [72]. The activation
of the coagulation cascade may occur as a result of IR, which could be characterized by
elevated blood levels of plasminogen activator inhibitor-1 (PAI-1) [61,72,73]. It is known
that PAI-1 has a crucial role in coagulation and fibrinolysis processes [54,55]. The erratic
pattern of PAI-1 blood levels was correlated with an imbalance of the hemostatic system,
leading to the occurrence of bleeding or thrombotic problems [54,55] and cardiovascu-
lar disease [74]. Excessive levels of PAI-1 were observed in individuals with metabolic
syndromes, such as MASLD [75,76]. Furthermore, cross-sectional studies have provided
data indicating connections between elevated plasma levels of PAI-1 and the presence
and severity of MASLD in human subjects [57,77]. Evidence has highlighted that PAI-1
increases the likelihood of thrombosis and could accelerate the progression of liver disease
as a result of local tissue ischemia caused by intrahepatic thrombi [78,79]. On the other
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hand, PAI-1 is an essential regulator of lipid metabolism in the liver [56], and enhanced
levels of PAI-1 in the serum are correlated with adult MASLD pathogenesis beyond its
function in hemostasis [75,77]. These scientific findings demonstrate the convergence of
the metabolic pathway and hemostasis in MASLD patients.

Alteration in coagulative mechanisms contributes to an increased occurrence of
atherosclerosis and thrombotic events, both of which are prevalent in MASLD patients and
are associated with a heightened risk of cardiovascular disease and mortality [80,81]. The
recent results of a meta-analysis have corroborated the positive and statistically significant
correlation that exists between MASLD and portal vein thrombosis [82]. The presence of a
hypercoagulable state in patients with MASLD has the potential to result in the formation
of microthrombi in the hepatic veins and arteries, leading to disrupted blood flow [58]. In-
creased rates of clinically significant thrombotic events, such as pulmonary embolism, deep
vein thrombosis, and portal vein thrombosis, are explicable by abnormalities at all stages
of hemostasis [83,84], including a condition of hypercoagulation derived from decreased
levels of PAI-1 [61,72,73].

2.2. Dysfunction of Platelets

Altered blood platelet activity was involved in the pathogenesis of MASLD [33]. Shin
et al. have examined the association between platelet count and MASLD within a sizable
population-based cohort. They discovered a negative correlation between platelet count and
the occurrence of MASLD [85]. This correlation remained significant even after controlling
for potential confounding variables, including age, gender, body mass index, and metabolic
parameters [85]. The study conducted by Madan et al. (2016) revealed that individuals with
MASLD have enhanced mean platelet volume (MPV), an index that serves as an indicator
of both platelet size and activation [86]. This finding suggests heightened platelet activity
in MASLD patients [86]. Saremi et al. (2017) reported a substantial correlation between
platelet count and MPV with the severity of fibrosis in patients with MASLD [87] and its
progression in a more severe form [88]. Furthermore, the number of platelets observed in
the liver sinusoids is correlated with the incidence of ballooning degeneration (a form of
damage to hepatocytes) in the liver [89] and the extent of fat infiltration [88]. For this reason,
the platelet count is included in scoring systems utilized in clinical settings for the purpose
of prognosticating the advancement and gravity of MASH [90] and as a predictive factor
for the occurrence of hepatocellular carcinoma in individuals diagnosed with MASLD [91].

The association between MASLD and impaired platelet function can be attributed
to multiple contributing factors. As mentioned, elevations in fibrinogen, together with a
reduction in antithrombin, were reported in individuals with MASLD [92]. Thrombin is
widely recognized as a potent activator of platelets, functioning by cleaving the protease-
activated receptors that are expressed on human platelets [93]. Moreover, fibrinogen plays
a significant role in facilitating platelet aggregation [94]. The platelet hyperactivation,
combined with the prothrombotic factors mentioned earlier, increases the risk of clot
formation and thrombotic events in MASLD patients. In addition, the advancement of liver
fibrosis results in an enlargement of the spleen and a decrease in thrombopoietin levels,
subsequently causing a reduction in platelet count [95,96].

The pathogenesis of MASLD may encompass the involvement of lysosomal acid
lipase (LAL), an enzyme that breaks down triglycerides and cholesteryl esters in various
hepatic cells and monocyte-macrophages produced from bone marrow [97]. A reduction
in platelet LAL levels has been linked to the severity of MASLD in humans [98]. The
process of lipophagy was enhanced, leading to an accumulation of cholesterol. This, in turn,
stimulated the activation of platelet metabolism, migration, and aggregation, ultimately
resulting in the enhancement of their pro-inflammatory capacity [99,100]. Furthermore,
the occurrence of systemic inflammation has the potential to induce platelet activation
and aggregation [33,101]. This assertion is substantiated by research indicating elevated
concentrations of proinflammatory cytokines, including interleukin-6 and tumor necrosis
factor-alpha, in individuals diagnosed with MASLD [102,103]. These cytokines have the
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potential to directly impact the functioning of platelets [102,103]. Furthermore, bone
marrow adiposity, frequently observed in subjects with metabolic syndrome and obesity,
directly affects platelets [104]. Megakaryocyte maturation was increased in medullar
adiposity, leading to increased thrombogenicity and activation of platelets, thus potentially
providing a feed-forward loop of hepatic platelet aggregation in MASH [104].

