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Abstract: We have previously shown in model studies that rapid quenches of systems of monomers
interacting to form polymer chains can fix nonequilibrium chemistries with some lifelike properties.
We suggested that such quenching processes might have occurred at very high rates on early Earth,
giving an efficient mechanism for natural sorting through enormous numbers of nonequilibrium
chemistries from which the most lifelike ones could be naturally selected. However, the model
used for these studies did not take account of activation barriers to polymer scission (peptide bond
hydrolysis in the case of proteins). Such barriers are known to exist and are expected to enhance
the quenching effect. Here, we introduce a modified model which takes activation barriers into
account and we compare the results to data from experiments on quenched systems of amino acids.
We find that the model results turn out to be sensitive to the width of the distribution of barrier
heights but quite insensitive to its average value. The results of the new model are in significantly
better agreement with the experiments than those found using our previous model. The new
parametrization of the model only requires one new parameter and the parametrization is more
physical than the previous one, providing a chemical interpretation of the parameter p in our previous
models. Within the model, a characteristic temperature Tc emerges such that if the temperature of
the hot stage is above Tc and the temperature of the cold stage is below it, then the ‘freezing out’,
in a quench, of a disequilibrium ensemble of long polymers is expected. We discuss the possible
relevance of this to models of the origin of life in emissions from deep ocean rifts.

Keywords: astrobiology; prebiotic chemistry; origin of life; hydrothermal systems; quenching

1. Introduction

The likelihood of natural formation of an initial genome in ‘genome first’ models
of prebiotic evolution appears to be nearly impossible ‘Eigen’s paradox’ [1]). This has
motivated interest in alternative models in which the early phases of prebiotic systems are
characterized by collections of polymers exhibiting lifelike behavior and storing information
collectively without a central genome. Estimates of the likelihood of the random natural
formation of such entities, of which prions and amyloids [2–6] are often mentioned as
examples, are probably higher, but how likely they are to form prebiotically is poorly
understood and a major issue in evaluating such models.

In previous work [7], we showed that a coarse-grained model of putative polymer
prebiotic chemistry suggested quenching of a collection of such interacting monomers from
a high temperature to ambient conditions as a prebiotic process. Such quenches could
allow for a wide exploration of the space of polymer combinations in a high-temperature
environment before the following quench fixed a nonequilibrium state which could have
some metastable lifelike properties. We cited experimental work [8], refs. [9–11], which
showed that a form of quenching (different in the two sets of experiments) did indeed
enhance polypeptide formation in solutions of amino acids. We suggest that such quenching
might occur in ocean trenches, similar to the hypotheses of others [12–14] that prebiotic
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chemistry might have occurred in tectonic faults. Other possible sites of repeated quenching
in early Earth include hot springs, beaches and lagoons in proximity to volcanic activity,
hydrothermal sediments, shallow water hydrothermal vents and heated rock pores [15–19].

However, our quenching model had some inadequacies: all reactions (ligation and
scission) were assumed to be barrierless and the model was characterized by a parameter p.
p was defined to be the probability of the presence of any possible reaction in the chemical
network as originally introduced in similar models by Kauffman [20,21]. In the calculations
reported by Kauffman and coworkers [20,21], an ensemble of artificial chemical networks
was constructed in which any possible reaction occurred with probability p. However,
the relationship of p with the chemical and physical processes occurring in real systems
was somewhat unclear.

Here, we report simulation results from a modified model which addresses these
inadequacies: we have eliminated p and replaced it with two parameters characterizing
the distribution of barrier heights for polymer scission reactions. The statistical distribution
of barrier heights is introduced and sampled to parametrize the temperature dependence
of the reaction rates. The distribution used is Gaussian, consistent with the limited infor-
mation available experimentally concerning barrier heights for peptide bond hydrolysis
as measured in nonbiological contexts [22,23]. Parameters from nonbiological systems are
selected because rates in modern biological systems are determined by highly evolved
processes involving enzymes which cannot be assumed to exist in prebiotic environments.
Nevertheless, we stress that the data on peptide bond scission via hydrolysis which we
use are very limited and the parameters could be different in an early Earth environment.
A Gaussian distribution would be expected if the effective rates of scission were a prod-
uct of the rates, each of the Arrhenius form, of a large number of steps, each randomly
distributed. However, given the limited information available, the Gaussian distribution
assumed here must be regarded as a hypothesis of the model. We have not fully explored
the consequences of other assumptions concerning this distribution. Our qualitative results
depend mainly on the fact that the distribution of the effective rate v is zero at exactly
v = 0 and has a sharp maximum near v = 0 as discussed below. The mean and standard
deviation of the distribution are initially selected in a way that is consistent with what
is known experimentally but are then varied to fit the data from quenching experiments
reported in references [8–11].

We show that the model produces a distribution of reaction rates which is very similar
to the one implied in models parametrized by p, though the distribution is temperature
(and pH) dependent. A temperature Tc emerges such that if the temperature of the hot
environment before the quench is above Tc and the temperature of the cold environment
is below Tc, then the quench leads to a disequilibrium ensemble of long polymers. Tc is
estimated from data on the barriers of peptide bond hydrolysis to be around the boiling
point of water, but it depends logarithmically on the time which the system spends in the
hot part of the quench. A comparison with experiments in [8–11] shows that the data are
in significantly better agreement with the new model than they were using the previous
one [7]. The resulting final states after quenching are farther from equilibrium than in those
previous calculations [7].

All the parameters are accessible in principle from experiment. The least well known
of them in most cases are the time which the system spends in the high-temperature
environment before the quench and the width of the Gaussian distribution of barrier
heights. We use a fitting procedure to establish bounds on the possible values of these
parameters which are most consistent with the model and the experiments. The theoretical
results are quite sensitive to the width of the activation barrier distribution but are much
less sensitive to its (better known) mean. Oscillations in the number of polymers of length
L as a function of L observed after quenching in the experiments of references [8] and,
to a lesser extent, refs. [9–11], are reproduced in the model simulations and an analysis is
presented to provide insights into this phenomenon.
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We also discuss the application of the model to quenches which occur in ocean trenches,
for example, in smokers. The parameters are significantly different to those in the laboratory
experiments; the ‘dwell times’ that the fluid spends in a high-temperature environment
before quenching are significantly longer (up to years) in most of these cases and the
temperatures are often much higher (up to 600K in some cases). We show that the model
predicts formation of mainly long polymers in the case of polypeptides under suitable
combinations of such conditions. We find some support for this prediction in one oceano-
graphic report [24] but it could be tested much more extensively via observational data.
We discuss the possible implications for origin of life models which postulate origins in
ocean rifts.

The next section briefly describes our previous model [7] and how it was modified
to take account of activation energies. In Section 3, we provide some simulations and
analytical comparisons of the new model with our previous one. The Section 4 describes a
detailed analysis of the experiments using these tools and Section 5 provides a description
of the application to quenches in ocean rifts.

In the conclusions, we discuss the implications for a scenario in which lifelike assem-
blages of proteins or other biopolymers might have formed on very rare occasions and
been naturally selected from millions of quenches of aqueous solutions emerging from
ocean trenches or ridges on early Earth and we suggest directions for future work.

