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Abstract: Atrial fibrillation arises mainly due to abnormalities in the cardiac conduction system
and is associated with anatomical remodeling of the atria and the pulmonary veins. Cardiovascular
imaging techniques, such as echocardiography, computed tomography, and magnetic resonance
imaging, are crucial in the management of atrial fibrillation, as they not only provide anatomical
context to evaluate structural alterations but also help in determining treatment strategies. However,
interpreting these images requires significant human expertise. The potential of artificial intelligence
in analyzing these images has been repeatedly suggested due to its ability to automate the process
with precision comparable to human experts. This review summarizes the benefits of artificial
intelligence in enhancing the clinical care of patients with atrial fibrillation through cardiovascular
image analysis. It provides a detailed overview of the two most critical steps in image-guided AF
management, namely, segmentation and classification. For segmentation, the state-of-the-art artificial
intelligence methodologies and the factors influencing the segmentation performance are discussed.
For classification, the applications of artificial intelligence in the diagnosis and prognosis of atrial
fibrillation are provided. Finally, this review also scrutinizes the current challenges hindering the
clinical applicability of these methods, with the aim of guiding future research toward more effective
integration into clinical practice.

Keywords: atrial fibrillation; artificial intelligence; machine learning; deep learning; echocardiography;
computed tomography; magnetic resonance imaging

1. Introduction

Atrial fibrillation (AF) is the most common cardiac rhythm disorder. The prevalence
of AF is high and has seen a significant surge over the past decades, with an estimated
33 million people worldwide suffering from this condition [1]. AF is associated with an
increased risk of mortality and morbidity from dementia, heart failure (HF), and stroke [2].
The diagnosis of AF is typically made using electrocardiography (ECG), which records
the heart’s electrical activity over time. The presence of AF is identified by the absence of
P waves with irregular R-R intervals [3]. However, ECG has its limitations, such as the
inability to provide spatial references for evaluating structural changes in the atria or visual
guidance for invasive procedures.

Life 2023, 13, 1870. https://doi.org/10.3390/life13091870 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life13091870
https://doi.org/10.3390/life13091870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0001-7589-5599
https://orcid.org/0000-0002-6603-3257
https://orcid.org/0000-0001-8351-6288
https://orcid.org/0000-0002-7566-1626
https://orcid.org/0000-0003-0717-740X
https://doi.org/10.3390/life13091870
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life13091870?type=check_update&version=1


Life 2023, 13, 1870 2 of 30

In addition to ECG, cardiovascular imaging modalities such as echocardiography,
computed tomography (CT), and magnetic resonance imaging (MRI) are often utilized to
characterize AF [4]. The roles of cardiovascular imaging in the management of AF include,
but are not limited to:

• Assessing structural changes in the heart, such as fibrosis tissue in the atria [5];
• Measuring imaging biomarkers, such as the volume of the left atrium (LA) [6,7];
• Offering visual guidance for invasive procedures for the treatment of AF, such as

catheter ablation [8].

Figure 1 illustrates the two most critical steps in image-guided AF care, namely,
segmentation and classification. In the medical workflow, the segmentation step is manually
performed by clinical experts. Manual segmentation of the structures of interests is labor-
intensive and suffers from high intra-observer and inter-observer variability. Following the
segmentation step, imaging biomarkers are measured through radiological interpretation
and clinical thresholding, which are subsequently used in the classification step to support
the diagnosis and prognosis of AF. In the medical workflow, classification is performed
using statistical approaches, such as scoring systems [9]. However, such methods are
based on sparse imaging biomarkers and non-imaging information, which may result in an
oversimplification of the actual scenario. Hence, in the medical workflow, intra-observer
and inter-observer variability reduces the accuracy and consistency of segmentation and
classification, presenting significant challenges for the diagnosis and management of AF in
terms of human resources and the reliability of results.
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with/without atrial fibrillation, AI—artificial intelligence, ML—machine learning, DL—deep learning.

Recent breakthroughs in artificial intelligence (AI) have had a profound impact on the
field of cardiovascular imaging [10], leading to substantial changes in image-guided AF care.
As illustrated in Figure 1, in the AI-based workflow, segmentation and classification are
carried out by deploying algorithms. Two forms of AI methodologies that can be employed
for this purpose include classical machine learning (ML) and deep learning (DL). A key
difference between the two lies in the type of input data they can process. Classical ML
models require handcrafted features, for example, the volume of an anatomical structure.
The handcrafted features used for an ML model are automatically extracted from images.
This type of input data is considered structured data. In contrast, DL uses neural networks
with multiple hidden layers to learn the features from the unstructured raw input data,
such as images or videos, without requiring handcrafted feature extraction [11]. Hence,
with the use of ML and DL algorithms, segmentation and classification can be performed
with high accuracy, efficiency, and reproducibility. Furthermore, DL can identify complex
patterns in imaging data, enabling direct diagnosis and prognosis of AF following image
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acquisition, constructing a highly accurate and efficient AI-based end-to-end workflow
(Figure 1).

In this review, we explore the role of AI in image-guided AF care. We specifically focus
on two AI-powered imaging tasks, namely, segmentation (Section 2) and classification
(Section 3), as they have been the primary focus of research so far. Moreover, we discuss
the future opportunities (Section 4) for further improvements in AI-assisted image-guided
AF care.

2. Artificial Intelligence for Segmentation

Segmentation is the process of identifying and outlining structures of interest in raw
images. The input for a segmentation task is raw images, and the output consists of
segmentation maps for the targeted structures/objects. The structure of primary interest in
patients with AF is the LA, as its volume has been associated with the prognosis of AF [6,7].
Furthermore, the LA is anatomically connected to the pulmonary veins (PVs), which have
long been recognized as the main sources of the triggers of AF [12]. Other structures of
interest include the substructures of the LA, such as the left atrial appendage (LAA) and
the mitral valve (MV). Due to the complex cardiac anatomy, clinicians face challenges in
using raw images for decision-making or treatment guidance. This makes segmentation a
critical preliminary step in the clinical workflow.

Figure 2 illustrates some examples of segmentation maps of the LA superimposed on
raw images of CT and MRI. An AI-based segmentation model performs segmentation by
categorizing each pixel of the input images as either belonging to the structure of interest
(foreground/positive) or not (background/negative). Table 1 provides a summary of se-
lected publications on AI-based segmentation methods for image-assisted AF care. Notably,
the definitions of the structure of interest differ among the datasets used by different publi-
cations. For instance, in the 2018 LA segmentation challenge (LASC) dataset [13], currently
the largest open-source dataset for LA segmentation on late gadolinium-enhanced MRI
(LGE-MRI) in patients with AF, the structure of interest was defined as the pixels within
the LA endocardial surface, including the MV and the LAA, as well as the extent of the PV
sleeves. In the datasets used in other selected publications, the definitions of the structure
of interest vary, including solely the LA [14,15] or various combinations of the LA and
its substructures [16–18] on contrast-enhanced CT (CECT) or LGE-MRI. In addition, Jin
et al. [19] proposed a model for the segmentation of the LAA on CECT, which is desirable
for LAA occlusion procedures [20].
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Table 1. Summary of publications on artificial intelligence for segmentation included.