2.3. Endothelial Dysfunction

Endothelial dysfunction (ED) has been extensively documented in MASLD, which
was correlated with a heightened incidence of augmented carotid wall intimal thickness,
atherosclerotic plaques, and elevated concentrations of indicators relating to ED [105,106].
Multiple investigations have provided evidence of the existence of impaired sinusoidal
endothelial function within the hepatic microcirculation, observed in both the initial phases
of MASLD and more advanced stages like cirrhosis [14,48,49,107]. The activation of hepatic
stellate cells and Kupffer cells depends on the dysfunction of hepatic sinusoidal endothelial
cells [108,109]. The production of several prothrombotic substances and receptors, along
with the recruitment of neutrophils and platelets, promotes the creation of sinusoidal
microthrombus [110]. This process leads to the destruction of parenchymal tissue and
the advancement of fibrosis [110]. The extent of ED is directly related to the severity of
MASLD and serves as an indicator of the severity of damage to the vascular walls [111,112].
Therefore the ED may contribute to the deterioration of coagulation disorders by promoting
platelet activation and aggregation, causing additional harm to the endothelium [113,114].
In their recent study, Ogresta et al. (2022) found an interesting link between ED in the
systemic and portal venous circulation of people with MASLD and platelet activation and
aggregation [14]. The endothelium exhibits significant involvement in the metabolic utiliza-
tion of long-chain fatty acids as energy sources while also possessing a multitude of regula-
tory capabilities [47,115]. This assertion is substantiated by scientific investigations, which
indicate that the presence of ED is correlated with a heightened susceptibility to cardiovas-
cular illnesses and preliminary indications of atherosclerosis among individuals diagnosed
with MASLD [116,117]. Accordingly, it was suggested that incorporating exercise training
of moderate intensity into the therapeutic regimen may aid in ameliorating the ED and mit-
igating the propensity for cardiovascular disease that is emblematic of MASLD [116,117].
The impairment of endothelium in MASLD is not confined solely to the blood vessels
within the liver but rather encompasses additional vascular networks [14,48,118]. Research
findings have indicated that MASLD exhibits a correlation with an elevated susceptibility
to cerebrovascular complications [9,119]. This association subsequently contributes to the
occurrence of neurodegenerative alterations within the brain and an augmented likelihood
of developing dementia [120,121]. Critical to physiological nitric oxide (NO) production
is endothelial nitric oxide synthase (eNOS), an enzyme that is primarily found in the
endothelium of blood vessels [122]. Impaired eNOS activity occurs in insulin resistance
(IR), leading to decreased generation of NO and, consequently, ED [123]. Research has
demonstrated a reciprocal relationship between ED and IR, linking both to cardiovascular
and metabolic disorders [123,124]. Furthermore, insulin and inflammation impact vascular
homeostasis by stimulating the production of NO, which helps preserve the health of the
endothelium through its anti-inflammatory and antithrombotic properties [123,124].

The precise mechanisms elucidating ED in MASLD remain incompletely compre-
hended. Nonetheless, it has been associated with IR, lipid dysmetabolism, chronic inflam-
mation, and elevated levels of fatty acids, which collectively contribute to the impairment
of ED observed in individuals diagnosed with MASLD [48,113,114,118].
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2.4. Hemostasis Dysfunction in MASLD Patients during COVID-19: Recent Learning from
the Pandemic

In order to substantiate the thesis that changes in hemostatic mechanisms play a crucial
role in the etiopathogenesis of MASLD and its progression into more severe manifestations,
we can refer to the data acquired during the recent COVID-19 pandemic.

Numerous investigations have elucidated the correlation existing between MASLD
and the degree of severity observed in cases of COVID-19. Portincasa et al. (2020) revealed
the convergence of COVID-19 and MASLD as two inter-related pandemics [125,126]. Singh
et al. (2021) executed an all-inclusive systematic review and meta-analysis, which dis-
covered a noteworthy correlation between MASLD and clinical outcomes in individuals
afflicted with COVID-19 [127]. On the other hand, there is a probable connection between
diabetes mellitus and obesity and the pathophysiology of COVID-19, as well as with par-
ticular abnormalities in liver pathology [128]. Recent findings by Miranda et al. (2023)
provide updated insights into the correlation between liver injury and MASLD in subjects
affected by COVID-19 [129]. Other investigations have revealed that MASLD serves as a
prognostic indicator for hepatic impairment in individuals admitted to healthcare facilities
due to COVID-19 infection [130,131]. Interestingly, using a systems biology approach has
disclosed a shared molecular basis for both COVID-19 and MASLD. This was achieved by
successfully extracting 10 hub genes that could be used as new therapeutic targets for both
diseases [132]. As for MASLD, changes in platelet count and functions, hypercoagulability,
and hypofibrinolysis are all physiological and pathological features seen in people with
severe SARS-CoV-2 infections [133–135]. These changes are closely associated with the initi-
ation and progression of an immune-thrombo-inflammatory clinical presentation [133–135].
These characteristics exhibit clinical significance, leading to the occurrence of thrombosis in
various anatomical regions [133–136]. A recent study by Abenavoli et al. (2023) discovered
that individuals with a severe manifestation of COVID-19 exhibit a correlation between
liver illness and changes in coagulative and fibrinolytic pathways [137]. Specifically, the re-
searchers observed decreased levels of fibrinogen and increased levels of D-dimer, together
with histological liver abnormalities. The available evidence indicates that fibrinogen and
D-dimers have the potential to serve as prognostic indicators for assessing the degree of
liver disease in individuals with COVID-19. This highlights the significant involvement
of coagulation balance in patients experiencing severe manifestations of COVID-19 [137].
Moreover, it is usual to observe altered levels of PAI-1 during infection, which are often
linked to a condition of reduced fibrinolysis and the occurrence of thrombotic problems.
PAI-1 levels are basally elevated in patients with MASLD [57,77]; this may also account
for the more severe hemostasis alterations observed in COVID-19 patients, which would
increase the risk of mortality [129,131].