2. Model and Simulation Methods

The model used for quench simulations including activation energies is the same
as that used to obtain the results reported in [7], except that a different distribution of
reaction rates is used arising from the distribution of barrier heights for polymer scission as
described qualitatively above and in more detail below. As in [7,25,26] and elsewhere[20,21],
artificial chemistries associated with abstracted polymers are generated, consisting of
strings of digits representing monomers. The polymers undergo scission and ligation.
However, unlike previous work, the present model does not have a parameter p which
controls the probability that, in a given realization, any possible reaction involving polymers
up to a maximum length of lmax is included in the chemical network. Instead, we introduce
a distribution of reaction rates, determined by a Gaussian distribution of activation energies
as described below. This permits us to define an effective pe f f , which is a function of the
temperature, the time the system spends in contact with a reservoir at that temperature,
and the pH.

We then use pe f f as p was used in [7] to construct an ensemble of artificial chemical
networks and study their dynamic behavior as covalent bonds form and break due to
scission and ligation. Each reaction in the network is randomly assigned one enzyme
from the species present in the network, as in [7]. The algorithm used in the simulations
reported here is nearly the same as that used in our previous work, but is different in
some details and is summarized in Appendix A. An important difference is that we do
not eliminate networks that do not contain reaction paths from the food set to at least one
polymer of length lmax (which we previously called ‘unviable’) when performing dynamical
simulations in the present work. This is because we wish to simulate both natural conditions
and experiments in which such elimination does not take place. We assume here that the
system is ‘well mixed’ and no effects of spatial diffusion are considered.

As in [7,26], we assign to any ‘polymer’ (string) of length l an energy −(l − 1)∆,
where ∆ is a real number which is the bonding energy between two monomers. These
‘bonding energies’ determine the thermodynamic driving force for bond formation and
are negative in the application to peptide bonds. They are assumed to be the same for
pairs of all types of monomers and are to be distinguished from the activation energies
for bond breaking discussed below. Monomers are assigned ‘types’ of which there are b,
an integer. For proteins, b = 20, for nucleic acids, b = 4, and in our simulations, b = 1, . . . , 8.
The total number of possible polymeric species (distinct series of ’types’) of length L is then
bL. The total energy E of any population {nm} of polymers, in which nm is the number of
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polymers of species m, is E = −∑lmax
L=1(L− 1)NL∆. Here, NL = ∑m o f length L nm is the same

set of macrovariables used in [7,25,27]. The total number of polymers N is N = ∑lmax
L=1 NL.

The parameter β is defined as β ≡ 1/kBT, where T is the absolute temperature, which we
assume to be positive so that, as we take ∆ < 0, the relevant parameter β∆ < 0.

To address the central problem of the prebiotic origin of life as enunciated by Eigen [1]
and many others, we focus in our models on the configurational entropy associated with a
coarse-grained description of the state of a system of polymers in which the numbers of
molecules of each length L between L = 1 and L = lmax is NL. This entropy is [27,28]

S/kB = ∑
L

[
ln((bL − 1 + NL)!)− ln(NL!)− ln((bL − 1)!)

]
(1)

The −1 in the expression ln((bL − 1 + NL)!) arises from the counting statistics which,
coincidentally, turn out to be the same as those for Bose fluids and are described, for example,
in references [27,28]. When b = 1, this configurational entropy is zero because there is only
one configurational state. To model experimental systems, we include another factor in the
term bL, as described later in this section, and the entropy becomes non zero when b = 1.
However, in the present paper, we only consider simulations and experimental systems for
which b > 1.

In our simulations, the polymers of interest are not in equilibrium; however, in ad-
dition to the nonequilibrium distributions calculated from kinetics, we also calculate the
equilibrium distributions {NL} associated with local equilibrium as well as the values
{NL} associated with the system in equilibrium with a temperature bath at temperature
T. The two sets of equilibrium values {NL} are recalculated continuously during the
simulations. For b > 1, these distributions are both of the form:

NL =
bL − 1

exp(−βµ− β∆(L− 1))− 1
(2)

To determine the isolated (equivalently local) equilibrium state, we compute β and µ
from the known energy E and polymer number N by solving (on the fly during simulations)
the equations

E = −
lmax

∑
L=1

(L− 1)NL∆ (3)

and

N =
lmax

∑
L=1

NL (4)

together with (2). On the other hand, for an equilibrium with an external thermal bath, we
fix β and compute µ from the solution of Equations (2) and (4).

For comparison with laboratory experiments and oceanographic measurements on
polypeptide formation in quenches, as described in Sections 4 and 5, we take entropic
account of the dilution of the polymers in the experimental samples, as we did in the work
reported in [29]. A reformulation is convenient because the experiments and observations
report molecular concentrations, not absolute numbers of molecules. We introduce a
microscopic length R0Lν, where R0 is a length related to the polymer persistence length
and ν is an index which would be 1/2 for a random walk. The entropy S/kB becomes

S/kB = ∑
L
[ln((NL + GL − 1)!)− ln((NL!)− ln((GL − 1)!)] (5)

The term GL = bLV/vpL3ν is taking account of the number of configurational ways in
which a polymer of length L can be formed if b types of monomer are available (the factor
bL) and also of the approximate number of ways that such a polymer may be found in a
sample of volume V (the factor V/vpL3ν). In the latter factor, vp = R3

0 and the values of R0
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and ν were taken from reports of light scattering experiments on denatured proteins to be
R0 = 1.927 and ν = 0.588 [30]. The model summarized by (5) is physically equivalent to
the one described in (1) except for the factor V/vpL3ν in GL.

Maximizing the entropy, as described in [29], we find

NL(vp/V) =
bL/L3ν − (vp/V)

exp(−β(e, ρ)µ(e, ρ)− β(e, ρ)∆(L− 1))− 1
(6)

and

evp = −
lmax

∑
L=1

(L− 1)NL(vp/V)∆ (7)

and

ρvp =
lmax

∑
L=1

NL(vp/V) (8)

which are expressed in terms of the experimentally accessible quantities ρ, the volumetric
polymer density, and e, the volumetric energy density. To determine the equilibrium state
resulting from equilibrium with a temperature bath, we fix β and determine µ by solution,
on the fly, using Equation (8) together with (6).

After a network is formed according to the procedure reviewed in Appendix A, it is
regarded as fixed. Barrier heights are selected and fixed for each reaction in it and a set of
small molecules (we use dimers and monomers) is populated as an initial ‘food set’. Then,
the formation (ligation) and scission of longer polymers follow dynamically in a separate
dynamical simulation guided by the Master Equation [7,20,21,25,26] .

dnl/dt = ∑l′ ,m,e[vl,l′ ,m,e(−kdnlnl′ne + k−1
d nmne)

+vm,l′ ,l,e(+kdnmnl′ne − k−1
d nlne)]. (9)

Here, nl is the number of polymers of species l, vl,l′ ,m,e is proportional to the rate of
the reaction l + l′ e

→m,e denotes the enzyme, l and l′ denote the polymer species combined
during ligation or produced during cleavage, and m denotes the product of ligation or the
reactant during cleavage.

The dynamical model in (9) assumes that ligation and scission occur in single chemical
steps. This is a simplification, but at least in our application to peptide bond scission, the Ar-
rhenius form found experimentally in [23] suggests that a rate-limiting step determines the
temperature dependence of the total rate, consistent with the form we have chosen for the
temperature dependence of the total rate described below.

