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Abstract: Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic
liver disease. As the second stage of developing steatosis, nonalcoholic hepatitis (NASH) carries
the risk of fibrosis, cirrhosis, and hepatocellular carcinoma. Sarcopenia is defined as a condition
characterized by a decrease in muscle mass and functional decline. Both NAFLD and sarcopenia are
global problems. The pathophysiological mechanisms that link the two entities of the disease are
insulin resistance, inflammation, nutritional deficiencies, impairment of myostatin and adiponectin,
or physical inactivity. Furthermore, disorders of the gut-liver axis appear to induce the process of
developing NAFLD and sarcopenia. The correlations between NAFLD and sarcopenia appear to be
bidirectional, so the main objective of the review was to determine the cause-and-effect relationship
between the two diseases.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases
worldwide [1]. It is estimated that a quarter of the population is affected [2]. NAFLD is de-
termined by liver steatosis that is not related to alcohol consumption [3]. Due to the severity
of the disease, two stages of the disease can be distinguished [4]. The first is nonalcoholic
fatty liver (NAFL), which is not associated with inflammation and fibrosis [5]. The next
stage is nonalcoholic steatohepatitis (NASH). It is associated with inflammatory infiltration,
the possibility of developing fibrosis and cirrhosis, and hepatocellular carcinoma (HCC) [6].
The term MAFLD, which describes steatohepatic disease associated with metabolic dys-
function, is increasingly appearing in scientific reports. Metabolic dysfunction-associated
fatty liver disease (MAFLD) is said to emphasize the association between the coexistence
of liver steatosis and various components of metabolic syndrome. Importantly, MAFLD,
unlike NAFLD, does not exclude alcohol abuse [7].

Sarcopenia is a condition characterized by a decrease in muscle mass, a decrease in
muscle function, and a loss of physical fitness. Sarcopenia can be divided into primary
and secondary. Primary sarcopenia is closely related to the physiological process of aging.
Secondary sarcopenia, on the other hand, is associated with chronic diseases but also
with dietary errors and physical inactivity [8,9]. It is estimated to occur in 11–50% of
patients older than 80 years of age. The global trend toward aging has made sarcopenia a
worldwide problem [10]. A study was conducted on 15,132 individuals from the Korean
population to determine the association between NAFLD and sarcopenia. Sarcopenia has
been shown to be associated with a higher risk of NAFLD, regardless of the presence of
obesity [11]. Another study was conducted in the United States of America (USA) with
11,325 participants. The researchers identified NAFLD based on the presence of hepatic
steatosis on ultrasound. The prevalence of NAFLD was shown to be more common in
patients with sarcopenia than without sarcopenia [12]. In addition, it appears that an
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increase in muscle mass may have an effect on inhibiting the development of NAFLD [13].
When analyzing all the data, it is difficult to determine whether sarcopenia is a result of
NAFLD or its risk factor. Therefore, the main purpose of the review is to identify factors
that are associated with both sarcopenia and non-alcoholic fatty liver disease.

2. Nonalcoholic Fatty Liver Disease (NAFLD)

NAFLD is one of the most frequently diagnosed chronic liver diseases [14,15]. It is con-
sidered the leading cause of mortality, taking into account all liver-related pathologies [16].
NAFLD is a broad and collective term that describes a spectrum of liver diseases resulting
from causes other than excessive alcohol consumption [17]. NAFLD includes liver steatosis
in >5% of all hepatocyte cells. Liver steatosis itself is referred to in medical nomenclature as
nonalcoholic fatty liver (NAFL). The next stage in which inflammation occurs along with
liver cell damage is called nonalcoholic steatohepatitis (NASH) [18]. NASH can eventually
lead to the development of organ fibrosis and cirrhosis [19].