In summary, the available data indicate a correlation between MASLD and COVID-
19, whereby MASLD is linked to a heightened susceptibility to severe manifestations
in individuals affected by COVID-19 and where hemostasis alterations seem to play an
important role. Given that liver malfunctioning is a common disturbance between the two
diseases, it is possible that the coexistence of COVID-19 disease, which is also characterized
by disruptions in hemostasis, could worsen the hemostatic dysfunction of individuals
with MASLD. Nevertheless, additional investigation is warranted to comprehensively
understand the fundamental biological processes and the ramifications of MASLD on
COVID-19 outcomes (Figure 3).
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Figure 3. Dysfunctional hemostasis in MASLD. The pathophysiology of MASLD encompasses a
complex interplay of various mechanisms, including coagulation abnormalities and platelet and
endothelial dysfunction, which collectively contribute to the dysregulation of hemostasis in MASLD
individuals. Severe manifestations of MASLD are more likely to occur in individuals with COVID-19,
in which hemostasis disruptions appear to play a significant role. Given that liver malfunctioning is a
common disturbance between the two diseases, it is possible that the coexistence of COVID-19 disease,
which is also distinguished by hemostasis alterations, could exacerbate the hemostatic dysfunction
of individuals with MASLD. Created with https://BioRender.com (accessed on 27 November 2023)
and modified with Microsoft PowerPoint v.16; MASLD: metabolic dysfunction-associated steatotic
liver disease.

3. Adipokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
and Their Role in Perturbated Hemostasis

Adipokines comprise a class of polypeptides that are predominantly produced and
secreted by adipose tissue [32,138]. They play a crucial role in the regulation of hepatic
insulin sensitivity [32,138,139]. Furthermore, adipokines have been implicated in the
pathogenesis of metabolic syndrome and metabolic dysfunction-associated steatotic liver
disease (MASLD) [32,34,45,138,139]. There is a growing interest in adipokines as regulators
of the hemostasis process. Adipokines are increasingly being recognized as significant
contributors to the dysregulated hemostatic mechanism in MASLD [30,32,41–43]. As pre-
viously stated, inflammation is frequently associated with MASLD and insulin resistance
(IR) [32,34–39]. The IR was correlated to the elevation of blood glucose levels [140], which
in turn might lead to the accumulation of fatty acids and triglycerides in the liver, causing
the development of hepatic steatosis in MASLD [141,142]. The IR in MASLD was also
correlated with changes in the activity and concentration of adipokines [35,40], which could
directly alter hemostasis [41–44] or indirectly alter it by inducing, in a vicious circle, IR,
hepatic steatosis, and hyperinflammation [33,36,45,46]. As a result, a surge in prolonged
inflammation could lead to altered mechanisms of hemostasis [15,50–53] at different inter-
correlated levels, which can be recapitulated as follows: (1) increased platelet activation
resulting from heightened von Willebrand factor levels, consequently elevating the risk of
thrombosis [24,36]; (2) hypercoagulability due to augmented Factor VIII and fibrinogen
levels; decreased levels of the anticoagulants antithrombin and protein C, dropping the
hemostatic balance toward clotting [15,50–53]; (3) increased levels of PAI-1 while tissue
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activating factor antigen and tissue plasminogen activator decrease, resulting in a chronic
state of hypofibrinolysis [15,50–53]; and (4) endothelial dysfunction, also thereby increasing
the risk of thrombosis [142,143].

To summarize, metabolic inflammation and liver injury are essential components of
MASLD [144,145]. The interdependence of these components and the hemostasis pathway
is characterized by reciprocal influences and the induction of alterations. Adipokines may
serve as the shared elements within this complex relationship (Figure 4).
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Figure 4. Circuit of perturbed hemostasis. Metabolic inflammation and liver injury are integral
components of MASLD. The intricate interplay between these components and the hemostasis is
distinguished by mutual influences and the elicitation of alterations. Adipokines have the potential
to function as the common factors within this intricate association. Adiponectin and ghrelin (circles
in green) have a favorable impact on MASLD’s pathogenesis and hemostasis, while adipose tissue-
derived plasminogen inhibitor-1, leptin, and resistin (circles in red) have a detrimental effect on
MASLD. Created with https://BioRender.com (accessed on 27 November 2023); MASLD: metabolic
dysfunction-associated steatotic liver disease.

In the subsequent subsections, we will examine several adipokines implicated in the
pathogenesis of MASLD and their demonstrated involvement in hemostasis mechanisms,
as summarized in Table 1.