In (9), we have assumed that the rate constant 1/kd for ligation reactions is the recipro-
cal of the constant kd for scission. This is not, in general, expected to be true, but we only
found information on the rate of scission in the applications of interest. With (9), we can
determine kd on the fly during dynamical simulations by requiring that the terms in (9) will
obey a detailed balance when the system is in equilibrium, as we have applied in previous
models [7,26]. The detailed balance condition is

k2
d = nm/(nl nl′) (10)

where, in the simulations reported here, the equilibrium distributions {nl} in the last
expression are always taken to be those associated with equilibrium with an external
thermal bath with a fixed parameter β. The factors kd and 1/kd then assure that the model
is driven toward equilibrium and will reach it if not impeded by kinetic blocking or by the
regular supplementation of molecules in the initial ’food set’ of monomers. Note that the
number of equations represented by (9) is blmax and each is of third order in the polynomials
on the right. No analytic solution is possible, except in special cases like the one considered
in Appendix A, in which the number of monomers is assumed to be much larger than the
number of longer polymers. (In the simulations reported here, blmax is characteristically of
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order 104.) We use the well-known Gillespie algorithm [31] to stochastically simulate the
polymer population statistics implied by (9).

Activation energies, which are the new feature in the model described here, enter in
the parameters vl,l′ ,m,e or vm,l′ ,l,e, which are assigned from a probability distribution:

dP(v)/dv = (11)

− (2/π)1/2

σβvs.(1 + er f (∆a
√

2/σ))
exp[−(ln vs. + ∆aβ)2/2(σβ)2]

which follows from the assumptions that the (normalized) rates v are of the form = e−β∆a

and the activation energies ∆a are distributed in a Gaussian distribution with mean ∆a
and variance σ but restricted (see Appendix C) to ∆a > 0. (Note that this is the probability
distribution for the rates of reactions represented by the factors v in (9); it does not refer
directly to the distribution of particle populations.) In the applications to polypeptides
discussed in the following sections, we used data from [23], reporting experiments on
hydrolysis of glycine–glycine bonds, to fix ∆a.

We show an example of the form of this distribution near v = 0 in Figure 1, where it is
compared with the distribution of factors v used in our previous models. (The latter was
simply a delta function at v = 0 with weight (1− p) plus a constant = p for 0 < v ≤ 1.)
The following similarities and differences are noted: Similarly, there is a sharp spike in the
probability distribution near v = 0 followed by a long tail. The range of v values is [0, 1] as
before, meaning that the rates are related to physical units in experiment by multiplying the
rates by the prefactor in the Arrhenius expression for the activated rate. For later reference,
we denote this prefactor by fa. The differences include the fact that the sharp spike in our
former models was exactly at v = 0, whereas here the rate at exactly zero has zero weight
and the position of the peak at low v is temperature-dependent, moving to higher values
and broadening at higher temperatures.

In the case of our previous distribution, the peak at v = 0 could be described as a
delta function with weight 1− p, which is the probability that a reaction has zero rate
and can be left out of consideration in forming networks. However, we cannot use this
strategy with the present model, in which all reactions have rates with a finite weight, even
though some of the rates are very small. The reason that these low-rate reactions can be
neglected is that the experiment or natural evolutionary process will in any case occupy a
finite time, and rates which are extremely small on that time scale can be neglected. (This
consideration can be relevant in real systems; for example, the time for hydrolysis of some
peptide bonds in pure water without enzymes has been estimated experimentally to be as
much as one hundred years [23].)

However, in the simulation, if we do not take account of the actual time in the experi-
ment or natural event, the simulation will simply cut off the slow reactions by default on a
time scale set by the length of the run. Furthermore, by keeping all the reactions, the list of
reactions would be very long, the reaction networks would be filled with many irrelevant
reactions, and a lot of computation time would be spent rejecting these irrelevant reactions.
In the following, we describe our procedure for taking these considerations into account
in the calculations which follow. These procedures, and the introduction of the effective
number pe f f which arises from them, have the following advantages: (1) they provide a
means to explicitly control the time which the system spends in contact with hot and then
with cold reservoirs during quenching in the theory and simulations; (2) they allow for a
physical interpretation of the parameter p in Kauffman-like chemical network models of
prebiotic evolution; and (3) they permit simulations which only spend computational time
on reactions which actually occur and the codes are therefore more efficient than alternative
simulation methods would be.

To quantify these considerations and produce a simulation which is relatively efficient
and takes them into account, we introduce a time texp which characterizes the time during
which the experiment or natural process being modeled is in the hot stage before the
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quench. Values of texp will be discussed in more detail below, but we note here that they
are quite well defined for laboratory experiments and are usually macroscopic (minutes to
hours). For natural evolutionary processes, they are not known because we do not know
exactly what these evolutionary processes are. However, if, for example, the idea that the
essential processes occur as hot water exits ocean trenches or tectonic vents is relevant, then
the relevant time for the high-temperature period before the quench would be the time
that the solution remains hot. In oceanographic circulation models, this time is usually
taken to be up to a few hundred degrees Celsius, because the water is under a high enough
pressure not to boil at these temperatures. Temperatures of that order of magnitude have
been observed in the postulated environments. The times can be estimated from measured
flow rates and are reported [32] to be very heterogeneous, but are mainly in the range of 1
to 105 yr.

Having chosen the parameter texp from such considerations, we define an effective
pe f f by excluding reactions which do not have time to occur in the available time texp.
This is achieved by requiring that all reactions for which (texp(v fa)) > 1 be neglected.
The factor fa converts v to physical time units and the requirement is that the reactions do
not have time to occur in the available time. The cutoff value of 1 is somewhat arbitrary,
but the cutoff is expected to be of order 1. To obtain a value for pe f f , we then integrate
the probability distribution (11) for v from 1/( fatexp) to 1, as described in Appendix C.
The resulting weight is set equal to pe f f . We illustrate some of these points in Figure 1.
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Figure 1. Left panel: An example of the probability distribution of rates v in the new model using
∆aβ = 12, 021, σβ = 0.12∆β. The temperature was taken to be 390 K. The vertical lines indicate
two possible values of the parameter 1/( fatexp). We fix fa from [23]. In each case illustrated by the
vertical lines, the area under the dP/dv curve between 0 and the line has a value of 1− pe f f . The two
vertical lines bracket the value vmax, where dP/dv has a maximum as discussed in the text. Right
panel: Probability distribution in our previous model. The peak at v = 0 in the previous model is
actually a delta function at v = 0 with integrated weight 1−p and the horizontal line just above the
origin represents the constant probability density allowed for all values of v in the range of (0 : 1]
(zero excluded). In both panels, only a small portion of the entire range of v, which extends to v = 1
in both cases, is shown.

The dependence of pe f f on the temperature of the bath in which the simulations take
place is shown in Figure 2, and its dependence on the width σ of the assumed Gaussian
distribution of barrier heights is shown in Figure 3. Values of the parameters fa and texp
roughly consistent with the experiments considered later were used. An interesting feature
is the sharp change in behavior at a particular temperature, which we denote Tc, at which
the sign of the derivative of pe f f with respect to σ changes. For temperatures below Tc,
pe f f decreases with decreasing σ and for a small enough σ, pe f f becomes zero, meaning
that the network has not had time for any reactions to take place. For temperatures above
Tc, the values of pe f f increase with decreasing σ and will saturate at 1 at a high enough
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temperature and low enough σ values. This behavior is quite easily understood, as seen
in Figure 1, and unlike the Kauffman model distribution with which it is compared there,
the distribution has a maximum as indicated in the top panel of the figure. The value of v
at the maximum is easily computed from Equation (11), giving

ln vmax = −(σβ)2 − ∆aβ. (12)

If this maximum value lies below the cutoff value − ln( fatexp), then when σ decreases,
more of the probability weight will lie below the cutoff, 1− pe f f will grow, and pe f f will
shrink with decreasing σ. On the other hand, if the maximum lies above − ln( fatexp), then
decreasing σ causes pe f f to grow because increasingly less of the weight lies below the
cutoff, causing 1− pe f f to shrink. The first case corresponds to low temperatures and
the second to high temperatures. The critical temperature at which the behavior changes
is approximately found by setting ln vmax in the preceding equation to − ln( fatexp) and
solving for the critical temperature. A few details are supplied in Appendix C. When
σ2 ln(texp fa)