Publication (Year) 1 Dataset 2 Framework Evaluation Metrics Highlights

Jin et al. (2018) [19] 150 3

LAA
- DSC, JSC

Transforming grayscale slices into pseudo color slices improves the spatial resolution
of local feature learning. A 3D CRF for post-processing uses the volumetric
information to improve 2D segmentation performance from the axial view.

Yang et al. (2018) [16] 100
LA, PVs TensorFlow DSC, accuracy,

sensitivity, specificity

Applying ConvLSTM to U-net learns the inter-slice correlation from the axial view.
Integration of the sequential information with the complementary volumetric

information from the coronal and the sagittal views improves 2D segmentation
performance from the axial view.

Xiong et al. (2019) [24] 2018 LASC 4 TensorFlow DSC, HD,
sensitivity, specificity

Using the unique dual-path architecture with local and global encoders results in
highly accurate segmentation of the LA.

Du et al. (2020) [25] 2018 LASC TensorFlow DSC, HD Gradual introduction of the DPM, MSCM, GBMPM, and the deep supervision
module to the framework improves segmentation performance in each addition.

Razeghi et al. (2020) [17] 207 5

Multilabel 6 TensorFlow DSC, accuracy, precision,
sensitivity, specificity

Using a variant of U-net for automated segmentation of the LA enables reproducible
assessment of atrial fibrosis in patients with AF. PV segmentation and MV

segmentation result in lower accuracy and higher uncertainty than LA segmentation.

Borra et al. (2020) [26] 7 2018 LASC Keras with
TensorFlow backend

DSC, HD,
sensitivity, specificity

LA segmentation using a 3D variant of U-net outperforms its 2D counterpart.
Significant decline in local segmentation accuracy observed in the regions

encompassing the PVs.

Liu et al. (2022) [27] 2018 LASC PyTorch DSC, JSC, HD, ASD SML structure and uncertainty-guided loss function improve local segmentation
accuracy on the fuzzy surface of the LA.

Grigoriadis et al. (2022) [18] 20 8

LA, PVs, LAA
TensorFlow-GPU and

Keras library
DSC, HD, ASD, rand

error index
Integration of attention blocks with variant of U-net for LA segmentation enhances

feature learning.

Cho et al. (2022) [14] 118
LA

PyTorch with
TensorFlow backend

DSC, precision,
sensitivity

Using active learning gradually improves the segmentation performance after each
step of human intervention with an initially small, labeled dataset.

Abdulkareem et al. (2022) [15] 337
LA TensorFlow DSC Adoption of a QC mechanism for segmentation enables automated and reproducible

estimation of the volume of LA.
1 Regular font or bold font indicates 2D or 3D segmentation was performed in the publication. 2 The dataset used in each publication. The number of scans and the substructures
encompassed in the defined label are provided for publications not using open-source datasets. Scans were acquired in patients with AF unless otherwise stated. Italic font or regular font
indicates the imaging modality of the dataset was CECT or LGE-MRI, respectively. 3 Source of scans was not given. 4 The 2018 LASC dataset includes a training subset and a testing
subset, comprising 100 and 54 LGE-MRI scans, respectively. The labels include the LA endocardium and the LA epicardium. Xiong et al. [24] used both the training and the testing
subsets and both the LA endocardium and the LA epicardium labels. The other three publications (Du et al. [25], Borra et al. [26], and Liu et al. [27]) using the 2018 LASC dataset only
had access to the training subset and the LA endocardium label. 5 Source of scans includes patients with AF (n = 187) and patients without AF (n = 20). 6 Labels were defined for the LA,
the combined structure of the PVs and the LAA, and the MV separately. 7 Both 2D and 3D segmentation were performed. 8. Scans were acquired in patients without AF.
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2.1. Methodologies

DL methods are employed for automated segmentation due to their ability to handle
unstructured data as input. A convolutional neural network (CNN) is a specific type of DL
method that is particularly adept at handling visual inputs, such as images [28]. CNN uses
convolution operators to capture the relationships between adjacent pixels and has been
used as the de facto method for medical image segmentation [29]. The methodologies of
AI-based segmentation models include the architectures and building blocks (Section 2.1.1)
of the CNNs, as well as the training process of the CNN-based segmentation models
(Section 2.1.2).

2.1.1. Architectures and Building Blocks

Since its emergence in 2015, U-net [30] has been a popular architecture for medical
image segmentation, and serves as the foundation for some of the state-of-the-art segmen-
tation models [31–33]. U-net uses a single-path encoder–decoder architecture, forming a
“U” shape, as illustrated in Figure 3a. The encoder consists of multiple convolution layers,
which facilitate feature learning while decreasing image resolution. The decoder generates
the output segmentation maps while restoring image resolution. Skip connections [34] are
introduced between the encoder and decoder in order to allow the fine details learned in the
encoder to contribute to the output segmentation maps. For LA segmentation, additional
building blocks were integrated with the U-net architecture to improve segmentation perfor-
mance. Table 2 provides a list of the important building blocks used with U-net architecture
for LA segmentation. Convolutional long short-term memory (ConvLSTM) [35] layers were
incorporated into the U-net [30] architecture to learn sequential information [16]. Batch
normalization [36] layers were inserted for accelerating model training [15,17,26], while
dropout [37] was adopted to prevent overfitting [15,26]. In addition, Grigoriadis et al. [18]
adopted ResUnet++ [32], which integrated squeeze-and-excitation [38] blocks in the en-
coder and atrous spatial pyramidal pooling (ASPP) [39], as well as attention [40] blocks in
the decoder.

Table 2. Important building blocks integrated with U-net architecture for left atrium segmentation.

Building Blocks Usage and Significance for Segmentation

ConvLSTM Integrated with U-net to connect the encoder and the decoder for learning the sequential information
between adjacent slices from the axial view [16].

Batch Normalization Applied in each convolutional layer before the activation function so that the segmentation models
are less sensitive to the initial parameters, therefore accelerating the training process [15,17,26].

Squeeze and Excitation An additional block included in each convolutional layer of ResUNet++ to adapt model response
according to feature relevance [18].

ASPP Connects the encoder and the decoder in the ResUNet++ architecture to facilitate multiscale
feature learning [18].

Attention Attention blocks in the decoder of the ResUNet++ architecture enhance focus on the essential region
of the input slices [18].

Dropout Prevents model overfitting so that the developed models are more generalizable to
unseen population [15,26].