Importantly, the liver is an organ that accounts for 15% of oxygen consumption in
the human body. It follows that hepatocytes are cells rich in mitochondria [20]. It has
been observed that in mouse models with NAFLD, there is a decrease in mitochondrial
ATP-synthesizing respiration. This appears to occur because the mitochondria are unable
to oxidize sufficient fatty acids [21,22]. Impaired mitochondrial function can induce oxida-
tive stress. Consequently, it promotes inflammation and predisposes to NAFLD [23]. It
appears that preventing NAFLD progression and restoring liver function can be achieved
by focusing on improving mitochondrial activity. There are recent indications that the
ketogenic diet can induce improvements in mitochondrial function through stimulation of
mitochondriogenesis and bioenergetic pathways [24,25].

In the final stage, impaired liver function can induce liver failure, which requires organ
transplantation [26]. In 2009, NASH represented about 10% of liver transplants in the United
States [27]. Approximately 30–40% of patients with NAFLD have been reported to develop
NASH [28]. Furthermore, patients with NAFLD have an increased risk of extrahepatic
complications, including cardiovascular disease and malignancies [29,30]. Currently, the
prevalence of NAFLD is estimated to be around 25% in the general population [31]. The
number of patients with NAFLD in the United States is estimated to increase from 83.1 million
in 2015 to 100.9 million in 2030 [32]. The analyses show that NAFLD can develop in 70% of
overweight individuals and up to 90% of those with established obesity [33]. Asians, on the
other hand, have been found to accumulate fat in hepatocytes more rapidly than normal-
weight individuals [34]. The number of patients with NASH is also expected to increase
due to the aging process, as is the expected increase in the prevalence of diabetes among the
elderly [32]. Furthermore, the percentage of children diagnosed with hepatic steatosis has
increased in recent years [35].

Recently, researchers have pointed out that the name NAFLD does not emphasize the
role of the metabolic syndrome in the overall pathogenesis as well as the complications
of liver disease. Therefore, a new definition has been proposed, which is MAFLD, or
metabolic steatohepatic disease. This definition defines an independent disease entity and
excludes the criterion of alcohol abuse [36]. Many studies show a reciprocal correlation
between NAFLD and metabolic disorders, which indicates that NAFLD may be a cause
but also a consequence of extrahepatic metabolic diseases [37,38]. In patients with estab-
lished NAFLD, it is very common to find the coexistence of one or more components of
metabolic syndrome (MS), such as dyslipidaemia, hypertension, insulin resistance (IR),
and diabetes [39,40]. It is widely believed that NAFLD is one of the hepatic manifestations
of MS [41]. Importantly, the mechanism of interaction between MS and NAFL may be
bilateral. Consequently, NAFLD increases the possibility of MS [42]. The coexistence of
NAFLD with MS is correlated with an increased risk of cardiovascular disease and type
2 diabetes. On the contrary, no such correlations were found in patients with NAFLD
without concomitant MS [43]. On the other hand, Baratta et al. showed that patients with
liver steatosis have an increased risk of cardiovascular disease, and this risk is further
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increased in patients with already established organ fibrosis [44]. Importantly, patients
without established excess body weight have also been shown to have a higher rate of
cardiovascular events [45]. Another study showed that NAFLD, regardless of predisposing
factors, increases the risk of myocardial infarction [46]. In addition, there are meta-analyses
that confirm that the presence of NAFLD is associated with cardiovascular disease [47,48].

There is a lack of approved drugs to treat NAFL and NASH [49]. The European
Association for the Study of the Liver (EASL) recommends that patients make lifestyle
modifications. Focusing especially on physical activity and changes in eating habits.
In recent years, the Mediterranean diet has been proposed and may be beneficial for
patients with NAFLD [50]. Adherence to a Mediterranean diet for 6 months resulted in
a decrease in intrahepatic fat and an improvement in the state of the MS trait [51]. The
reduction in weight in overweight or obese individuals with established NAFLD resulted
in a greater improvement in liver function and increased insulin sensitivity compared to
healthy overweight individuals [52]. Interventions such as lifestyle changes appear to be
the most important and effective for preventing and controlling NAFL without developing
NASH and fibrosis [53]. A weight loss of 7–10% appears to have beneficial effects in patients
with NAFLD, regardless of diet composition [54]. However, many scientific societies
recommend the Mediterranean diet as the recommended dietary pattern [55]. Softic et al.
show that fructose has a greater effect on obesity and insulin resistance compared to
glucose. Especially when combined with a high-fat diet [56]. In addition, it appears that a
high-carbohydrate or fat-only-focused diet is not sufficient to induce NAFLD. It has been
suggested that it is the combination of different nutrients that stimulates the induction of
liver disease [57]. In addition, the introduction of physical activity helps maintain muscle
mass and strength, especially in middle-aged and older individuals [58].