∆2
a

is much less than 1, we find the physically relevant solution to be

kBTc =
∆a

ln(texp fa)
(13)

This calculation illuminates the meaning of the temperature Tc in the model. In the
calculation in Appendix C of pe f f as a function of the parameters ∆a, σ, texp, and fa, one

finds that Tc as defined by (13) again appears when σ2 ln(texp fa)

∆2
a

<< 1. Using this calculation

as described in Appendix C, we find the following expression for pe f f in terms of the error
functions, with arguments depending only on Tc, T, and ξ =

√
2
(
∆a/σ

)
.

pe f f =
er f (ξ)− er f (ξ(1− T/Tc))

er f (ξ) + 1
(14)

The temperature dependence is illustrated in Figure 2. Equation (14) also shows that
the temperature dependences of pe f f for different Tc but the same σ collapse into a common
curve when plotted as a function of T/Tc. This is illustrated by some numerical data in
Figure 4.
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Figure 2. Dependence of pe f f on the temperature for several values of the parameter ξ .
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Figure 3. pe f f versus σ at various values of the temperature as discussed in the text. Note that the
sign of the derivative with respect to σ changes when the temperature passes through Tc.

Figure 4. pe f f as a function of T/Tc for various values of the parameter texp.

We suggest that the quite dramatic change in behavior with temperature at Tc could
have significant implications for evaluating the hypothesis that quenching might have
played a significant role in the natural search for lifelike systems on early Earth, as discussed
later in the paper.

Another key temperature, here termed Tc,2, describing the equilibrium distributions
was defined and discussed in [7]. At the Gibbs limit, in which the term −1 in the denomi-
nator of Equation (2) can be ignored, systems in equilibrium at temperature T = Tc,2 have
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a flat NL equilibrium distribution; for T > Tc,2, dNL/dL > 0, and at equilibrium with
T < Tc,2, dNL/dL < 0. Tc,2 is expressed in terms of the model parameters as

Tc,2 = −∆/kB ln b. (15)

In [7], we noted that our earlier analysis [29] of the proteomes of known prokaryotes
had shown that proteins in these 4555 prokaryotes had length distributions very close (very
small RT) to an equilibrium distribution at T = Tc,2. Note that Tc, as defined here, character-
izes the kinetic behavior of the model, whereas Tc,2 characterizes its equilibrium properties.

The value that we use for −∆ in (15) in application in laboratory and oceanographic
data analyses in the next sections was extracted from [22], which reports data on the
equilibrium bond strength of glycine–glycine bonds. To optimize the conditions, leading
to quenches which produce large numbers of long polymers, we will require, in these
applications, that the temperature of the fluid before quench be larger than Tc, so that the
system will have pe f f ≈ 1 (for rapid ‘sampling’ rearrangements), and also larger than Tc,2,
so that the low-temperature system after quench contains many long polymers. This is
further discussed in Sections 4 and 5, where we compare model predictions with laboratory
experiments and oceanographic observations.

To take approximate account of the pH dependence, we use the results in reference [33],
where experimental results for the rate of scission of the glycine–glycine peptide bond by
hydrolysis are reported for one temperature as a function of pH. The modification of the
rate as a function of pH can be described as (kpH/kneutral)× (v at neutral pH), where the
values of kpH/kneutral from [33] are shown in Table 1. Thus, the lower limit of the integral on
dP/dv, which determines pe f f in Appendix C, is modified to v = (kneutral/kpH)/( fatexp).
The physical effect of this is that fewer reactions are left out (larger pe f f ) because the rates
at highly basic and highly acidic pHs are higher than those at a neutral pH.

Table 1. kph = kph=n/kph=7.

pH 3 4 5 6 7 8 9 10 11

kph 17.78 2.78 1.18 1 1 1 1.12 2.22 12.22

With pe f f thus fixed, we then proceed, much as in our previous models, to form
networks and simulate them dynamically. We use pe f f , as p was used in previous models to
decide during network formation whether to include a reaction as described in Appendix A.
Each reaction in the network is randomly assigned one enzyme from the species present
in the network as in [7]. The complete network formation algorithm, which is different in
some details from those used in our previously reported work, is described in Appendix A.

During the dynamical simulation of each network, as described after Equation (9),
the simulated systems are ‘fed’ by maintaining the population of dimers and monomers
above a specified minimum. (Thus, the system is ‘open’ [34].) The system is continually
driven towards equilibrium with the external thermal bath, but many simulated systems
do not achieve either local equilibrium or equilibrium with the external bath because of
the kinetic blocking imposed by pe f f < 1 and because of the ‘feeding’. As in our previous
work, including that described in [7,25,26], we assume that lifelike chemical systems will
be metastable states far from equilibrium and select and count such states to obtain a
quantitative indication of how likely our models are to result in lifelike states.

As in [26,29], we compute two Euclidean distances RL and RT in the lmax-dimensional
space of sets {NL}, which characterize how far the system of interest is from the two kinds
of equilibria described above:

RL =
√

∑
L
(NL− < NL(β(E, N), µ(E, N)) >)2/(

√
2N) (16)
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for the distance from the locally equilibrated state, and

RT =
√

∑
L
(NL− < NL(β, µ(β, N) >))2/(

√
2N) (17)

for the distance from the thermally equilibrated state. Alternative measures of the degree of
disequilibrium in the context of the study of polypeptide systems have been proposed [35]
and we have used alternative formulations in references [25,27]. This formulation has
the advantage of discriminating between local equilibrium, which would be achieved by
the system in isolation, and the global or thermal equilibrium with an external thermal
environment, which would be eventually achieved if the system were in contact with an
external, equilibrated ’bath’. The latter distinction has provided valuable insights into the
nature of the nonequilibrium states found in our quench simulations. A similar Euclidean
measure of disequilibrium in the context of prebiotic evolution was also suggested in
reference [36]. More details of the simulation methods are described in [26].

As in [7], the simulations for which the results are reported here implement sudden
‘quenches’ of the simulated networks from high to much lower temperatures of an external
thermal bath by an abrupt change in the parameters β∆ during the simulations. In the
present work, we also need to take account of the change in pe f f and this occurs in principle
through a change in the parameter β∆a.

In the report of the results which follows, we change the values of β∆a and −β∆
from small values to a large ones by increasing β. The choice of small to large values will
correspond, in the case that ∆ and ∆a do not change, to a quench from a high to a low
temperature. We thus refer in the discussion to quenches from a high to a low temperature,
but note that for the relevant parameters β∆ and β∆a, a similar change might be induced
by a rapid change in pH [33].

3. Effects of Barriers on Model Results

In this section, we report results of the use of the model focusing on a comparison of
the effects of the added features associated with taking activation barriers into account. We
compare the model results for the computational model without barriers described in [7]
to the computational models with barriers described in the previous section. We use the
variables N and V and Equations (2) through (4) to determine equilibrium states. In the
following sections, comparing the results of the model with barriers with experiment and
observations, we fix the variable ρ and use (6) and (8). Models with barriers in the two
sections are physically identical except for the factor taking account of polymer dilution in
GL, as discussed in the previous section.