While U-net has demonstrated its effectiveness in learning local features, its single-path
architecture can hinder its ability to capture larger-scale features. Xiong et al. proposed
AtriaNet [24], a model with a unique dual-path architecture for LA segmentation. As
illustrated in Figure 3b, AtriaNet uses a local encoder and a global encoder for feature
learning at local and global scales, both centralized on small image patches. The local
encoder collects detailed geometric information about the LA for each pixel within its
immediate vicinity. On the other hand, the global encoder gathers information on the
position and overall structure of the LA. In order to reduce the number of parameters in the
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global encoder, max pooling was applied in the first layer of the global encoder so that the
resolution of large input images could be decreased. The learned local and global features
were merged to generate the output segmentation maps for the small image patches.
Du et al. [25] also adopted the concept of a dual-path structure and multiscale feature
learning and proposed a segmentation model integrating dual-path modules (DPMs) and
multiscale context-aware modules (MSCMs) to facilitate multiscale feature learning.
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U-net [30] was originally designed for two-dimensional (2D) medical image seg-
mentation in a slice-by-slice manner. However, 2D segmentation from the axial slices
can overlook the valuable three-dimensional (3D) information of the LA. Yang et al. [16]
proposed a framework to utilize the 3D information, including the correlation between
adjacent axial slices and multiview information. First, the framework adopted the U-net
architecture, which used ConvLSTM [35] layers to connect the encoder and decoder. Sec-
ond, the framework utilized dilated residual learning to learn features from the sagittal and
coronal views. Methods for direct 3D LA segmentation [14,26,27] have also been proposed.
Borra et al. [26] demonstrated that the 3D variant of U-net outperforms its 2D counterpart
for LA segmentation. Liu et al. [27] designed their network with V-net [41], a 3D encoder–
decoder architecture for volumetric medical image segmentation, as the backbone. Their
design features a symmetric multilevel supervision (SML) structure, including auxiliary su-
pervision branches added to both the encoder and the decoder, with convolution attention
blocks inserted to connect the branches to the backbone. Furthermore, 3D LA segmentation
was also widely adopted in the 2018 LASC, as it was used in 8 out of the 15 submitted
CNN-based methods [13], including the winning model [42] that used 3D LA localization
as a preliminary step.

In summary, U-net [30] with its encoder–decoder architecture has been serving as the
foundation for state-of-the-art models for LA segmentation. Architectures with unique
designs, as well as building blocks, were used to improve segmentation performance,
primarily in terms of multiscale feature learning and utilizing the 3D information contained
in the volumetric images. In the next section, we explore how the state-of-the-art models
were trained to perform segmentation.
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2.1.2. Training Segmentation Models

Training segmentation models is as important as designing the architecture and build-
ing blocks. A segmentation model is trained to learn the mapping from the input images to
the output segmentation maps. Supervised learning is the dominant approach in the devel-
opment of AI models for segmentation, as indicated by the number of publications [43].
This approach requires labeled data that include both the input images and the correspond-
ing output segmentation maps, known as the ground truth. In the context of supervised
learning, a segmentation model is trained by minimizing a loss function, which measures
the deviation of the model output from the ground truth segmentation maps, thereby
optimizing the model’s parameters. Two types of loss functions are widely used for the
training of segmentation models. The first type refers to pixel-wise loss functions, including
cross-entropy loss and mean squared error loss. These losses penalize the deviation of the
model output from the ground truth at the pixel level. While pixel-wise loss functions are
straightforward to implement, they can struggle with class imbalance when segmenting
specific anatomical structures. A class imbalance arises when the volume of the structure
of interest occupies a significantly smaller volume than the overall image, resulting in
a disproportionate number of positive pixels compared to negative ones. For example,
the volume of LA in patients with AF normally lies within the range of 90–180 mL [15].
This range of LA volume is significantly lower than the volume of the field of view of a
routine cardiac CT or MRI scan, which is approximately 7000–8000 mL [13]. This huge class
imbalance might cause a pixel-wise loss function to be insensitive to segmentation errors
that are insignificant to the volume of the field of view yet significant to the LA volume.

One strategy to address the class imbalance during the training process of a segmen-
tation model is to use weighted pixel-wise loss functions. Alternatively, a second type of
loss function can be used, which penalizes the deviation of the model output from the
ground truth at the structural level. The most widely used structure-wise loss function
is Dice loss, which is defined using the Dice similarity coefficient (DSC), as illustrated in
Figure 4. DSC is a widely used metric for evaluating the performance of segmentation
models. A greater DSC indicates a higher level of agreement between the model output
and the ground truth segmentation, reflecting better overall model performance. There
are also hybrid loss functions that combine pixel-wise and structure-wise loss functions
to guide the training of segmentation models [14,19,25,27]. Specifically, Liu et al. [27]
proposed a loss function guided by the segmentation uncertainty, which was measured
by the Jensen–Shannon divergence between the predictions from the SML branches. The
final hybrid loss function combined the integration of a cross-entropy loss calibrated by the
Jensen–Shannon divergence and a Dice loss of both the SML branches.
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Enhancing the generalizability of a segmentation model may necessitate pre-processing
the raw images prior to feeding them into the model. Commonly used techniques for pre-
processing include image histogram equalization, image intensity normalization, and
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the use of filters for denoising. nnU-net [33] offers an automated solution for such pre-
processing techniques. Jin et al. [19] adopted a unique strategy for pre-processing that
involved multiscale retinex with color restoration [44] for image enhancement, followed by
the conversion of gray-level images to pseudo-color images, which improves the resolution
of local feature learning. Another pre-step frequently required for LA segmentation is
the detection or localization of the LA. LA detection can be useful for 2D LA segmen-
tation and involves the process of determining whether the LA is present on a 2D slice.
Grigoriadis et al. [18] and Abdulkareem et al. [15] performed LA detection manually and
using a DL-based classification model, respectively. Slices without the presence of the LA
were excluded before LA segmentation. LA localization, on the other hand, refers to the
process of defining a bounding box around the LA. There are various ways to perform LA
localization, such as defining manual fiducial points [19] or using Otsu’s algorithm [26].
DL-based methods can also be used to automate localization, as demonstrated by the
top-performing model [42] of the 2018 LASC [13].

Supervised learning can be hindered by the scarcity of labeled data. Data augmentation
is a technique used to address this issue by generating new samples from the existing ones,
thereby expanding the training set. For LA segmentation, data augmentation techniques
include elastic deformations, affine transformations, and warping [45]; the addition of
Gaussian noise and changing contrast via power law transformation [17]; and random
cropping [27] and intensity normalization [15]. An alternative approach to address the
issue of scarce labeled datasets is active learning [46], which was adopted by Cho et al. [14]
for LA segmentation using a human-in-the-loop strategy. This approach starts by training
the model on a small, labeled dataset and then gradually feeding the model subsets of
unlabeled samples in several stages. After each step, human experts modify the model
output, which is then combined with the previous training set to retrain the model.

In summary, structure-wise or hybrid loss functions can be used to address the class
imbalance when solely pixel-wise loss functions are used to guide the training of LA seg-
mentation models. Common preliminary steps of LA segmentation include pre-processing,
which improves the model generalizability, as well as LA detection and localization, which
reduce computational expense. To overcome the challenge of scarce labeled datasets, data
augmentation, and active learning can be adopted. In the next section, we explore how the
architectures, building blocks, and training approaches influence the performance of the
segmentation models.