Therefore, it is necessary to undertake research that will help determine the exact
quantitative and qualitative composition of diet and physical activity intensity that will
enable a reduction in the risk of NAFLD while also halting the progression of the disease.

3. Sarcopenia

Sarcopenia is defined as muscle failure and is defined by a low index of measurements
such as strength, quantity, quality of muscle, and physical capacity [59]. Sarcopenia is
divided into primary and secondary. The primary is related to age and is a natural process
such as aging, and no other significant cause can be identified [60]. Secondary, on the
other hand, is due to systemic diseases, physical inactivity, or nutritional errors [61]. In
addition, sarcopenic obesity is referred to in the literature. It is defined as the co-occurrence
of obesity and sarcopenia [15]. Sarcopenia is a multifactorial disease. The main risk
factors for sarcopenia include older age, female sex, low levels of physical activity, and
the presence of chronic diseases [62]. Oxidative stress, chronic inflammation, inadequate
caloric intake, and neuromuscular junction degeneration overlap to cause the progression
of sarcopenia [63,64]. Decreased muscle mass plays an important role in the induction of
IR and metabolic syndrome. Sarcopenia is often associated with cardiometabolic disorders
such as cardiovascular disease and diabetes [65]. Han et al. showed that both sarcopenia
and cardiovascular disease can be associated with similar risk factors such as hypertension,
diabetes, dyslipidemia, and metabolic syndrome [66]. The effect of sarcopenia and the
amount of muscle mass in liver disease is also increasingly being studied [67].

It is estimated that sarcopenia is diagnosed in about 29% of elderly people living in
healthcare facilities, with those aged ≥80 years estimated to have sarcopenia in 11–50%
of them [68]. Sarcopenia contributes to an increased risk of falls and disability, increased
hospitalizations, and mortality [69,70]. In some sense, primary sarcopenia is inevitable,
but its severity depends on the amount of physical activity, hormonal balance, the ability
to synthesize and regenerate proteins, or early developmental influences [71]. Sarcopenia
appears to be a physiological process, as it begins between the ages of 30 and 40 and is found
to increase after the age of 60 [72]. The physiological changes that occur with aging can have
important implications in terms of decreased muscle mass and reduced functionality. These
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changes include low-level chronic systemic inflammation and increased concentrations of
reactive oxygen species (ROS) [73]. Ageing causes an increase in oxidative stress, which
negatively affects mitochondrial function [74]. When mitochondrial function and structure
are disrupted, redox balance is impaired. As a consequence, cell function is impaired, and,
thus, health deteriorates [75]. Ageing is associated with ROS production but also with
impaired endogenous antioxidant enzyme production in muscle and brain. This process
can induce sarcopenia [76–78]. Additionally, elevated inflammatory mediators are found
in the elderly. These include interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and
C-reactive protein (CRP) [79]. In addition, naturally occurring aging causes an imbalance
between the anabolic and catabolic mechanisms of muscle proteins [80]. Insufficient calorie
and protein intake leads to a reduction in muscle mass and function [72]. In women
after menopause, the concentration of sex hormones decreases, among other estrogen [81].
Patients with sarcopenia often experience a reduced quality of life, most often resulting
from a decrease in physical fitness. This lower quality of life can, therefore, hinder patient
communication [82]. Hsu et al. showed that in adults with established obesity, a high-
protein diet combined with physical activity can improve strength, muscle function, and
exercise capacity [83]. Similarly, Seo et al. showed that resistance training in older women
with diagnosed sarcopenia improves muscle quality and functional capacity [84]. Resistance
training appears to be used in prevention and as a form of therapy for sarcopenia in adults
and the elderly [85–87].