3.1. Adipose Tissue-Derived Plasminogen Activator Inhibitor-1

Platelets possess a significant reservoir of circulating plasminogen activator inhibitor-1
(PAI-1) [146]. Upon activation in response to vascular injury, platelets release this reservoir,
effectively preserving the growing thrombus from premature dissolution by fibrinoly-
sis [146,147]. Nevertheless, PAI-1 is also produced by various other cell types, including
adipocytes [148]. In fact, adipose tissue, particularly from the abdominal region, can directly
secrete the adipose tissue-derived plasminogen activator inhibitor-1 (ATDPAI-1) [149,150].
There is an increased emphasis on the detrimental impact of ATDPAI-1 on both physio-
logical metabolism and vascular biology [148–151]. This effect is particularly pronounced
in visceral fat, where ATDPAI-1 expression is largely observed [149,152]. The discovery
of the association between the hemostatic and inflammatory pathways has revealed a
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specific function for ATDPAI-1 [103,153–156]. In fact, during the process of inflammation,
a significant release of proinflammatory cytokines occurs [153–155,157]. These cytokines
have a direct impact on the synthesis of ATDPAI-1 and result in an elevation of its levels
in the bloodstream [158–160]. PAI-1, secreted by adipose tissue into the portal circula-
tion, directly interacts with liver parenchymal and immune cells, leading to enhanced
activation of pro-inflammatory cytokines and increased dysregulation of coagulation and
fibrinolysis [44,159]. These interactions ultimately contribute to the permanent activation of
pro-inflammatory pathways and the disruption of normal hemostatic balance [44,159]. The
adipose tissue, especially in the inflamed state seen in MASLD, releases pro-inflammatory
cytokines such as interleukin-6 [161] and tumor necrosis factor-α [157,162]. These cy-
tokines, in turn, could induce the production of PAI-1 in human adipocytes in an autocrine
way [160,163]. On the other hand, insulin resistance, which is associated with hyperinsu-
linemia in MASLD [38], could lead to the increase in PAI-1 plasma levels and PAI-1 gene
expression in adipose tissue [164,165], therefore establishing a connection between both
metabolic and inflammation pathways.

Therefore, ATDPAI-1 and coagulation seem linked in a complex regulatory cycle with
potential implications for MASLD [149]. In fact, the regulation of ATDPAI-1 blood levels
could be crucial for maintaining a delicate balance in the hemostatic process, allowing
adequate clot formation to prevent hemorrhage but preventing excessive clot stability,
which could lead to damaging thrombosis and cardiovascular diseases [149,166–168].

3.2. Adiponectin

Adiponectin, predominantly synthesized by adipocytes, plays a crucial role in various
metabolic processes [169]. Several studies have reported an inverse relationship between
plasma adiponectin levels and the accumulation of body fat, insulin resistance (IR), and
diabetes [170,171]. Adiponectin exerts advantageous impacts on hepatic lipid metabolism
and insulin sensitivity, hence potentially influencing the hemostatic equilibrium through
the enhancement of metabolic well-being in individuals with MASLD [170–172]. Low levels
of adiponectin have been consistently observed in individuals with MASLD [170,173,174].
This suggests that adiponectin may play a role in the pathogenesis of this disease [170–172].
It was also reported that the simultaneous presence of heightened concentrations of leptin
and resistin (two adipokines that will be discussed in the next paragraphs), together
with diminished levels of adiponectin, may potentially contribute to the advancement of
MASLD [175,176]. This finding suggests that adiponectin could potentially contribute to
the prevention of liver fibrosis, a condition frequently linked to coagulation abnormalities
in individuals with MASLD.

The dysfunction of hepatic mitochondria is a defining characteristic of the progression
of MASLD, although the underlying mechanisms remain unknown [177]. Considering
the significant contribution of endothelial nitric oxide synthase (eNOS) to mitochondrial
dynamics in various tissues, it has become a plausible candidate for mediating the mainte-
nance of mitochondrial function in the liver of MASLD [178]. In this context, it was reported
that adiponectin could play a protective role in the pathogenesis of MASLD, reducing the
inflammation by the inhibition of hepatic stellate cells and by upregulating the expression
of eNOS [172,179–181].

Adiponectin has been shown to have a key role in hemostasis. Kato et al. (2006)
found that adiponectin could function as an endogenous antithrombotic factor [182]. In
adiponectin knockout mice, adiponectin deficiency increased thrombus development and
platelet aggregation, which were reduced after adiponectin supplementation via aden-
ovirus [182].

It was reported that altered levels of adiponectin could lead to altered levels of plas-
minogen activator inhibitor-1 (PAI-1) [42,183]. As aforementioned, PAI-1 is the primary
blocker of plasminogen activator in plasma; increased levels of PAI-1 could lead to exces-
sive blocking of tissue-plasminogen activator, leading to decreased clot breakdown and
eventually an unwanted blood clot [55,146].
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It was stated that a modification in hemostasis increases the risk of cardiovascular
disease [184,185]. According to existing research, there is a correlation between decreased
levels of adiponectin in the bloodstream of individuals with MASLD and an elevated risk of
developing cardiovascular disease [186]. Moreover, adiponectin levels exhibited an inverse
correlation with cardiovascular risk factors while demonstrating a favorable association
with high-density lipoprotein-cholesterol levels [187]. Recently, the Carballo et al. (2020)
study underscored the cardioprotective properties of adiponectin within the framework of
ischemia–reperfusion syndrome [188]. Moreover, the research conducted by Shibata (2012)
emphasizes the importance of adiponectin in offering cardiovascular protection, and this
encompasses its ability to attenuate inflammatory reactions [189]. In fact, adiponectin may
potentially influence hemostasis by modulating the expression and release of a number of
cytokines and chemokines involved in the process of coagulation [169,182,190,191].