2.2. Performance of Segmentation Models

The performance of a segmentation model has a direct impact on the subsequent
procedures and eventually influences the quality of clinical care. To assess the performance
of a segmentation model, various metrics are used to quantitatively evaluate the disagree-
ment between the output of the AI model and the ground truth, which is established by
human experts. These metrics can be broadly categorized into three types, namely, pixel-
wise metrics, similarity-based metrics, and metrics based on surface distance. Pixel-wise
evaluation metrics, including pixel-wise accuracy, precision, sensitivity, and specificity,
are frequently used and simple to compute. However, the use of pixel-wise accuracy and
specificity suffers from class imbalance. Specifically, publications [16,17,24,26] that reported
pixel-wise accuracy and specificity achieved >0.995 in both of these metrics, resulting from
the reliable exclusion of the background from the output segmentation maps. In contrast,
pixel-wise precision and sensitivity show the capabilities of the models to include the
foreground in the output segmentation maps and suffer less from class imbalance.

Similarity-based metrics are measured by the volume overlap between the output
segmentation maps generated by the models and the ground truth segmentation maps.
Besides DSC (Figure 4), which is frequently used for a comparison of the performance of
segmentation models [13,43], the Jaccard similarity coefficient (JSC), which is computed as
the intersection over the union of two volumes, can also be used. Both the pixel-wise and
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the similarity-based evaluation metrics lie within the range of [0, 1], and an increase in the
metric indicates an increase in segmentation performance.

Evaluation metrics based on surface distance evaluate the geometrical characteristics
of the output segmentation maps. These include Hausdorff distance (HD) and the average
surface distance (ASD), which are defined as the maximum and the mean local distance,
respectively. The local distance is defined as the minimum distance between a point on
the surface of the output to the ground truth segmentation map, for all the points on
the surface of the output segmentation maps. The evaluation metrics based on surface
distance fall in the range of [0, +∞), and a decrease in the metric indicates an increase
in segmentation performance. Notably, unlike other evaluation metrics, which measure
the global segmentation performance, HD is highly sensitive to local segmentation errors.
Additionally, metrics for clinically significant measurements, such as the diameter [24]
and the volume [14,15,26] of the LA, can also be used for evaluating the performance of
segmentation models.

Four of the papers reviewed [24–27] made use of the 2018 LASC dataset [13]. Among
the four papers, Xiong et al. [24] had access to the 54 labeled scans in the testing dataset of
the 2018 LASC dataset [13] and, thus, is not comparable to the other three papers. Having
proposed AtriaNet, Xiong et al. [24] achieved 0.940 and 0.942 in DSC for segmentation
of the LA endocardium and epicardium, respectively. The other three papers only had
access to and made use of the training dataset of the 2018 LASC dataset [13] and, hence, are
comparable. Table 3 provides the performance, in terms of DSC and HD, achieved in these
three papers. Du et al. [25] applied a 2D segmentation model with DPMs, MSCMs, gated
bidirectional message passing modules (GBMPMs), and deep supervision mechanisms,
achieving top performance in terms of DSC. Borra et al. [26] used variants of U-net [30]
that included batch normalization [36] layers and performed both 2D and 3D segmentation.
The 3D segmentation outperformed its 2D counterpart in terms of both DSC and HD and
achieved top performance among the three publications in terms of HD. Liu et al. [27]
proposed a unique methodology, using a V-net [41] architecture with an SML structure and
trained with an uncertainty-guided loss function for 3D segmentation.

Table 3. Comparison of segmentation performance of the selected publications using the 2018 left
atrium segmentation challenge dataset.

Publication (Year) Architecture DSC HD (mm)

Du et al. (2020) [25] 2D framework comprising DPM,
MSCM, and GBMPM. 0.94 11.89

Borra et al. (2020) [26] 3D variant of U-net. 0.91 8.34

Liu et al. (2022) [27] 3D network based on V-net with
integrated SML structure. 0.92 11.68

Because of the various datasets and definitions of labels used in other reviewed papers,
their segmentation performance is not directly comparable. Instead, we discuss the key
factors that influence the performance of the segmentation models.

Post-processing is a step that uses established knowledge to modify the output segmen-
tation maps generated by the segmentation model so that the segmentation performance
can be improved. General post-processing operations used include applying a Gaussian
filter or selecting only the largest connected tissue in 3D to represent the final LA segmenta-
tion. Interestingly, Borra et al. [26] reported that the use of 3D LA segmentation reduces the
need for post-processing by 10% when compared to its 2D counterpart, demonstrating the
potential superiority of 3D segmentation. Jin et al. [19] used a 3D conditional random field
(CRF) [47] as a post-processing technique to improve the reconstructed 3D LAA volume
after 2D LAA segmentation, resulting in a DSC of 0.9476. By exploiting the 3D spatial
relationship between adjacent axial slices, their method corrected erroneous outputs with
isolated regions or gaps in the 2D output segmentation maps.
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Using data augmentation and active learning to address the issue of scarce labeled
datasets improves segmentation performance. Xiong et al. [24] discovered that by a using
data augmentation technique that warps 50% of the initial data, the performance of the
model was enhanced by 0.005 in terms of DSC. Cho et al. [14] used active learning for LA
segmentation with an initially small, labeled dataset. An increase in DSC was seen after
each step with human intervention, with the DSC improved from 0.85 to 0.89 to 0.90.

The impact of individual components of a proposed method can be evaluated by
systematically removing these components and observing the impact on the model’s
performance. Du et al. [25] enhanced its architecture by gradually introducing DPMs,
MSCMs, GBMPMs, and a deep supervision mechanism, resulting in an improved DSC with
each addition. Liu et al. [27] compared their proposed model with two other segmentation
models. The first model had only an auxiliary supervision branch added to the decoder,
while the second model had an SML structure but lacked an uncertainty-guided loss
function. Their results indicated that incorporating an auxiliary supervision branch to
the encoder improved both DSC and HD, while additionally including an uncertainty-
guided loss function further improved the segmentation of the fuzzy surface of the LA, as
illustrated in Figure 5a, leading to a reduction in HD.
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Figure 5. Visualization of the output segmentation maps superimposed on axial slices of late
gadolinium-enhanced magnetic resonance imaging scans. (a) Comparison of the output segmentation
maps. The green contours and the blue masks represent the ground truth and the model’s output
segmentation maps, respectively. From left to right: the model with both the symmetric multilevel
supervision (SML) structure and the uncertainty-guided loss function, the model with only the SML
structure, and the model with only an auxiliary supervision branch added to the decoder. Red
arrows point out disagreements between the model output and the ground truth. (b) This shows
a decline in segmentation accuracy in the vicinity of the pulmonary veins. (A–F): axial slices 15%,
25%, 40%, 60%, 75%, and 85% along the longitudinal axis of the left atrium. The green, red, and
blue contours represent the segmentation maps of the ground truth, 2-dimensional segmentation
model, and 3-dimensional segmentation model, respectively. The 2-dimensional segmentation model
completely failed on the slice 85% along the axis. Figure source: (a) [27], (b) [26].
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While high performance in LA segmentation has been demonstrated by state-of-
the-art segmentation models, suboptimal segmentation performance has been reported
by multiple papers [17,25,26] in regions containing substructures of the LA. Specifically,
Razeghi et al. [17] and Borra et al. [26] reported local segmentation performance in regions
containing the PVs and the MV. Razeghi et al. [17] conducted 2D segmentation of the LA,
MV, and PVs separately. While LA segmentation resulted in a DSC of 0.91 ± 0.02, which
is consistent with the other state-of-the-art segmentation models, the segmentation of the
PVs and the MV resulted in a DSC of 0.61 ± 0.08 and 0.73 ± 0.08, respectively, showing
a decline in overall segmentation performance. Similarly, Borra et al. [26] examined the
segmentation performance of the LA along its longitudinal axis, which was divided into
three sub-volumes: adjacent to the MV, containing the LA body, and encompassing the
PVs. While DSC remained relatively stable in the middle sub-volumes containing the
LA body, a significant decrease was observed in the sub-volumes adjacent to the MV
and encompassing the PVs. In these sub-volumes, 2D segmentation exhibited a greater
decrease in performance compared to 3D segmentation, with a notably low DSC observed
in the sub-volume containing the PVs, as shown in Figure 5b. Furthermore, Liu et al. [27]
demonstrated that using V-net [41] resulted in high segmentation uncertainty in the regions
with the PVs, while the addition of the SML structure as well as the uncertainty-guided
loss function reduced the segmentation uncertainty. The PVs play a critical role in the onset
of AF [12], but their shapes are highly complex and vary significantly between patients.
In patients selected to receive catheter ablation, the most frequently practiced technique
is PV isolation, which aims to electrically isolate the triggers in the PVs from the LA [8].
For the safety and effectiveness of PV isolation, it is crucial that the PVs can be segmented
accurately. Future research should explore more accurate segmentation techniques to
address the challenging shape of the PVs.