4. NAFLD and Sarcopenia: Common Factors

Patients with sarcopenia have poorer recurrence-free survival (RFS) in early-stage
intrahepatic recurrent hepatocellular carcinoma [88]. Its severity increases with the pro-
gression of the underlying disease. In patients with cirrhosis, its prevalence is estimated
to be around 60% [89,90]. Its incidence depends on the ethical background, the severity
of liver disease, and the selected criteria for its diagnosis [91]. Furthermore, sarcopenia
has been identified as a predisposing factor to the severity of NAFLD [92]. Its presence is
associated with an increased risk of NAFLD, but also with the appearance of advanced
organ fibrosis [93,94]. Lee et al. came to similar conclusions. In their study, they showed
that sarcopenia is correlated with organ fibrosis in patients with NAFLD. Importantly,
this association was independent of IR and obesity [95]. Similarly, Koo et al. observed
a correlation between fibrosis, NAFLD, and sarcopenia, further indicating that this re-
lationship was not dependent on systemic inflammation [96]. Tantai et al. found that
sarcopenia associated with cirrhosis could increase the risk of death by two times. Fur-
thermore, mortality increased with the severity and duration of sarcopenia [97]. Studies
show that the presence of sarcopenia in patients with cirrhosis generates an increased inci-
dence of infections, prolonged hospitalization after organ transplantation, and increased
hyperammonemia and visible liver encephalopathy [98–100]. In addition, sarcopenia gen-
erates metabolic disorders that include impaired glucose tolerance, impaired ammonia,
and amino acid metabolism. Also, it affects bone structure. Sarcopenia and osteoporosis
that occur at the same time are defined as osteosarcopenia [101]. Saeki et al. studied the
prevalence of osteosarcopenia in 291 patients with chronic liver disease. Osteosarcopenia
was found in 16.8% of patients [102]. Patients with coexisting sarcopenia and NAFLD
have reduced creatinine production, which causes problems in estimating renal function in
these patients [103]. In cirrhosis, factors such as hyperammonemia, hypogonadism, and
branched-chain amino acid (BCAA) deficiency appear to influence the development and
progression of sarcopenia [104]. In addition, nutritional disorders, insulin resistance, lipid
disorders, and a disturbed gut microbiota [105]. Both the risk of NAFL and sarcopenia
increases with age, and both conditions are a major public health problem and a burden on
health care [98,106]. Many studies indicate associations between the presence of sarcopenia
and NAFLD. However, they very often lack an analysis of factors that may interfere with
the final results. Undoubtedly, lifestyle, which is defined by factors such as nutrition
and physical activity but also economic and social factors, has a huge impact on the final
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analyses. The complexity of these factors makes them difficult to measure unambiguously.
As a result, it is difficult to adjust to them. The research is presented in Table 1.

Table 1. Studies on the association between sarcopenia and NAFLD.

Study Relationship between Sarcopenia and NAFLD Limitations

Hong et al. (2013)
[107]

A higher risk of NAFLD has been shown to
occur in people with lower muscle mass.

Cross-sectional nature of the study—no causal
relationship possible.

No analysis of muscle strength and muscle fibre types.
No information on confounding factors, e.g., the

physical activity of patients and stimulants.

Petta el al. (2016)
[94]

Liver fibrosis in NAFLD patients is 2-fold higher
than in sarcopenic patients.

Cross-sectional nature of the study—impossibility
to determine a cause-and-effect relationship.

Lack of information on confounding factors, e.g.,
the physical activity of patients.

Determination of sarcopenia based on skeletal
muscle mass index measured by bioelectrical

impedance analysis.

Lee et al. (2016)
[95]

Liver fibrosis in NAFLD patients is 2-fold higher
than in sarcopenic patients.

Cross-sectional nature of the study—no causal
relationship possible.

Cabrera et al. (2016)
[108]

In mice with induced NAFLD, an association of
reduced IGF-1 with reductions in muscle mass
and muscle strength is found. There appears to

be a link between reduced IGF-1 and the
pathogenesis of NAFLD-associated sarcopenia.

Mouse study.