Coagulation proteins have been found to have a significant impact not only on the
process of hemostasis but also on the development of atherogenesis [192]. The clinical
presentations of atherosclerotic disease encompass coronary artery disease, peripheral
arterial disease, and stroke. Atherosclerosis (AS) is a dynamic and progressive condition
that results from the convergence of aberrant lipid metabolism, endothelial dysfunction,
and inflammation [83,84,105,193]. An essential stage in the inflammatory process involves
the penetration of monocytes into the subendothelial region of major arteries and their
subsequent transformation into tissue macrophages. The activation and functioning of
these macrophages are regulated by the cytokines present in the inflammatory environment
of the atherosclerotic lesion [194]. MASLD exhibits a strong correlation with AS and appears
to serve as an early risk factor for the development of AS [195]. In this context, it was shown
that human recombinant adiponectin could stop macrophages from becoming active cells,
stop macrophages from releasing TNF-α, and reduce the number of adhesion molecules
that become evident on endothelial cells in a cultured cell model [196]. Consequently, it is
plausible to suggest that adiponectin may exhibit anti-atherogenic characteristics.

3.3. Leptin

The adipokine leptin is primarily synthesized and released from adipose tissue, where
it is then transported into the bloodstream [197]. Leptin is responsible for satiety, and
its primary role is to serve as a negative feedback mechanism by relaying information
to the hypothalamus regarding the quantity of fat stored in the periphery [197]. Indi-
viduals with obesity have a phenomenon known as central leptin resistance, resulting in
elevated levels of leptin [198]. Leptin has been characterized as a regulator of various
physiological mechanisms, including lipid and glucose metabolism, as well as both innate
and adaptive immune responses [198,199]. Polyzos et al. conducted a meta-analysis to
provide a comprehensive overview of the current understanding of the role of leptin in
MASLD. After analyzing 33 studies with a total population of 2612 individuals (775 con-
trols and 1837 MASLD patients), they found that patients diagnosed with MASLD or
metabolic dysfunction-associated steatohepatitis (MASH) have higher levels of leptin in
their bloodstream [200].

There exists a noteworthy correlation between leptin and indicators of active coag-
ulation. An illustration of this can be seen in a cohort clinical study conducted in the
Netherlands [201]. The study found a significant link between blood leptin levels and the
concentrations of coagulation factors VIII and IX [201]. This suggests that higher levels of
leptin may cause an imbalance in the coagulation system, resulting in a preference that pro-
motes the production of blood clots. Another clinical study has shown that obese women
had significantly elevated levels of coagulation activation markers, such as VWF and leptin,
and these levels decreased in correlation with adipose tissue reduction following weight
loss [202]. It has also been reported that increased blood leptin levels could induce the
dysregulation of tissue factor and plasma activation inhibitor-1, both of which play a signif-
icant role in the development of a procoagulant state [203,204]. Bełtowski found that leptin
could negatively influence blood pressure and could induce the development of arterial hy-
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pertension, both of which are strongly linked to coagulation abnormalities [205]. Previous
studies have shown that leptin can trigger platelet activation and aggregation in controlled
laboratory settings [206,207]. This finding implies that leptin may have the potential to
induce blood clot formation, which may increase the risk of developing thrombosis. In a
recent study, a positive association was seen between the severity of MASLD and MASH
and the concentrations of the hormone leptin. Additionally, an elevation in platelet activa-
tion and aggregation was identified, suggesting a potential role in the promotion of arterial
thrombosis [33]. Payne et al. (2014) have emphasized the role of leptin in the progression of
atherosclerosis, endothelial dysfunction, and neointimal hyperplasia [208]. These processes
are crucial in the development of cardiovascular diseases [105,192]. Moreover, Schäfer
et al. (2014) have provided more evidence to substantiate this claim, illustrating that leptin
facilitates the occurrence of arterial and venous thrombosis through multiple pathways,
such as platelet activation and the modulation of prothrombotic proteins [209].

Leptin could have the potential to exert an influence on hemostasis in MASLD through
many pathways. Potential mechanisms encompass the involvement of leptin in insulin
resistance, inflammation, and its correlation with metabolic syndrome. Leptin and insulin
have a complex relationship with each other [210]. Leptin can directly affect insulin levels
in the islet cells, while insulin can stimulate the secretion of leptin by adipocytes [210].
When there is hyperinsulinemia, peripheral leptin resistance can occur, and vice versa [210].
It is widely assumed that the higher levels of leptin found in patients with MASLD con-
tribute significantly to the development of chronic inflammation and reduced endothelial
function [176,211,212]. These factors are well known to play a crucial role in endothelial
dysfunction (ED) [107,114]. The presence of ED, characterized by impaired vasodilation and
increased synthesis of adhesion molecules, has the capacity to promote platelet adhesion
and activation, leading to the development of a procoagulant state in MASLD [113,206]. The
study conducted by Ding et al. (2016) has provided evidence that individuals with chronic
kidney disease exhibit increased levels of leptin, which in turn contributes to the impair-
ment of endothelial functions [213]. There was a link between high levels of leptin hormone
and ED due to leptin-mediated sympathetic activation [214,215]. Manuel-Apolinar (2013)
et al. have found additional evidence to establish the link between hyperleptinemia and
ED [216], demonstrating that leptin has a role in upregulating the expression of adhesion
molecules and cyclooxygenase 2, hence contributing to vascular abnormalities [216]. Collec-
tively, the aforementioned discoveries indicate that leptin is implicated in the development
of ED and may hold promise as a target for therapeutic therapies. Previous studies have
demonstrated an increase in leptin levels among individuals diagnosed with proliferative
diabetic retinopathy (PDR) [217,218], a pathological condition characterized by the aberrant
growth of blood vessels in the retina [219]. Leptin has been recognized as a plausible
angiogenic agent in the context of PDR, as it was observed to induce the formation of neo-
vascularization [220,221]. This observation serves to underscore the potential pro-coagulant
effects of leptin.