Finally, we found out that although not directly comparable, the segmentation of
the LA and its substructures, performed on LGE-MRI, resulted in higher segmentation
performance than segmentation performed on CECT. Specifically, the segmentation of the
LA, including the PVs, on LGE-MRI typically resulted in a mean DSC over 0.9 [24–27], with
the sole exception of the publication by Yang et al. [16], which achieved a mean DSC of
0.897 ± 0.053. In contrast, the segmentation of the LA, including the PVs, on CECT resulted
in a mean DSC of 0.80 [18]. Similarly, when focusing on the segmentation of solely the LA,
the mean DSCs were 0.91 and 0.885 on LGE-MRI [17] and CECT [15], respectively, with
similar segmentation models based on variants of U-net [30]. Because of the differences
in the physics of image acquisition, LGE-MRI provides higher contrast when imaging the
heart, resulting in higher image quality in terms of the signal-to-noise ratio, which is more
desirable for AI-based segmentation models [13].

In summary, pixel-wise metrics, similarity-based metrics, and metrics based on surface
distance can be used for the evaluation of LA segmentation models. Post-processing, data
augmentation, and active learning techniques, as well as unique designs in model architec-
ture and loss function, improve segmentation performance. Segmentation performance is
also influenced by the type of structures contained in the regions of interest, as well as the
imaging modalities. Relatively high performance has been achieved for the segmentation
of the LA body on LGE-MRI. However, accurate segmentation of the substructures of the
LA, especially the PVs, remains a challenge. In addition, more robust segmentation models
need to be developed so that the performance of segmentation performed on CECT scans
can approach the performance achieved on LGE-MRI scans.

3. Artificial Intelligence for Classification

Classification involves assigning samples to one or more predefined categories based
on some observed characteristics or features. These samples could be a group of patients,
or the acquired images of the group of patients. The categories could represent the presence
or absence of a disease, or different subtypes of a disease. A taxonomy of AI-based
classification for AF is illustrated in Figure 6. We can broadly categorize classification into
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the diagnosis and prognosis of AF. Table 4 provides a summary of publications on AI-based
classification methods for image-assisted care of AF.
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3.1. Feature Engineering

When ML methods are used for classification, handcrafted features are extracted
and selected from images as well as non-imaging information in a process named feature
engineering. The feature engineering process is a crucial preliminary step for the image-
guided characterization of AF. Handcrafted features can be categorized into four types:
imaging biomarkers, radiomic features, biophysical modeling features, and non-imaging
features. Imaging biomarkers are clinically recognized features that can serve as indicators
of cardiac function or physiology [48]. These imaging biomarkers are typically extracted
from the segmentation of the structures of interest. For patients with AF, an example of an
imaging biomarker is the volume of the LA, which has been identified as a predictor for the
successful restoration of sinus rhythm through PV isolation [6] as well as for post-ablation
AF recurrence [7]. The extraction of imaging biomarkers has been significantly enhanced
by AI-based segmentation methods [13].
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Table 4. Summary of publications on artificial intelligence for classification included.

Publication (Year) Classification Task 1 Imaging Modality Evaluation Metrics AUC 2 Highlights 3

Shade et al. (2020) [49]
Recurrent AF prediction

AF+ (n = 12)
AF− (n = 20)

LGE-MRI AUC, sensitivity,
specificity 0.82

Quadratic discriminant analysis with radiomic and
biophysical modeling features.

Contribution of biophysical modeling features is
significantly greater than radiomic features. Using

biophysical modeling features enables accurate
recurrent AF prediction even with a small dataset.

Vinter et al. (2020) [50]

Electrical cardioversion
success prediction

TTE AUC

0.60 (0.54–0.67)
Logistic regression with imaging biomarkers and

non-imaging features.
Sex-specific classification models achieved

suboptimal performance in electrical
cardioversion success prediction.

Women
Success (n = 149)
Failure (n = 183)

Men
Success (n = 394)
Failure (n = 396)

0.59 (0.55–0.63)

Liu et al. (2020) [51]

AF Trigger origin
stratification 4

Only PV trigger (n = 298)
With non-PV trigger (n = 60)

CECT AUC, accuracy,
sensitivity, specificity 0.88 ± 0.07

ResNet34-based model identifies patients
with non-PV triggers of AF from

axial CECT slices.
Decision making of the model is based on

morphology of the LA, right atrium (RA), and PVs.

Zhou et al. (2020) [52]
Incident AF prediction

AF+ (n = 653)
AF− (n = 3656)

TTE AUC, area under the
precision-recall curve 0.787 (0.782–0.792)

Logistic regression with imaging biomarkers and
non-imaging features.

Age is the sole predictive variable for incident AF
prediction in oncology patients. Time-split data

ensures model generalizability.

Hwang et al. (2020) [53]
Recurrent AF prediction

AF+ (n = 163)
AF− (n = 163)

TTE AUC, accuracy,
sensitivity, specificity 0.861

CNN-based model outperforms ML model in
prediction of post-ablation AF recurrence when

using curved M-mode images of global strain and
global strain rate generated from TTE.
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Table 4. Cont.

Publication (Year) Classification Task 1 Imaging Modality Evaluation Metrics AUC 2 Highlights 3

Firouznia et al. (2021) [54]
Recurrent AF prediction

AF+ (n = 88)
AF− (n = 115)

CECT AUC 0.87 (0.82–0.93)

Random forest with radiomic
and non-imaging features.

AF induced anatomical remodeling of the LA and
PVs is associated with increased roughness in the

morphology of these structures.