Koo et al. (2017)
[96]

The incidence of significant fibrosis was higher
in patients with sarcopenia than in those

without sarcopenia.
Low muscle mass is associated with the

histological severity of
non-alcoholic steatohepatitis.

Sarcopenia was defined as a ASM/body
weight (ASM%)

Saeki et al. (2020) [102]
Osteosarcopenia and frailty were closely

associated with impaired physical performance
in patients with CLD.

No analysis of confounding factors such as
nutrition or physical activity.

No assessment of the correlation between
osteosarcopenia and frailty syndrome.

No analysis of pharmacotherapy on the
development of osteosarcopenia and

frailty syndrome.

Tantai et al. (2021)
[97]

Sarcopenia was independently associated with a
2-fold increased risk of death in patients

with cirrhosis.

Han et al. (2022)
[109]

TNF- α is associated with
cirrhosis-associated sarcopenia.

Retrospective analysis.
A detailed analysis of the mechanism of

TNF-α-induced sarcopenia in cirrhosis is lacking.
The sample size was small.

4.1. Insulin Resistance

NAFLD and sarcopenia share common pathophysiological mechanisms. These include
IR, systemic inflammation, impairment of myostatin and adiponectin function, catabolic
factor production, nutritional deficiencies, and physical inactivity [12,110]. This is shown
in Figure 1.
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Figure 1. The relationship between muscle, myokines, and liver.

Studies show that IR is a pathological condition that can induce NAFLD and sarcope-
nia [111–113]. IR is a situation in which the physiological response of target skeletal muscle
cells to insulin is disrupted and the body’s carbohydrate metabolism is impaired, thus
enhancing the development of sarcopenia. IR appears to induce sarcopenia by affecting
various physiological processes in the body. These include decreased synthesis of skeletal
muscle proteins and increased catabolism, increased expression of forkhead box O (FOXO)
family proteins, and the autophagy process that occurs in skeletal muscle [114]. Patients
with NAFLD appear to be prone to sarcopenia despite a high body mass index (BMI) [15].
Furthermore, impaired gluconeogenesis caused by hyperinsulinemia promotes proteolysis
and decreases protein synthesis. This situation, with age, can promote sarcopenia [115]. On
the other hand, a decrease in muscle mass exacerbates IR. This is due to the fact that skeletal
muscle is the primary insulin-responsive organ [116]. Hyperinsulinemia associated with IR
causes inhibition of β-oxidation of fats in the liver and an increase in the binding protein of
the sterol regulatory element 1c (SREBP-1c). This results in the accumulation of triacylglyc-
erols and free fatty acids in the organ [117]. Smith et al., in their study, showed that de novo
lipogenesis in the liver is responsible for the regulation of intrahepatic triglycerides and
that increased glucose and insulin levels induce de novo lipogenesis [118]. Importantly,
NAFLD can also induce IR. It appears that this may be due to the action of hepatokines
such as fibroblast growth factor (FGF)-21 and fetuin-A, which are produced by the liver in
response to oxidative stress [119].

4.2. Myosteatosis

Patients with liver disease, especially cirrhosis, can simultaneously experience a sit-
uation in which fat mass increases and skeletal muscle mass is reduced. This condition
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can be referred to as “sarcopenic obesity”. It appears that inflammation, insulin resis-
tance, and vitamin D deficiency may be associated with sarcopenic obesity in the Korean
population [120]. In addition, sarcopenic obesity is associated with higher morbidity and
mortality than these individuals separately [15]. Importantly, loss of muscle mass charac-
terized by both a decrease in muscle size and an increase in intermuscular fat is defined as
myosteatosis. Infiltration of adipose tissue into skeletal muscle is associated with metabolic
abnormalities and reduced muscle mobility and strength. Its severity increases with the age
of the patient [121,122]. The presence of myosteatosis is correlated with a high mortality
risk, but also with IR [123]. Hsieh et al. showed that advanced myosteatosis is associ-
ated with the early progression of NASH and liver fibrosis [124]. Nachit et al. propose
myosteatosis as a non-invasive marker for the detection of NASH [125].