In Figure 5, we display the results of simulations of the disequilibrium measure RT
as a function of real (Gillespie) [31] time for the model without barriers and for the model
with barriers for three values of pH. (Other parameters are given in the caption.) One sees a
dramatic difference in the time dependence of RT after quenching: on the short time scales
displayed, RT is not decaying at all in the new model, whereas it is decaying quite rapidly
in a pH-dependent manner when barriers are not taken into account. The disequilibrium
(more lifelike) state has been stabilized by the presence of barriers. This has been anticipated
by others [37]. On longer time scales, up to years, RT does decay in the new model, but
the time scales are much longer, as illustrated in Figure 6. On the other hand, as expected,
the system after quenching retains a polymer length distribution close to the one it attained
when it was hot, as manifested by a very small change in the parameter RL as shown
in Figure 7.
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Figure 5. Left panel: RT vs. time for short times after a quench in the model of [7]. Right panel RT

versus time after a quench in the model described in this paper with other parameters unchanged.
Upper temperature = 600 K, lower temperature = 280 K, lmax = 7, b = 4, fa = 5.95 ∗ 106 s−1,
∆a = 108 kJ/mol σ = 0.12∆a , texp = 1 year. With these parameters, Tc = 350 K and Tc,2 = 800 K. Each
line shows the result of one realization of the same network. pe f f is 1 when the temperature is high
before quenching.
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Figure 6. RT as a function of time in the present model after much longer times on the order of years.
The same network and parameters as those used in the calculation give the results in the right panel in
Figure 5: upper temperature = 600 K, lower temperature = 280 K, lmax = 7, b = 4, fa = 5.95 ∗ 106 s−1,
∆a = 108 kJ/mol σ = 0.12∆a , texp = 1 yr. With these parameters, Tc = 350 K, Tc,2 = 800 K. Each line
gives the result of one realization of the same network. pe f f before quenching is almost exactly 1
with these parameters.
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Figure 7. The parameter RL measured in the same simulation leading to the data of Figure 5. Upper
temperature = 600 K, lower temperature = 280 K, lmax = 7, b = 4, fa = 5.95 ∗ 106 s−1, ∆a = 108 kJ/mol,
σ = 12 % of barrier, texp = 1 year, after about 400,000 simulation steps. Each line shows the result of
one realization of the same network. The pe f f of before the quench is nearly 1. With these parameters,
Tc = 350 K, Tc,2 = 800 K.

The effects on the polymer length distributions of adding barriers to the model are il-
lustrated in Figure 8. The enhancement in the number of long polymers is significant. In this
simulation, the parameter b = 2 was used. However, as shown in Figure 9, the oscillatory
behavior in L persists for larger b values. On the other hand, increasing pe f f by increasing
∆a or reducing texp causes the oscillatory behavior to disappear, as shown in Figure 10.
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Figure 8. NL versus L after quenching for simulations using the model reported here compared
with results from the model in [7]. Upper temperature is 373 K, lower temperature = 300 K,
lmax = 8, b = 2, fa = 5.95 ∗ 106 s−1, ∆a =108 kJ/mol, σ = 12% of barrier, texp is 1h. Simulations
of about 400,000 reaction steps per run. Results are an average of 100,000 realizations. With these
parameters, Tc = 430 K, Tc,2 = 1600 K.
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Figure 9. Effect of b on NL is small. Simulation parameters pe f f = 0.1, high temperature = 373 K,
low temperature = 300 K, lmax=7, fa = 5.95*106 s−1, ∆a = 108 kJ/mol, σ = 12% of ∆a
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Figure 10. Dependence of the NL distribution on pe f f b = 2, high temperature = 500 K, low
temperature = 300 K, lmax = 7, fa = 5.95 ∗ 106 s−1, ∆a = 108 kJ/mol, σ = 0.12∆a.

4. Comparisons with Experiments on Amino Acids Forming Polypeptides

As in [29] and described in Section 2, for comparison with laboratory experiments
as described in this section and with oceanographic observations as described in the next
section, we need to use the formulation of the model which takes approximate account of
the dilution of polymers in solution so that the equilibria are described by Equations (6)–(8)
and the parametric inputs are ρ and e instead of N and E.

To compare the simulation model with the experimental data reported in [8–11], we
set the before-quench high temperature and the after-quench low temperature to the values
reported in these references. pe f f was then adjusted so that the simulations gave the best fit
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to the data. With pe f f thus determined, we used (14) to determine Tc with the fixed value
of ξ = 0.25. Finally, using fa = 5.96 ∗ 106 s−1 extracted from [23] and Equation (13), we
estimated texp with ∆a = 108 kJ/mol. In the last step, the estimated texp was exponentially
dependent on ∆a, and the value of ∆a used was adjusted by about 10% relative to the value
reported in [23] in order to bring the estimates of texp into order-of-magnitude agreement
with the experimental reports. The main uncertainties in this procedure arise from our
disregard of an appropriate value of σ (entering in ξ) and the value of ∆a. We found
only one carefully reported value [23] for ∆a which was for glycine–glycine hydrolysis.
The experiments reported in [8] included alanine as well as glycine in the solution and that
could contribute to an uncertainty in ∆a as well as in σ.

Figure 11 shows fits to the experiments described in [8], and Figure 12 shows fits to the
data reported in [9–11]. The same values of ∆a, ξ, and fa were used in all the calculations.
The oscillations in NL as a function of L seen in [8] are quite well reproduced by the
model and the fits are quite good at the higher initial temperatures. Notably, the orders
of magnitude of the ratios are quite well reproduced, whereas they were as much as two
orders of magnitude lower using the previous model without barriers.

Figure 11. Simulations compared with experimental data from reference [8]. High temperatures
are as labeled, low temperature = 300 K, lmax = 8, b = 2, fa = 5.96 ∗ 106 s−1, ∆a = 108 kJ/mol,
σ = 0.12∆a, texp is about 1 h. About 40,000 simulation steps per run. Results are averages of
100,000 realizations. With these parameters, Tc is about 490 K and Tc,2 = 1600 K.

We performed an extensive comparison of the pH dependence of the predicted
polypeptide length distribution with that reported in [8]. To summarize, the predicted
enhancement of the amount of polypeptides produced in alkaline solution is in reasonable
agreement with that reported in [8], but the model predicts a much higher enhancement in
polypeptide formation in acid media than reported in [8]. In Figure 13, we show the average
polypeptide length as reported in [8] and the corresponding result of the simulations to
illustrate this result. The model pH dependence is parametrized by the experimental results
in [33]. The solution chemistry appears to be nearly the same in the two sets of experiments
reported in [8,33], and we were unable to determine the source of this discrepancy. It is
discussed somewhat further in Section 6.
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Figure 12. Fit of the simulation model to data from the experiments reported in reference [9–11].
In the simulations, the high temperatures = 500 K, low temperature = 300 K, fa = 5.96 ∗ 106 s−1,
∆a = 108 kJ/mol, σ = 0.12∆a The fit yields texp = 12 s for Matsuno’s 34 s cycle and texp 9 s for the 78 s
cycle. Simulation results are averages of 10,000 realizations. With these parameters, Tc is about 590 K
and Tc,2 = 1600 K.
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Figure 13. pH dependence of the average polymer length produced in the simulations and in the
experiments of [8]. pe f f = 1, high temperature = 373 K, low temperature = 300 K, lmax = 8, b = 2,
fa = 5.95 ∗ 106 s−1, ∆a = 108 kJ/mol, σ = 0.12∆a.