As aforementioned, in MASLD, metabolic inflammation is crucial [144,145]. Hemosta-
sis and inflammation are closely connected pathophysiologic processes [161,222,223].
Inflammation activates the hemostatic system, which greatly affects inflammatory ac-
tivity [161,222,223]. Thus, the hemostatic system and inflammatory cascade create an
inflammation–hemostasis loop [161,222,223]. In this context, several cytokines have been
considered to be significant factors contributing to the development and progression
of inflammation in MASLD, such as interleukin-1, interleukin -6, and tumor necrosis
factor-α [161]. It was demonstrated that leptin could stimulate the synthesis of these
cytokines, [211,224,225]. Therefore, the relationship between leptin and these cytokines
provides more evidence for the involvement of leptin in the coagulation process [223,226].

The existing body of research about the correlation between leptin and hemostasis
is still in its early stages, requiring further inquiries to fully understand the underlying
mechanisms. The aforementioned studies underscore the intricate connection between
leptin and the hemostasis system, indicating that leptin could potentially function as a
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procoagulant agent in specific circumstances. Hence, it is plausible that leptin may have a
role in the development of hemostatic disorders in MASLD also due to its connections with
obesity, a condition frequently characterized by dysregulation of leptin.

3.4. Resistin

The adipokine resistin is predominantly produced by adipose tissue, along with inflam-
matory cells such as macrophages and monocytes, as well as hepatic stellate cells [227,228].
Human resistin is a mediator of inflammation [227,228]. Resistin potentially plays a pivotal
role in the etiology of MASLD [32,229,230]. MASLD patients have high serum levels of
resistin [32,229,230], directly correlated with the severity of liver fibrosis [231,232]. More-
over, MASLD patients exhibited a diminished response to resistin in hepatic myeloid cells
and T-lymphocytes; this decline is indicative of an inability to maintain redox homeosta-
sis, a risk factor for the severity of MASLD [233]. MASLD is associated with metabolic
syndrome [139]. It was found that there exists a significant correlation between resistin
and hemostasis functions in individuals diagnosed with metabolic syndrome [234–237]. It
was observed that resistin has the potential to initiate thrombotic events by modulating
lipoprotein metabolism and promoting inflammation [237].

As aforementioned, endothelial cells play a crucial role in the process of blood coagu-
lation and are responsible for maintaining overall hemostasis in the body [238]. Resistin
could alter endothelial function, promoting an imbalance between coagulation and throm-
bosis [237,239,240]. Moreover, resistin has been demonstrated to promote angiogenesis in
endothelial cells [241], and stimulate the secretion of cytokines as well as the expression
of vascular adhesion molecules [242,243]. It was also reported that resistin contributes
to the development of vascular lesions by inducing an increase in endothelial permeabil-
ity [244]. Moreover, resistin enables monocytes to adhere to endothelial cells and promotes
the production of the pro-thrombotic tissue factor [245]. Several studies have discovered
that resistin also has an impact on vasoconstriction function [239,240,246]. Resistin directly
could reduce endothelial-derived nitric oxide (eNOS) production and affect NO (nitric
oxide) production [239,246]. Endogenous NO from eNOS is crucial for modulating platelet
function in vivo [247]. eNOS appears to have a substantial impact on platelet aggregation,
while iNOS and nNOS appear to play minor roles in this process [247].

An alteration in hemostasis predisposes to cardiovascular illness [184,185]. Emerging
evidence suggests that cardiovascular disease is accompanied by changes in serum resistin
levels [248]. Patients with acute coronary syndrome had double the serum resistin levels
compared to stable angina and control patients [248]. Furthermore, blood resistin was
positively correlated with indicators of inflammation and endothelial activation, such as
leukocyte counts and endothelin-1 levels, in patients with unstable angina [249]. Recently,
Zhou (2020) highlighted the significant impact of resistin on the development of atheroscle-
rosis and underscored its potential as a promising therapeutic target in the context of
cardiovascular disease [250].

The levels of resistin were found to be increased in individuals diagnosed with COVID-
19, and this elevation was found to be correlated with the presence of cytokines and en-
dothelial cell adhesion molecules [251]. Moreover, there was a positive correlation observed
between elevated levels of resistin and unfavorable clinical outcomes in individuals diag-
nosed with COVID-19 [251]. Therefore, resistin could have a key role both in COVID-19
and MASLD which have, as an element in common, alterations in hemostasis.

It was reported that resistin could also play a significant role in the pathogenesis of
angiogenesis-related vascular illnesses, hence potentially contributing to the development
of cardiovascular disease and other angiogenic disorders [252,253]. Resistin is known to
play a direct role in the process of angiogenesis [253]. It stimulates the proliferation and
migration of human endothelial cells, while also facilitating the creation of capillary-like
tubes [253]. The angiogenic capacity of resistin was demonstrated by its notable capability
to substantially enhance the expression of vascular endothelial growth factor receptors
(VEGFR-1 and VEGFR-2) and matrix metalloproteinases (MMP-1 and MMP-2) at both the



Life 2024, 14, 93 15 of 28

mRNA and protein levels [252]. It was observed that resistin can stimulate the proliferation
of human aortic smooth muscle cells (HASMC) in a manner that is dependent on the dosage
administered [252]. This phenomenon has the potential to contribute to the development
of vascular problems. The confirmation of the activation of both pathways by resistin
was achieved by the utilization of particular inhibitors (U0126 for ERK and LY294002 for
PI3K), resulting in a notable reduction in resistin-induced proliferation of human airway
HASMC [252].