4.3. Inflammation

Sarcopenia and NAFLD are also related to systemic inflammation. The accumulation
of lipids promotes the secretion of pro-inflammatory cytokines from adipose tissue. This
results in ROS induction. This occurs through impaired mitochondrial function, which
consequently initiates lipid peroxidation. Interleukin-6 (IL-6), tumor necrosis factor-α
(TNF-α), and transforming growth factor-β (TGF-β) are among the cytokines that generate
low-grade chronic inflammation [109,126]. Patients with NAFLD also show elevated levels
of TNF-α. TNF-α, in turn, is responsible for stimulating nuclear factor κB, which is involved
in the development of NAFLD but also induces muscle catabolism [127,128]. In addition,
TNF-α participates in the activation of de novo lipogenesis, which ultimately causes
lipid accumulation in the liver [129]. In sarcopenia, the main pro-inflammatory cytokines
include TNF-α, IL-6, and interleukin-1 (IL-1) [130]. Hong et al. showed that patients with
sarcopenia have higher levels of CRP compared to patients without sarcopenia. In addition,
they found that CRP levels showed a negative correlation with the index of liver function
and skeletal muscle mass. These findings may indicate that inflammation is involved in the
pathogenesis of NAFLD as well as sarcopenia [107]. Patients with NAFLD have excessive
oxidation of free fatty acids (FFA); consequently, this promotes the formation of ROS.
These, in turn, cause lipid peroxidation and the production of pro-inflammatory cytokines.
In addition, liver-produced hepatokines are produced by the liver (e.g., fetuin A and B,
selenoprotein P), which, due to their multidirectional functions, affect IR, lipid metabolism,
protein catabolism, and sarcopenia. These broad-spectrum functions of hepatokines may
explain the relationship between adipose tissue, muscle tissue, and the liver [131].

4.4. Vitamin D

Vitamin D deficiencies may increase the risk of developing sarcopenia [132]. Vitamin
D is responsible for the increase in muscle fiber size, but it also increases their strength
and endurance [133]. Furthermore, it is involved in cell differentiation and the proper
functioning of the immune system, as well as in the regulation of cardiovascular and
calcium-phosphate homeostasis [134]. In the elderly, vitamin D deficiency is common
and a worldwide problem. In this group of people, it is usually due to low exposure to
the sun and chronic diseases such as renal failure and malabsorption [135]. Recently, a
correlation has been confirmed between vitamin D deficiency and the progression of fibrosis
in chronic liver disease [136–138]. The prevalence of vitamin D deficiency is estimated to
be found in 64% to 92% of patients with chronic liver disease [139]. The causes of these
deficiencies appear to include a lower supply of exogenous vitamin D (both from the diet
and low sun exposure), impaired absorption, decreased synthesis of vitamin D binding
protein (VDBP), but also impaired hydroxylation in the liver and increased catabolism of
25(OH)D [140]. Izadi et al. showed an inverse relationship between 25(OH)D levels and
aspartate aminotransferase (AST) and alanine aminotransferase (ALT) [141]. In addition,
Wang et al. showed a positive correlation between vitamin D levels and irisin levels in
women with sarcopenia [142]. Studies on vitamin D supplementation in patients with
NAFLD are conflicting, so further research is needed in this area [143–146].
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4.5. Physical Activity