Matsumoto et al. (2022) [55]
AF detection 5

AF+ (n = 1724)
AF− (n = 12144)

Radiography

AUC, accuracy,
precision, negative

predictive value,
sensitivity, specificity

0.80 (0.76–0.84)

Classification model based on EfficientNet
identifies patients with AF from

chest radiography.
Regions that received more attention are the LA (the

most) and the RA (the 2nd most) regions.

Zhang et al. (2022) [56]

AF detection 6

CECT AUC, accuracy,
sensitivity, specificity

0.92 (0.84–1.00) Random forest with radiomic features.
ML classification models identify patients with AF

from EAT on chest CECT and CT.
n = 200

n = 300 CT 0.85 (0.77–0.92)

Roney et al. (2022) [57]
Recurrent AF prediction

AF+ (n = 34)
AF− (n = 65)

LGE-MRI AUC, accuracy,
precision, sensitivity 0.85 ± 0.09

SVM with PCA model, with imaging biomarker,
biophysical modeling, and non-imaging features.

ML classification model enables personalized
prognosis of AF after catheter ablation

Yang et al. (2022) [58]

AF subtype stratification
PAF (n = 207)

PeAF (n = 107)
CECT

AUC, accuracy,
sensitivity, specificity

0.853 (0.755–0.951) A nomogram integrating imaging biomarkers and
radiomic features.

Recurrent AF prediction
AF+ (n = 79)AF− (n = 235) 0.793 (0.654–0.931)

Random forest with radiomic features.
Radiomic features based on first order and texture
correlate with the inflammatory tissue in the atria.

Dykstra et al. (2022) [59]
Incident AF prediction

AF+ (n = 314)
AF− (n = 7325)

LGE-MRI AUC 0.80/0.79/0.78 7

Random survival forests with imaging biomarkers
and non-imaging features.

Time-dependent risk prediction of incident AF in
patients with cardiovascular diseases.
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Table 4. Cont.

Publication (Year) Classification Task 1 Imaging Modality Evaluation Metrics AUC 2 Highlights 3

Hamatani et al. (2022) [60]
Incident HF prediction

HF+ (n = 606)
HF− (n = 3790)

TTE
Radiography

AUC, accuracy,
sensitivity, specificity 0.75 ± 0.01

Random forest with imaging biomarkers and
non-imaging features.

Importance of imaging biomarkers extracted from
TTE for incident HF in patients with AF.

Pujadas et al. (2022) [61]
Incident AF prediction

AF+ (n = 193)
AF− (n = 193)

MRI AUC, accuracy,
sensitivity, specificity 0.76 ± 0.07

SVM with radiomic and non-imaging features.
Radiomic features based on shape and texture

correlate with chamber enlargement and
hypertrophy predispose AF, adverse changes in

tissue composition of the myocardium, as well as
LV diastolic dysfunction.

1 The classification task and the number of samples in each class of each publication. Classification was performed on patient level unless otherwise stated. 2 AUC achieved in the top
performing model of each publication. The original values of AUC reported in the publications are provided. The AUCs are provided as AUC, AUC (95% confidence interval), or
AUC ± standard deviation. The AUCs are not directly comparable since different datasets were used for different classification tasks. 3 Highlights provide (1) the top-performing model
and the categories of features selected for ML-based model; (2) the key findings. 4 Original classification was performed on slice level. Patient-level classification was acquired by
aggregating all slice-level decisions for each patient. 5 Classification was performed on scan level. 6 Number of patients in each class (AF+/AF−) not given. 7 Time-dependent AUC at
1 year/2 years/3 years.
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Radiomic features are high-level features that are typically not clinically recognized,
nor can they be identified or evaluated with the naked eye. They are quantitative features
that can be extracted from images through mathematical operations. The process of
automated extraction of a large number of radiomic features is known as radiomics [62].
Radiomic features can be classified as first-order features, shape features, and texture
features, as illustrated in Figure 7a. First-order features are based on the image histogram,
shape features are based on the geometry of the structures studied, and texture features
are based on the spatial distribution of the pixels [61]. Standardized definitions and
validated reference values have been provided for a set of radiomic features [63], which
can be extracted using open-source platforms, such as PyRadiomics [64] and QMaZda [65].
Radiomic features can be based on the fractal dimension of object structures, which provides
a quantitative measure of their roughness [66]. An example of such a feature is the variation
in the ratio of fractal dimension as the image resolution decreases, which is determined
by the number of cells of different sizes needed to cover the boundary of the structure, as
illustrated in Figure 7b.
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Figure 7. Visual illustration of radiomic features. (a) From left to right: radiomic features based on
first-order, shape, and texture features. (b) A two-dimensional representation of a radiomic feature
based on the fractal dimension of the structure of interest. This feature can be calculated as the
difference in the number of cells of various sizes to cover the entire boundary of the structure of
interest on a two-dimensional slice.

In addition to imaging biomarkers and radiomic features, which can be extracted from
raw images, the established knowledge of cardiovascular anatomy and electrophysiology
(EP) can be integrated into biophysical modeling of the LA, which can be constructed from
LGE-MRI [67,68]. Examples of features extracted from biophysical modeling include the
number of reentrant drivers and macroreentrant atrial tachycardias observed within N
most predictive anatomic regions [49] and dominant frequency measured 2 s post-ablation
for various simulation set-ups [57]. Open-source platforms, such as openCARP [69], sup-
port simulations of AF, from which features can be extracted. Furthermore, non-imaging
features extracted from electronic health records, laboratory tests, and patient health ques-
tionnaires also hold significance and can play a crucial role as complementary variables in
classification tasks.

The number of features extracted from images can be large, especially in the case of
radiomic features, where the count can exceed hundreds [62]. Ensuring effective feature
selection is critical to avoid the curse of dimensionality. It helps reduce computational
complexity, minimize the generalization error, and enhance the clinical explainability of
the model [61]. Reproducibility is a vital aspect to consider when selecting radiomic
features extracted from CT [70] or MRI [71]. The intraclass correlation coefficient with
a cut-off value of 0.8 is commonly used for reproducibility tests. In addition, mutual
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information with a cut-off value of 0.05 [58] can be used to test the independency of
radiomic features. A few methods, such as sequential feature forward selection [72],
SHapley Additive exPlanations [73], and Boruta [74], can be used for selecting the most
discriminative features, i.e., features that have the highest statistical significance based on
their P-values. Alternatively, features that exhibit a strong correlation with the classification
task can be selected based on clinical expertise [50].

In summary, feature engineering is a crucial step in classification in image-guided care
of AF. Handcrafted features, including imaging biomarkers, radiomic features, biophysical
modeling features, and non-imaging features, provide valuable information about cardiac
function and structure, as well as patient history. Effective feature selection is essential to
manage a large number of features, improve computational efficiency, and enhance clinical
interpretability. In the next section, we explore the application of AI for the diagnosis of
AF, including the use of ML models that require feature engineering, as well as the use of
end-to-end DL models.