3.5. Ghrelin

Although ghrelin is not secreted by adipose tissue, it has received attention because
its receptors are highly expressed in adipocytes, where ghrelin may exert a direct influ-
ence on energy metabolism [254,255]. The adipokine ghrelin is primarily synthesized
and released by gastric cells [256]. Its principal functions are appetite stimulation and
energy balance regulation [256,257]. Ghrelin has been shown to possess hepatoprotective
properties in numerous animal models of liver damage [258–262]. Previous studies have
demonstrated that ghrelin decreased liver damage caused by carbon tetrachloride [259–261],
acetaminophen [262], and bile duct ligation [258], and that this hepatoprotective activity
was related to its antioxidative, anti-inflammatory, and antifibrotic properties [263,264].
Moreover, it was demonstrated that ghrelin exerts an impact on insulin resistance and
inflammation, both of which play crucial roles in the development of MASLD [265–268]. In
this context, the rs26802/rs696217 variants in the ghrelin gene have been observed to have a
preventive effect against MASLD progression in genetic investigations [269,270]. Ghrelin
exists in two distinct forms inside the bloodstream: acylated ghrelin (AG) and unacylated
ghrelin (UAG) [268]. Ghelardoni et al. (2006) have reported that AG is widely distributed
across many tissues inside the body [271], in addition to adipose tissue [254]. AG receptors
have also been observed in high quantities in the mammalian heart, vascular smooth
muscle cells, and endothelial cells (ECs), indicating the potential involvement of AG in
the regulation of blood hemostasis [272] and in heart physiology [273–276]. In relation to
this matter, a number of actions of AG on ECs have been identified, which encompass the
inhibition of apoptosis in vascular ECs [273], the promotion of angiogenesis [277,278], and
the suppression of vascular inflammation [279]. It was observed that in cultured cardiac
microvascular endothelial cells, AG has the ability to enhance the processes of prolifer-
ation, migration, and nitric oxide (NO) secretion [280,281]. Furthermore, it was found
that AG had a positive impact on endothelial dysfunction and increased the availability
of NO in patients with metabolic syndrome [282,283]. It is noteworthy that NO formed
from vascular ECs has the ability to hinder the adhesion, secretion, and aggregation of
platelets [284,285]. Additionally, it was observed that NO inhibits the synthesis and release
of tissue factor (TF) [286] as well as plasminogen activator inhibitor-1 (PAI-1) [287–290].
This observation supports the hypothesis that AG may potentially have an anti-thrombotic
and fibrinolytic effect through its modulation of endothelial cell activity and nitric oxide
generation. Furthermore, the identification of ghrelin as an endogenous ligand of the
orphan receptor growth hormone secretagogue receptor 1a (GHSR-1a) has been reported
to induce the release of growth hormone (GH) [271,291]. It was demonstrated that GH has
the ability to improve many coagulation parameters, such as prothrombin time (PT) and
activated partial thromboplastin time (aPTT) [292]. In their study, Arıcı and Cetin (2011)
have demonstrated that the administration of ghrelin has a mitigating effect on coagulation
dysregulation generated by carbon tetrachloride (CCl4) [261]. The administration of ghrelin
prior to the application of CCl4 led to a significant decrease in PT and aPTT, accompanied
by a substantial increase in fibrinogen levels, in comparison to the group that received
only CCl4 treatment. Moreover, CCl4 led to a significant increase in the levels of alanine
transaminase (ALT) activity, which serves as a reliable marker for liver damage, and the
pre-delivery of ghrelin prior to the administration of CCl4 led to a decrease in ALT activity,
similar to the levels observed in the control group [261].
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Sleeve gastrectomy (SG) is a commonly used form of bariatric surgery that primar-
ily restricts the size of the stomach [293,294]. This procedure involves the removal of a
substantial amount of the stomach, including its modest curvature, resulting in the for-
mation of a sleeve-shaped stomach [293]. Ghrelin is primarily synthesized by the cells
located in the gastric fundus. Consequently, the removal of a substantial number of these
ghrelin-producing cells during the treatment results in a notable reduction in the circulating
levels of both AG and UAG [256,257,271]. Morsy (2020) [295] examined the impact of AG
deficiency on platelet function, coagulation, and fibrinolysis in rats that underwent SG,
taking into consideration the abundant expression of GHSR-1a on vascular endothelial cells
and the protective effect of circulatory AG on endothelial dysfunction [273,282,283]. The
subcutaneous administration of AG in rat that underwent SG resulted in a considerable
inhibition of platelet aggregation and in the restoration of the normal levels of vWF and
fibrinogen [295]. Interestingly, administration of AG decreased the amounts of PAI-1 and
TF in the bloodstream and the aorta at the same time, while increasing the amounts of
eNOS in the aorta [295]. In summary, this study concluded that AG exhibits anti-platelet,
anti-coagulant, and fibrinolytic effects by acting on GHSR-1a to promote the generation of
nitric oxide [295].