5. Application to Quenches in Ocean Rifts

We have previously reported evidence [29] from values of RT and RL for proteomes
of 4555 prokaryotes that the proteins in these organisms were formed at temperatures on
the order of 370 K. Most of the prokaryotes in this sample are not thermophilic, so our
analysis suggested that the proteins, and not necessarily the full prokaryotic organisms,
were formed at that high temperature. There are at least two possibilities concerning the
possible order of events here. The proteins could have formed in a quench from amino
acids in the waters emitted from an ocean ridge or hot spring and then, after the quench and
in rare cases, formed prebiotic entities with some of the properties of prions or amyloids
in the contemporary biosphere. Alternatively, one might consider models in which the
proteins were formed at high temperature and then, before the quench, became part of a



Life 2024, 14, 116 17 of 26

thermophilic prokaryote. In either scenario, the formation of suitable polymers (proteins,
RNA, or others) at high temperature is the first, probably rate-limiting, step in prebiotic
evolution. In the model considered here, we consider only this step and hypothesize that
the formation of precursor polymer assemblies which could evolve into life only occurs
after the quench. We do not attempt to model later processes in detail here.

Motivated by the perspective described in the last paragraph, we therefore report a
few results here using the model described in the last section with parameters suggested
by oceanographic studies of smokers in or near ocean rifts. Although the stability of amino
acids in the hot fluids in hydrothermal environments has been questioned, laboratory mea-
surements [38], as well as free energy calculations reported by Shock and coworkers [37],
suggest that amino acids could be stabilized in such fluids in the presence of hydrogen and
they are in fact observed to be present.

The concentrations of amino acids in the fluids emitted from smokers have been
measured [24] in six black or white smokers in the Mariana Trough, and were reported to
be up to more than 10−5 molar of total amino acids and 10−8 molar or less of dissolved
free amino acids. This implies that most of the amino acids could be inferred to be in
polypeptides. The large number of detected amino acids in large molecules (presumably
polypeptides) could suggest a biological origin, but the authors of [24] observed that higher-
temperature smokers exhibit a higher concentration of long polymers. The temperatures in
these high temperature smokers exceed the maximum temperature at which thermophilic
bacteria can survive, so, in these high-temperature smokers, the polypeptides observed
probably have an abiogenic origin.

Note that in the scenario explored in the model considered here, long polymers,
of which some may turn out to be capable of supporting prebiotic evolution, only form
transiently in the high-temperature stage of the hypothesized quenches. The role of the
quench in this model is to stabilize the long polymers which were transiently present in
the hot stage, and selective evolution, if it occurs, occurs in the low-temperature stage.
The advantage, in our view, of this scenario is that it permits both a rapid sorting through
many randomly selected types (for example, polypeptides) in the hot stage, while the
quenches continuously ’sample’ them into a cooler environment which may permit them
to evolve. Thus, in this model, we do not require that any lifelike entities survive in the hot
stage before the quench. The model predicts that high temperatures in the hot stage can
enhance long polymer formation (because entropic effects are dominant), and we therefore
expect that hot stages in which the temperatures do not permit any known hydrophilic
organisms to survive may nevertheless be favorable for the production of prebiotic material,
leading to lifelike development after the quench.

Temperatures of what we interpret as the fluid temperature before the quench taking
place in the smokers were reported in [24] to be up to 530 K. pH values were acidic, in the
range of 3.1 to 5.5. As in the laboratory experiments, the least well-known parameters are
the width of the Gaussian distribution of barriers to hydrolysis and the dwell time of the
fluids at high temperature before the quench. Glycine was the most common amino acid in
the oceanographic samples, followed by serine, asperine, and lysine. This might suggest
that the values of the width σ which were used to fit the laboratory data and the values
of ∆a and fa as reported in [23] in glycine–glycine hydrolysis could be used, and we have
applies them here. The dwell times of the fluids at high temperature before the quench
are unknown for smokers, but models [39] suggest much longer times (on the order of
up to 105 years) than those experienced in the laboratory experiments. As noted earlier,
larger values of texp lower the value of Tc, so it is more likely that the temperature before
quenching will exceed Tc if the other parameters are the same.

Quantitatively, this point is illustrated in Figure 14, which plots the values of Tc and
Tc,2 for a range of dwell times expected in the laboratory experiments with fixed values
of ∆a and fa. In Figure 15, we show the corresponding relationship using parameters
approximating the conditions in the smokers. One sees that the laboratory experiments are
not likely to have taken the fluid from above to below Tc (that is, from pe f f ≈ 1 to pe f f ≈ 0),
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whereas the quenches in the smokers are very likely to do so. However, for experiments
or observations to yield long polymers after quenching in the smokers, we also need a
temperature before quenching which is above Tc,2, so that many long polymers are present
in the fluid before quenching. One sees in Figure 15 that over much of the ranges of b and
texp of interest for the smokers, the second requirement is more difficult to satisfy, but it
may be satisfied in the highest-temperature smokers.

Figure 14. Tc versus texp for parameters typical of the discussed laboratory experiments. The diagonal
brown line indicates approximate the bath temperature during a quench. The yellow horizontal line
is Tc,2 when b = 2.

Figure 15. Same as the previous figure but with parameters expected to be characteristic of the
quenches occurring in the smokers in the Mariana Trough. Tc is likely to be crossed during the
quenches as suggested by the red line. The yellow horizontal line is Tc,2 when b = 5.

What was actually measured in the observations of [24] was the total number of amino
acids and the number of amino acid monomers. If the temperature before quenching is
above Tc, then pe f f is close to 1 and the quench to low temperatures will lead to a length
distribution characteristic of equilibrium at the temperature before quenching. These
conditions appear to be met in all the smokers for which data were reported in [24]. If the
factor L−3ν in Equation (6) is ignored (or equivalently, ν = 0), then the the predicted ratio
∑lmax

L=1 NL/N1 can be evaluated analytically at the Gibbs limit, as shown in Appendix D.
If the hot temperature is below Tc,2, one can take the limit lmax → ∞, and the sum in the
numerator converges. However, for temperatures above Tc,2, the sum diverges in that limit
and an infinite value of the ratio would be predicted if no further physics constrained the



Life 2024, 14, 116 19 of 26

values of L to a finite maximum. These features are retained when the sum including the
factor L−3ν is retained and the sum is evaluated numerically. However, for b values between
5 and 10, we find that the temperatures before quenching are somewhat below Tc,2.

We compared the calculated ratio with the reported observations with various values
of lmax and b. In Figure 16, we show the results for two values of lmax and b = 7, for which
Tc,2= 570.4 K. It is not completely clear what value of b should be used for this comparison.
The tables in [24] list eleven amino acids, but some of them are present in much smaller
quantities than others. A model assigning different probabilities for different monomer
types is possible, but we have not studied it here.

We can draw these limited conclusions from this comparison: Most of the observational
data are associated with temperatures below the most likely values of Tc,2, and at these
temperatures, the model predicts ratios larger than 1 but smaller than those observed.
A few of the observational data points are associated with temperatures which may be
greater than the range of expected values of Tc,2. At these temperatures, the model with
lmax → ∞ predicts an infinite ratio and by arbitrary adjustment of lmax, one could obtain
a theoretical result quite close to the observations. However, a physical theory is needed
which takes into account physical factors which will limit lmax to finite values.