3.2. Artificial Intelligence for Diagnosis

Diagnosis includes detecting the presence of a disease and disease stratification. Mat-
sumoto et al. [55] proposed an end-to-end approach for detecting AF in chest radiography.
In their study, they used EfficientNet [75], a highly efficient and accurate CNN model. To
facilitate feature learning, they leveraged a large dataset consisting of 7000 patients and
13,000 2D radiographs and achieved an area under the curve (AUC) of 0.80 (95% confi-
dence interval (CI), 0.76–0.84). The relationship between obesity and an increased risk of
AF [76] has been established, and research suggests that epicardial adipose tissue (EAT)
significantly contributes to the development of AF substrates [77]. In a study conducted by
Zhang et al. [56], EAT was investigated using CECT and non-enhanced CT. Through the
utilization of radiomic features as inputs for random forest models, they yielded impressive
results in AF detection, with AUCs of 0.92 (95% CI, 0.84–1.00) and 0.85 (95% CI, 0.77–0.92)
for CECT and non-enhanced CT, respectively.

Based on the presentation, duration, and spontaneous termination of AF episodes,
patients with AF can be stratified into having paroxysmal AF (PAF) or persistent AF (PeAF).
In a study by Yang et al. [58], ML models were developed to distinguish between patients
with PAF and PeAF based on EAT derived from CECT, whereby the most effective model
was a nomogram that integrated imaging biomarkers and radiomic features, with an AUC
of 0.853 (95% CI, 0.755–0.951). The imaging biomarkers included the volume of the LA,
the volume of EAT, and the volume of EAT surrounding the LA. This integrated approach
demonstrated superior performance in distinguishing between PAF and PeAF subtypes.

Patients diagnosed with AF can also be stratified based on the origin of triggers, distin-
guishing between those with only PV triggers and those with non-PV triggers. Prognosis
and optimal treatment strategies vary depending on the absence/presence of non-PV trig-
gers. For patients with only PV triggers, PV isolation is the preferred strategy for rhythm
control; however, for patients with non-PV triggers of AF, receiving PV isolation as the sole
strategy would likely lead to AF recurrence. Liu et al. [51] proposed a DL-based method to
differentiate between patients with only PV triggers and those with non-PV triggers of AF.
They employed a 34-layer residual network [34] to perform 2D image classification on axial
slices of CECT. Their approach improved the classification performance by aggregating the
decisions of all axial slices for a patient (AUC 0.88 ± 0.07), instead of performing slice-wise
classification (AUC 0.82 ± 0.01).

AF can often go undetected until an adverse event occurs, such as a stroke. Al-
though AF screening can facilitate early diagnosis, current clinical guidelines lack sufficient
evidence to support the potential health benefits associated with ECG-based AF screen-
ing [78,79]. Chest radiography and CT are imaging modalities commonly used for screening
for lung cancer and pulmonary diseases [80]. Because of the availability of datasets in
chest radiography [55] and CT [80], AI can help screen for AF using chest scans. Specifi-
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cally, novel DL-based methods [51,55] enabled the diagnosis of the abnormality of cardiac
electrical activity from a 2D visualization of the cardiac anatomy.

In summary, researchers have explored AI-powered approaches for the diagnosis
of AF, including AF detection and subtype stratification. When using ML models, EAT
is an important source for extracting handcrafted features. With the development of DL
algorithms, there is a potential promising feature of screening for AF using chest scans, as a
complementary strategy to ECG-based methods for the diagnosis of AF.

3.3. Artificial Intelligence for Prognosis

Prediction models for incident AF have been developed in patients at risk of AF [52,59],
as well as in the general population [61]. Cardiotoxicity induced by cancer therapy [81]
poses a risk for cancer survivors, who may develop AF [82]. For example, Zhou et al. [52]
developed ML models to predict incident AF in cancer survivors and achieved an AUC of
0.787 (95% CI, 0.782–0.792). They used time-split data: the patients who received treatments
for cancer before or after a specific date were assigned to datasets for training and testing,
respectively. This approach ensures independence between the training and testing sets,
enhancing the generalizability of the models. Similarly, Dykstra et al. [59] developed
ML models to predict incident AF in more than 7000 patients with other cardiovascular
diseases, who were also at an elevated risk of developing AF. Both imaging biomarkers
and non-imaging features were used in the study. The top-performing model, a random
survival forest, incorporated several imaging biomarkers including the volume of the LA,
the end-diastolic and end-systolic volume of the left ventricle (LV) and right ventricle, the
mass of the LV, and all indexed to body surface area. Additionally, left ventricular ejection
fraction (LVEF), significant valve heart disease, LV cardiac output, and bicuspid aortic valve
were also included in the model. This model demonstrated the ability to predict incident
AF with time-dependent AUCs of 0.80, 0.79, and 0.78 at 1, 2, and 3 years after LGE-MRI
acquisition, respectively. Pujadas et al. [61] predicted incident AF in the participants of the
UK Biobank imaging enhancement [83]. Using radiomic and non-imaging features with
a support vector machine (SVM) model, an AUC of 0.76 ± 0.07 was achieved. Moreover,
Pujadas et al. [61] found the information contained in the imaging biomarkers and the
radiomic features to be correlated, as both of these two types of features contain information
on the anatomic characteristics of the imaged patients. Specifically, a strong correlation was
observed between the imaging biomarkers and the radiomic features related to size, the
local uniformity, and shape [61]. This finding potentially suggests that imaging biomarkers
are the least important category of features when radiomic features are used to predict
incident AF.

HF is one of the complications of AF, and Hamatani et al. [60] developed a prediction
model for incident HF in patients with AF. Imaging biomarkers and non-imaging features
were extracted from the Fushimi AF Registry [84], which consists of a cohort of more than
4000 patients. The top-performing model, based on a random forest algorithm, incorporates
various imaging biomarkers including cardiothoracic ratio extracted from chest radiogra-
phy, as well as LVEF, left ventricular end-systolic diameter, and left ventricular asynergy
extracted from transthoracic echocardiography (TTE). Comparing the model proposed by
Hamatani et al. [60] to the renowned Framingham HF risk model [85], it demonstrated
significantly superior performance in terms of AUC (0.75 vs. 0.67), indicating improved
predictive accuracy for incident HF in patients with AF.

The prediction of AF recurrence is associated with rhythm control procedures in pa-
tients diagnosed with AF [8]. AI has been applied to predict both the procedural success
as well as the postprocedural recurrence of AF. Electrical cardioversion is a non-invasive
procedure used for rhythm control in patients with AF. For example, Vinter et al. [50] de-
veloped a gender-specific model to predict the success of electrical cardioversion. Imaging
biomarkers, including LVEF and the diameter of the LA, along with non-imaging features,
were used to develop ML models for women and men, but neither of the models achieved
satisfactory performance. The top-performing models for women and men yielded AUCs
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of 0.60 (95% CI, 0.54–0.67) and 0.59 (95% CI, 0.55–0.63), respectively [50]. It remains unclear
whether the relevance of the extracted features was low or if the procedural outcome of the
electrical cardioversion is inherently unpredictable.