Physical activity induces the production of anti-inflammatory cytokines while inhibit-
ing the production of pro-inflammatory cytokines. Physical exertion also increases muscle
protein synthesis and glucose uptake, which reduces the risk of sarcopenia [147]. On the
contrary, lack of exercise can induce chronic inflammation, IR, and oxidative stress, result-
ing in disease exacerbation in patients with NAFLD and sarcopenia [148]. Additionally,
physical inactivity results in reduced energy consumption and reduced muscle mass. The
result is a fatty liver and obesity [149]. Furthermore, physical activity can contribute to a
decrease in the secretion of fetuin A, which is responsible for the promotion of IR in the
muscle and liver, but also increase the secretion of the inhibitor myostatin [150]. Increasing
physical activity in sarcopenic patients can help reduce the risk of progression of IR [147].
Iwanaga et al. showed that physical activity based on electrical neuromuscular stimulation
reduces the severity of IR by lowering IL-6 and selenoprotein levels [151]. Physical activ-
ity associated with building muscle mass plays an important role in reducing the risk of
chronic diseases. Physical training has the potential to act as a therapy for lifestyle-related
diseases. These include cardiovascular disease, cancer, type 2 diabetes, and dementia [152].
In addition, exercise-induced IL-6 can promote and enhance lipolysis [153]. Given these
mechanisms, analyses confirm that low physical activity is associated with a higher risk
of NAFLD [118,154]. Ageing, fat, and IR accumulation alter the signaling pathways for
growth hormone (GH) and insulin-like growth factor 1 (IGF-1). Consequently, this leads
to a decrease in muscle mass synthesis [155]. Cabrera et al. showed that induced NAFLD
mice show an association of reduced IGF-1 with reductions in muscle mass and muscle
strength. The authors also suggest a link between reduced IGF-1 and the pathogenesis of
NAFLD-associated sarcopenia [108]. The study by Foong et al. showed that the intensity
and amount of physical activity had an independent dose-response relationship with lower
limb strength and percent lean body mass. These results suggest that increased physical
activity in the elderly is necessary to maintain body weight with age [156]. In addition, in
another study, Foong et al. suggest that increased physical activity may be necessary for
weight reduction in older adults [157]. Importantly, physical activity is a key factor in the
development of sarcopenia. Physical activity is responsible for skeletal muscle synthesis;
its absence can result in the development of IR [15,62]. Furthermore, physical activity can
be a major confounding factor in many studies, so it seems important to carefully analyze
its presence and intensity in the patients studied.

4.6. Myokines

Skeletal muscles not only belong to the musculoskeletal system but also play an
important secretory role [158]. Skeletal muscles secrete myokines, including Il-6, irisin,
myostatin, and adiponectin. They play a role in the regulation of glucose and fatty acid
metabolism. Disturbed levels of these myokines resulting from decreased muscle mass can
cause fat accumulation in the liver [93]. The relationship between muscle, myockines, and
liver is shown in Figure 1.

In patients with liver disease, hepatocyte dysfunction, impaired urea cycle, constipa-
tion, and intestinal dysbiosis contribute to hyperammonemia. The increased absorption
of ammonia by skeletal muscle contributes to the development of sarcopenia. Muscle
hyperammonemia results in increased myostatin expression and decreased activation of
nuclear factor kappa B (Nf-B). As a result, impaired muscle protein synthesis occurs [159].
Myostatin is a negative regulator of muscle mass, which plays a key role in the development
and maintenance of skeletal muscle mass [160]. Mutations or genetic disorders resulting in
myostatin atrophy cause skeletal muscle hypertrophy [161]. Myostatin appears to be one of
the mediators of insulin resistance-induced skeletal muscle atrophy [103,162]. In addition,
in patients with cirrhosis, significantly elevated levels of ammonia can increase myostatin
expression. Hyperammonemia appears to be an important inducer of sarcopenia by affect-
ing the increase in myostatin [163]. Nishikawa et al. showed that high myostatin levels in
patients with cirrhosis were correlated with lower survival rates [164]. In contrast, irisin
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is a myokine that is produced in response to exercise. It is responsible for fat-browning
and thermogenesis [165]. Additionally, it exhibits anti-inflammatory effects in the liver and
activates liver autophagy [166]. In addition, Zhao et al. showed that irisin is associated with
sarcopenia in patients with cirrhosis [167]. Kosmalski et al. suggest that irisin can be used
as a diagnostic marker for NAFLD, as it is associated with biochemical and anthropometric
parameters related to liver function [168]. Wu et al. showed that irisin treatment can reduce
age-related skeletal muscle fibrosis [169]. On the contrary, Zhu et al. have shown that
increasing irisin levels through physical activity can reduce inflammation in NAFLD [170].
Adiponectin is one of the most common adipokines in human plasma. It is produced and
secreted primarily by white adipose tissue [171]. Adiponectin induces fatty acid oxidation
and glucose utilization [172]. In addition, it exhibits anti-inflammatory effects. In liver
inflammation, it plays a hepatoprotective role [173]. It appears that changes in their levels
can contribute to the development of MS, the development and progression of NAFL to
NASH, and also NASH-induced cirrhosis [174,175]. The myokines described above are
shown in Table 2.