The authors of [24] point out that at the highest temperature values seen, thermophilic
organisms which can survive are not known. Thus, a possible understanding of these
data could attribute the relatively large values observed at lower temperatures to biogenic
origins of the observed polypeptides, which our model does not take into account, whereas
at the highest temperatures, the ratio must be fixed by abiogenic ligation, which the
model does take into approximate account. (As noted above, high-temperature quench
stages at which thermophilic organisms cannot survive are not excluded from relevance
to prebiotic evolution within the model considered here. We regard the hot stage as
producing long polymers which survive transiently at high temperatures but which are
stabilized by the quench at lower temperatures where prebiotic evolutionary processes
would have time to take place.) With regard to the data shown in Figure 16, we can attain
at a possible qualitative understanding of the fact that the model agrees better with the
(limited) observational data at high temperatures where no biogenic polymers are expected.
In summary, we find that the model appears to agree semiquantitatively with the very large
difference (about two orders of magnitude) between the ratios observed in the laboratory
experiments and those observed in the oceanographic data.

 1

 100

 10000

 1×10
6

 1×10
8

 1×10
10

 250  300  350  400  450  500  550  600

N
to

t/
N

1

temperature (K)

lmax=100

lmax=500

Mariana Trough

 

Figure 16. The ratio of the total number of amino acid molecules to the number of monomeric
amino acids for two values of the maximum polymer length (lmax) in the model compared with
values from observational oceanographic data from reference [24]. We took b = 7 and pH=7 here.
The corresponding value of Tc,2 is 570.4 K. Above Tc,2, the model value of the ratio diverges as
lmax → ∞. In the figure, one sees a slight decline in the ratio just above Tc,2 in the case of lmax = 100,
which arises from the factor L−3ν in Equation (6).
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6. Discussion and Conclusions

We present an extension of an earlier model [7] for prebiotic formation of biomolecules
on early Earth, in which the molecules formed by ligation from starting solutions of
monomers at high temperatures were then quenched rapidly at lower temperatures so
that they retained the polymer length distribution attained at the high temperature before
the quench. The model might apply to either quenching from hot fresh water springs or
from emissions from ocean floors. In either case, it may suggest a way to evade the issue
sometimes raised concerning thermophilic origin of life scenarios, namely that the needed
long polymers would not survive long enough at high temperatures to permit evolution
to initiate. At the high temperature before quenching in our model, there are many long
polymers under the conditions discussed, but they are rapidly disintegrating and reforming
by scission and ligation, making evolutionary development unlikely if the temperature re-
mains high. In the quench to cooler temperatures however, the population of long polymers
is retained, while the rapid scission and ligation stops, thus allowing time for evolutionary
selection, possibly leading to lifelike states. These general ideas were suggested in our
earlier paper [7]. Evidence for a high-temperature origin of prokaryotic proteomes was
reported in our earlier study [29] of experimental data on modern prokaryote proteomes.
It is consistent with genomic evidence cited much earlier by others [40] for some sort of
thermophilic origin of life. In the scenario suggested here, the high-temperature period in
the origin of life occurs in the formation of the basic biomolecules required, before any of
the elaborate apparatus of modern cells emerged.

In the present paper, we have extended the model of [7] to take account of the known
fact that hydrolysis and ligation rates of biopolymers are limited by free energy transi-
tion barriers. Barrier heights are selected from a Gaussian distribution centered near the
measured barrier height for glycine–glycine hydrolysis. The finite width of the barrier distri-
bution produces the network sparseness, which is partially responsible for the metastability
of the quenched states predicted. The new model greatly extended the predicted stability
of the quenched states, as illustrated in Section 3. We also introduced a phenomenological
parameter which permits the effects of pH on the results to be incorporated. The needed
parametrization is taken from [33]. The pH dependence of the results is approximately
symmetric about pH 7.

We report a comparison of the results of the model with two sets of experiments [8–11]
and with some oceanographic data on polypeptide populations from oceanic smokers in
the Mariana Trough [24]. The data from [8] yield a polymer length distribution which fits
quite well with the predictions of the model at neutral pH and, in particular, gives a fitted
value of the time texp spent at high temperature before the quench which is consistent with
that reported in the experiments. Also, notably, the number of polypeptides reported to be
produced is small compared to the number of amino acid monomers (glycine and alanine)
remaining after the quench, consistent with the model predictions for the high and low
temperatures reported for the experiments. The model also agrees with the enhancement in
the number of polypeptides produced at alkaline pH observed in [8]. However, our model
predicts a significantly larger enhancement in polypeptide production at acidic pH than is
reported in [8]. Our parametrization of the pH dependence depends on the data in [33],
but we have not been able to trace the chemical differences between the systems used in
the experiments of [8] and those of [33] that might account for the difference. Possibly
the fact that the experiments reported in [8] included both alanine and glycine, whereas
those in [33] only addressed glycine–glycine hydrolysis is relevant. Strictly speaking,
the experiments in [8] are not quenches in exact conformity with what is modeled here.
They are ’drying’ experiments, in which the solution is held at a high temperature and then
dried. This drying will result in cooling and in stopping the reactions, but the physical
situations after the quench are not the same as in our model, nor are they the same as the
physical situation after quench in the emissions from an ocean trench. However, this does
not suggest to us any clear explanation for the discrepancy in the results with the model
ones under acidic conditions.
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Comparing with the more limited data from the Mariana Trough [24], a striking
observation is that, in sharp contrast to the laboratory experiments, [24] reports many fewer
monomeric amino acids relative to the total number of amino acids in their samples. Our
model is qualitatively, and even semiquantitatively, consistent with that result, attributed
to the higher temperatures and longer ’dwell times’ (texp) experienced by the fluids before
they emerge from the smokers in the Mariana Trough.

The model makes several falsifiable predictions. In particular, it predicts the depen-
dency of polymer length distributions on the dwell time of the fluid at high temperature
before quenching, the temperature before quenching, and the number of types of available
monomers (amino acids for polypeptides) that can be compared with future oceanographic
observations and laboratory experiments.
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Appendix A. Algorithm for Generation of the Networks

This is nearly the same as the algorithm described in reference [25] but differs in the
following details: the p value is selected differently and the list of reactions from which
reactions are chosen does not include enzymes, which are instead assigned during the
network formation process.

Algorithm:

• Determine the parameter pe f f using the values of the average activation energy, its
mean square deviation, and the time which the system will spend in the current
thermal condition as described in Section 2. Select the parameter lmax, the maximum
length of polymers to be considered. pe f f is the probability that a possible reaction in
the network is actually included in the network (as described in more detail below).

• Select a ‘firing disk’ of initial short polymers to include in the network.
• From all ligation and scission reactions which can occur involving polymers already

in the network and other polymers of length less than or equal to lmax and which have
not yet been marked, select one at random. This is implemented as follows.

• Select a polymer already in the network at random.
• Choose ligation or scission with equal probability.
• If scission, select a connection at random along the string (among L− 1 ‘bonds’ if the

string has length L) for scission.
• If ligation, choose another polymer at random from among all possible polymers

for connection.
• In either case, select an enzyme at random from polymers already in the network.
• Check to determine if the reaction selected has already been tried. If so, check to

determine if the number of reactions already tried is equal to the total number of
available reactions. If so, stop. Do not include the network but count it as an attempt

https://conservancy.umn.edu/handle/11299/228099
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to create a network. If not, include the reaction in the network with probability pe f f .
Whether it is included or not, mark that reaction as ’tried’ and go back and pick
another reaction.

Appendix B. Mean Field Model for Polymer Length Distribution

Here, we demonstrate that the damped even–odd oscillations observed in experiments
of Yin et al. [8] arise in a simple model for the reaction kinetics as long as the population of
monomers and dimers is much larger than the population of longer polymers and all the
reactions in which a dimer or a monomer is added or removed from a chain of any length
L occur in the network.