Table 1. Overview of the impact of adipokines on hemostasis processes. Adipokine levels are altered
in metabolic syndrome/metabolic dysfunction-associated steatotic liver disease (MASLD), and this
can interfere with the regular blood clotting process. This disruption leads to common clinical
conditions such as thrombosis, atherosclerosis, and an overall higher vulnerability to cardiovascular
diseases. ↑ = increased; ↓ = reduced; ⇓ = common clinical outcomes; EC = endothelial cell; TF = Tissue
Factor; vWF = von Willebrand; eNOS = endothelial nitric oxide synthases.

Adipokine Levels in Metabolic
Syndrome/MASLD Pathological Outcomes Ref.

↑ Adipose Tissue-Derived Plasminogen
Activator Inhibitor-1

– ↓ fibrinolysis [55,57,150,151]
⇓

– ↑ thrombosis; ↑ atherosclerosis; ↑ cardiovascular diseases [149,166–168]

↓ Adiponectin

– ↑ dysregulation of coagulation factors (↓ PAI-1) [42,55,146,183]
– ↑ dysregulated platelet activation and aggregation [182]
– ↑ endothelial dysfunction (↑ EC adhesion molecules; ↓ eNOS) [172,179–181]

⇓
– ↑ thrombosis; ↑ atherosclerosis; ↑ cardiovascular diseases [186–189,192,196]

↑ Leptin

– ↑ coagulation activation markers (↑ factor VIII and IX, ↑ vWF) [201,202]
– ↑ dysregulation of coagulation factors (↑ TF; ↑ PAI-1) [203,204]
– ↑ dysregulated platelet activation and aggregation [206,207,209]
– ↑ endothelial dysfunction (↑ EC adhesion molecules; ↑ cyclooxygenase-2;

↑ dysregulated EC angiogenesis) [208,213–215,217–221]

⇓
– ↑ arterial hypertension; ↑ thrombosis; ↑ atherosclerosis; ↑

cardiovascular diseases [105,192,205,208]

↑ Resistin

– ↑ dysregulation of coagulation factors (↑ TF; ↑ PAI-1) [237,239,240,245]
– ↑ endothelial dysfunction (↑ EC adhesion molecules; ↑ dysregulated EC

angiogenesis; ↑ endothelial permeability) [241–243,252,253]

– ↑ dysregulated vasoconstriction function [239,240,246]
– ↑ dysregulated platelet activation and aggregation (↓ eNOS) [239,246,247]

⇓
– ↑ thrombosis; ↑ atherosclerosis; ↑ cardiovascular diseases [248–251]

↓ Ghrelin

– ↑ endothelial dysfunction (↑ EC apoptosis; ↑ dysregulated EC
angiogenesis; ↑ vascular inflammation; ↓ eNOS) [273,277–283]

– ↑ platelet activation and aggregation [282–285]
– dysregulation of vWF (↑) and fibrinogen (↑) [261]
– ↑ dysregulation of coagulation factors (↑ PAI-1; ↑ TF) [280–283,287–290,295]

⇓
– ↑ thrombosis; ↑ atherosclerosis; ↑ cardiovascular diseases [273–276]
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4. Conclusions

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an intricate disor-
der that necessitates prompt care. MASLD is a condition that is exacerbated by disturbed
hemostasis, which is a contributing factor to the progression of the disease. The role
of hemostasis in the pathogenesis of MASLD is multifaceted and encompasses multiple
variables. Comprehensive studies have demonstrated that adipokines have been linked
to the development of metabolic syndrome and MASLD. Adipokines, mostly produced
and released by adipose tissue, have a key role in controlling the sensitivity of the liver
to insulin. Recently, adipokines have increasingly become recognized as regulators in
the perturbed hemostasis in MASLD. Inflammation is commonly linked to both MASLD
and insulin resistance (IR). The IR was found to be associated with the increase in blood
glucose levels, which consequently could result in the accumulation of fatty acids and
triglycerides in the liver, leading to the development of hepatic steatosis in MASLD. On the
other hand, the IR in MASLD was found to correlate with alterations in the activity and
concentration of adipokines. These changes could directly affect hemostasis or indirectly
contribute to a vicious circle of IR, hepatic steatosis, and hyperinflammation. An increase
in long-lasting inflammation may cause changes in the processes that control hemostasis
at many interconnected levels. These changes could induce: (a) heightened levels of von
Willebrand factor, which in turn leads to increased platelet activation and raises the risk of
thrombosis; (b) elevated levels of Factor VIII and fibrinogen, which contribute to hypercoag-
ulability, while decreased levels of antithrombin and protein C disrupt the balance between
clotting and anticoagulation; (c) an increase in PAI-1 levels, coupled with a decrease in
tissue activating factor antigen and tissue plasminogen activator, which results in a chronic
state of hypofibrinolysis; and (d) endothelial dysfunction, which further increases the risk
of thrombosis.

In summary, metabolic inflammation and liver injury are integral elements of MASLD.
The interconnection of these components and the hemostasis pathway is defined by mutual
impacts and the initiation of changes. Adipokines act as the shared components in this
complex interaction (Figure 4).

Nevertheless, additional research is needed to fully understand the precise processes
via which adipokines influence hemostasis. Hence, it is crucial to have a thorough com-
prehension of the function of hemostasis in MASLD and its interaction with adipokines to
identify possible therapeutic targets and formulate efficient strategies for the management
and treatment of MASLD. Timely implementation of therapeutic therapies can effectively
impede or decelerate the advancement of MASLD, diminish comorbidities, and enhance
patient outcomes.
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