Table 2. Myokines.

Myokine Function

Miostatin

• muscle hyperammonemia results in increased expression of
myostatin and reduced activation of Nuclear Factor kappa B
(Nf-B). As a result, impaired muscle protein synthesis occurs [159]

• is a negative regulator of muscle mass, thus playing a key role in
the development and maintenance of skeletal muscle mass [160]

• myostatin appears to be one of the mediators of insulin
resistance-induced skeletal muscle atrophy [162]

• high myostatin levels in patients with cirrhosis are correlated with
lower survival rates [163]

Irisin

• is produced in response to physical exertion [165]
• is responsible for fat browning and thermogenesis [165]
• has anti-inflammatory effects in the liver and activates hepatic

autophagy [166]
• it is possible that irisin treatment may reduce age-related skeletal

muscle fibrosis [169]
• irisin increase through physical activity may reduce inflammation

in NAFLD [170]

Adiponectin

• is one of the most common adipokines in human plasma [171]
• is mainly produced and secreted by white adipose tissue [171]
• induces fatty acid oxidation and glucose utilisation [172]
• plays a hepatoprotective role in liver inflammation [173]
• it appears that alterations in its levels may contribute to the

development of the metabolic syndrome and the development
and progression of NAFL to NASH, as well as NASH-induced
cirrhosis [174,175]

4.7. Intestinal Microbiota

The intestine is directly connected to the liver through the portal vein [176]. These
organs interact with each other through multiple pathways and are thus involved in the
induction and progression of many diseases [177]. Intestinal bacteria and their metabolites
can enter the liver through the portal vein, through which they can influence liver disease
processes [178]. Dysfunction of the gut-liver axis contributes to the pathogenesis of NAFLD
through processes such as disruption of the intestinal barrier and intestinal translocation,
as well as the inflammatory response of the liver [179]. Disruption of the gut microbiota in
cirrhosis contributes to hyperammonemia. This, in turn, plays a key role in the induction
of sarcopenia and IR [180]. Furthermore, in cirrhosis, intestinal dysbiosis is associated
with reduced intestinal bacterial diversity, reduced antioxidant activity, and endotoxemia.
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This in turn is associated with chronic inflammation, mitochondrial dysfunction, and IR,
which can cause the progression of cirrhosis and sarcopenia [181]. Furthermore, recent
indications suggest that amino acids synthesized by the gut microbiota may be involved
in the occurrence of sarcopenia [182]. Obese people are found to have an increased risk of
dysbiosis and increased lipopolysaccharide (LPS) production. In turn, LPS causes skeletal
muscle damage via the gut-liver-muscle axis. Consequently, LPS and obesity play a role in
the induction of sarcopenia [183]. Fecal microbiota transplantation can be used in the future
to treat NAFLD. It seems that fecal microbiota transplantation has a positive effect on gut
microbiota disorders in these patients [184]. Furthermore, a combination of nutritional
modification and increased physical activity contributes to a reduction in the intestinal
dysbiosis characteristic of patients with NAFLD [185].

5. Conclusions

Many factors are shown to be common in the pathophysiology of NAFLD and sarcope-
nia. Given existing studies, it is impossible to say whether sarcopenia is a risk factor or a
consequence of NAFLD. However, there is undoubtedly a link between the two due to the
presence of common pathophysiological factors. More studies are needed to clearly define
the cause-and-effect relationship between these entities so that it will be easier to select
prevention and therapy for these patients. In addition, it is worth noting the introduction of
physical activity that is tailored to the patient’s capabilities, as well as dietary modifications
depending on the patient’s comorbidities and dietary preferences. Ultimately, there is a
lack of data that clearly identifies lifestyle changes as adjunctive therapies for primary
treatment in patients with NAFLD associated with sarcopenia.
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