Note that these conditions restrict the relevance of this model to the laboratory experi-
ments considered in this paper. In the oceanographic data we considered, the number of
monomers is reported to be much smaller than the total number of polymers and the first
condition above is probably not met. Also, the inclusion of a large number of dimers as well
as monomers here is essential. If only reactions in which monomers are added or removed
from any chain are included, then the model described in this appendix does not predict
the oscillations we report below. The oscillations in the solution we find are an even–odd
effect resulting from competition between the effects of adding or deleting monomers
from polymers with the effects of adding or deleting dimers from these polymers. Thus,
the period of these oscillations is always one monomer unit. As mentioned briefly at
the end of this appendix, the parameter space includes regions in which the model has
solutions with oscillations with a continuum of real frequencies, but our estimates of the
parameters associated with the reported experiments are not in that parameter region. The
experiments appear to have only even–odd oscillations, so with regard to this feature, the
model agrees with the experiments.

Under the stated assumptions, the rate at which the population NL of polymers of
length L changes with time is

dNL/dt = (A1)

K(1)
→ NL+1 − K(1)

← N1NL+ K(1)
← NL−1N1 − K(1)

→ NL

+K(2)
→ NL+2 − K(2)

← N2NL+ K(2)
← NL−2N2 − K(2)

→ NL

Here, the subscript→ refers to scission, which is the ‘forward’ reaction for peptide
bonds, and← refers to ligation. Eight x Nmax − 2 reactions are kept. We assume that N1
and N2 are fixed at large values, as they will be in many experiments and observations.
We denote xL = NL/N1 , b = K(1)

→ /K(2)
→ , c = K(1)

← N1/K(2)
→ d = K(2)

← N2/K(2)
→ and seek a

steady-state solution of the equations giving

1xL+2 + bxL+1 − (1 + b + c + d)xL + cxL−1 + dxL−2 = 0 (A2)

for L > 2. This is a fourth-order homogeneous difference equation which has solutions of
form xL = uL with four solutions for u. u satisfies the fourth-order polynomial equation

u4 + bu3 − (1 + b + c + d)u2 + cu + d = 0 (A3)

An obvious solution is u = 1. Dividing out u− 1 gives the third-order polynomial
equation

u3 + (b + 1)u2 − (c + d)u− d = 0 (A4)

The analytical form of the solution is complicated [41], but the essential features are
illustrated by plotting the polynomial for small, real, positive values of the parameters
c and d. There are three real roots. Two are negative and one is positive. Two of the
roots are nearly symmetrically positioned around zero and the third is larger and negative.
The negative roots give even–odd oscillations in the populations as a function of L. A linear
combination of the two small roots, which gives NL as a function of L similar to the results of
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the experiments and to our numerical simulations of the full model, is shown in Figure A1.
Here, we used the known analytical solution to the cubic to determine the roots [41]. When
the discriminate D = b̃2/4 + ã3/27 is negative, the roots are all real; otherwise (D > 0),
one root is real and two are complex. In the present case, b̃ = (2/27)(b + 1)2 + (1/3)(b +
1)(c + d) − d) and ã = −(c + d) − (b + 1)2/3. With the parameters used in the figure,
D = −0.0853, suggesting that in some physically realizable contexts, one might find the
second type of solution with D > 0. b is expected to be close to 1, but a physical argument
restricting c and d to values giving D < 0 is not evident to us.
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0
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Figure A1. NL/N1 in the mean field model with a parametrization giving oscillations qualitatively
similar to those observed. b = 1, c = 0.1, d = 0.05. Initial conditions N2/N1 = 0.5. Here, we summed
the two small real solutions u1 and u3 of the cubic equation in the form uL

1 + 3uL
3 with L = 3, . . . , 10.

With the parameters cited, the roots u1 and u3 were u1 = 0.1892 and u = −0.1282

Appendix C. Form of the Probability Distribution for v and Expression for pe f f

We take all the rate parameters v in the master Equation (9) to have the form
v = e−∆a/kBT with ∆a confined to the range 0 < ∆a < ∞. Over this (restricted) range,
∆a is assumed to be Gaussian distributed about an average value ∆a. The constraint to
positive ∆a is required to avoid unphysical negative activation barriers which would lead
to v > 1. Very small ∆a values lead to very high (nearly barrierless) reaction rates, seldom
realized in numerical practice because they are very improbable, but the constraint must be
taken into account in the normalization of the Gaussian. The distribution of ∆a is

dP/d∆a = N exp(−(∆a − ∆a)
2/2σ2) (A5)

where the inverse of the normalization constant N is

N−1 =
∫ ∞

0
exp(−(∆a − ∆a)

2/2σ2)d∆a (A6)

differing from the usual normalization in the lower limit. Transforming to the dimensionless
variable u = (∆a − ∆a/σ and using the definition of the error function er f (z), one finds

N =
(2/π)1/2

σ(1 + er f (∆a
√

2/σ))
(A7)

which reduces to the usual factor 1/((2π)1/2σ) for a Gaussian distribution with the limit
∆a → ∞ as expected. In practice, the argument of the error function here is large but the
correction is important in correctly normalizing the definition of pe f f . With this normaliza-
tion, we use the relation v = e−∆a/kBT and dP/dv = (dP/d∆a)(d∆a/dv) and find the form
in Equation (11). Note that the parameter σ is not exactly the variance of this renormalized
distribution, nor is ∆a exactly the average value of ∆a but, in practice, the (computable)
corrections to the variance and average are negligible.
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The definition of pe f f as described in the text is

pe f f =
∫ 1

1/(texp fa)
(−dP/dv)dv (A8)

Using Equation (11), transforming back to the variable ∆a and then to the dimen-
sionless variable t = (∆a − ∆a)/

√
2σ, and using the definition and properties of the error

function as well as Equation (13) for Tc, we find:

pe f f =
er f (ξ)− er f (ξ(1− T/Tc)

1 + er f (ξ)
(A9)

where ξ =
√

2(∆a/σ). This expression has the right limits as T → 0 and T → ∞.

Appendix D. The Measured Ratio from Smoker Data as Predicted by the Model

As explained in the text, we anticipate that the high temperatures found in the smokers
are all well above Tc. Therefore, pe f f will be close to 1 in our model and the observed
distribution at low temperatures after quenching to ocean bottom temperatures will be close
to the equilibrium distribution at the initial high temperature. To calculate the expected
ratio of the total number of amino acids to the number of monomeric amino acids, we use
the Gibbs limit of Equation (2), in which the term −1in the denominator is ignored. If we
set ν = 0, then the sum is geometrical and easily evaluated, giving a ratio of

Ntotal/N1=

(
e−∆β

(b−1) )

)[
eα(lmax+1)−1

eα−1 − e∆β(lmax+1)−1
e∆β−1

]
(A10)

where
α = −∆β(1− T/Tc,2) (A11)

When T < Tc,2, α < 0 and the limit lmax → ∞ converges to a finite result for the ratio.
When T > Tc,2, this limit results in an infinite ratio which is unphysical. For ν ̸= 0, the sum
is not geometric and has been numerically evaluated to produce the results displayed in
Figure 16, where the divergence when T > Tc,2 is again evident. As noted in the text, in the
case of T > Tc,2, we need an account of additional physics not in the model to account
for a limited maximum length. However, with b = 7 and using the glycine–glycine bond
energy, we find Tc,2 = 570.4 K, and the hot smoker temperatures reported in [24] are all
below (though in some cases not far below) Tc,2, so that we can use the calculated result for
the ratio without specifying a value for lmax for a comparison with the data. The result is
plotted as a function of the hot temperature before quenching in Figure 16 using b = 7 and
Tc = 570.4 K, where it is compared with the oceanographic data from the Mariana Trough.
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