Compared to the model that predicts the success of electrical cardioversion, models
that predict the postprocedural recurrence of AF have been shown to achieve much higher
performance. The recurrence of AF after catheter ablation is driven by a complex interaction
of various factors, and the prediction of AF recurrence is desirable for postprocedural risk
assessment. Biophysical modeling of the LA can be constructed by integrating established
knowledge of EP and LGE-MRI scans. For example, Shade et al. [49] built models to predict
AF recurrence using a small cohort of 32 patients. The highest performance (AUC = 0.82)
was achieved by combining imaging features and features extracted from biophysical
modeling. However, only a minimal drop in performance was observed when only features
from biophysical modeling were used (AUC = 0.81). Moreover, the drop in performance
was significant when only imaging features were used (AUC = 0.47). This potentially sug-
gests that integrating existing knowledge into ML-based classification models can reduce
the number of labeled samples required for developing an accurate classification model.
Similarly, Roney et al. [57] proposed a prediction model based on SVM with principal com-
ponent analysis (PCA) using imaging biomarkers, biophysical modeling, and non-imaging
features, and achieved an AUC of 0.85 ± 0.09. The extraction of biophysical modeling
features requires significant domain knowledge in EP. For a prognosis of AF, classification
models using biophysical modeling features may achieve satisfactory performance even
with small datasets. Shade et al. [49] and Roney et al. [57] used datasets consisting of less
than 100 patients, in contrast to the primarily data-driven models that use datasets with
hundreds to tens of thousands of patients.

The morphological remodeling of the LA and its substructures, induced by AF, ex-
hibits self-similar properties that can be quantitatively evaluated. For example, Firouz-
nia et al. [54] extracted radiomic features based on the fractal dimension of the LA and its
substructures. The highest performance of 0.87 (95% CI, 0.82–0.93) was achieved using a
random forest model that incorporated radiomic features extracted from the LA and all its
substructures, along with non-imaging features. This model outperformed the models that
only included subsets of these features. Hwang et al. [53] proposed a method based on a
CNN to predict AF recurrence. Curved M-mode images of global strain and global strain
rate were generated from postprocedural TTE. When using images of global strain and
global strain rate from the four-chamber view, the DL-based prediction model achieved
the highest performance (AUC = 0.861), outperforming the ML-based prediction model,
which utilized a combination of handcrafted features. Notably, the TTEs were acquired
post-ablation, which differs from other publications predicting AF recurrence using images
acquired pre-ablation. Images acquired post-ablation contain relevant information about
the ablation and can potentially be more predictive.

Various approaches have been used for post-ablation patient follow-up, which intro-
duces challenges in the prognosis of AF. While cardiac implantable electronic devices offer
the most accurate approach for follow-up due to their ability to provide continuous and
remote monitoring of heart rhythm, they are not offered to every patient with AF who has
undergone catheter ablation. The general approach includes routine check-ups at specific
time points post-ablation, along with additional examinations for symptoms, using ECG or
Holter monitoring. A 3-month blanking period is typically considered when predicting
AF recurrence after catheter ablation, but the timing of scheduled routine examinations
varies across publications. Table 5 provides a summary of the follow-up approaches used
in the publications. Furthermore, Yang et al. [58] reported the prescription of antiarrhyth-
mic drugs for 8 weeks post-ablation, which was not reported by other authors and can
potentially introduce bias to the observed outcome.
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Table 5. Summary of various assessments used for post-ablation patient follow-up in prognosis of
atrial fibrillation.

Publication (Year) Routine Assessments (Post-Ablation) Symptomatic Assessments

Shade et al. (2020) [49] 3, 6, and 12 months Yes

Vinter et al. (2020) [50] 3 months Yes

Hwang et al. (2020) [53] 1 week; 1, 3, and 6 months; and every 3–6 months Yes

Firouznia et al. (2021) [54] 3, 6, and 12 months * Not specified

Roney et al. (2022) [57] 2–4 appointments over 1 year Not specified

Yang et al. (2022) [58] Not specified

* Assessments were performed using integrated clinical assessments and automated patient-reported out-
come [86].

In summary, AI-based methods can be used for the prediction of incident AF in
different populations, as well as for the prediction of incident HF, a complication of AF.
Furthermore, outcomes after rhythm control procedures, including electrical cardioversion
and catheter ablation, can be predicted with AI. However, a lack of consistency in follow-
up methods was observed in the selected publications, suggesting large, open-source
datasets with standardized follow-up strategies are desired for constructing more robust
and generalizable AI models.

4. Future Directions

Despite the promising applications of AI in image-guided care of AF, there are still
challenges to overcome and opportunities for improvement. In this section, we discuss the
future directions of AI research for image-guided care of AF. Three aspects are covered:
utilizing unlabeled datasets and improving model generalizability (Section 4.1), build-
ing better AI models with cutting-edge computational methods and imaging modalities
(Section 4.2), and boosting the clinical applicability of AI models (Section 4.3).

4.1. Unlabeled Datasets and Generalizability

The current models for both segmentation and classification in image-assisted care
of AF are mostly developed through supervised learning, which requires labeled datasets.
However, the majority of medical images are unlabeled [87], which hinders their use.
Creating labeled datasets in medical imaging demands significant resources and is costly
to execute on a large scale [87]. Additionally, the process of creating some labels may
introduce bias or inconsistency, as observed in the various approaches used for patient
follow-up post-ablation.

To utilize the vast number of unlabeled datasets of medical images, novel approaches
for developing AI models that are not fully supervised have been proposed. These ap-
proaches include self-supervised learning and weakly supervised learning. Self-supervised
learning leverages datasets with a large portion of unlabeled samples and a small portion
of expert-labeled samples. The unlabeled samples are used to create a pretext task, wherein
an AI model is pre-trained. For example, a model for cardiac chamber segmentation can be
pre-trained by predicting anatomical positions [88], which can be automatically defined.
By pre-training the segmentation model, it learns the underlying structure of the data. A
model pre-trained is known as a featurizer, and when later trained for the downstream task
with a small, labeled subset using a fully supervised approach, it can potentially achieve
equivalent performance to AI models trained directly using a fully supervised approach
with large, labeled datasets [87]. On the other hand, weakly supervised learning trains AI
models with weak labels using a fully supervised approach. Compared to strong labels,
which are used for regular supervised learning, weak labels require significantly fewer
human resources to create. For example, segmentation requires pixel-wise segmentation
maps as the strong labels, which are difficult to create on a large scale. Weak labels for
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segmentation can be points [89], scribbles [90], and bounding boxes [91]. A special type
of weak label for segmentation is pseudo segmentation maps, which can be generated by
gradient-weighted class activation mapping (Grad-CAM) [92] heatmaps resulting from DL-
based image classification tasks [93]. Both self-supervised learning and weakly supervised
learning require less human input compared with supervised learning to create labeled
datasets and provide alternative solutions to overcome the scarcity of labeled data.

Given the challenges associated with creating large, labeled datasets, most of the publi-
cations reviewed relied on a single-institutional dataset for model development. The 2018
LASC dataset [13], which is currently the largest open-source dataset for LA segmentation
on LGE-MRI, consists solely of patients enrolled at the University of Utah [94,95]. Typically,
a portion of the dataset is held back from the model until model testing. However, if the
model is not tested on a completely independent dataset, there could be potential issues
with the generalizability of the model.

Models that are highly generalizable are typically evaluated on a completely inde-
pendent dataset, for example, from a different population [96]. When such ideal settings
are not available, splitting the dataset based on a specific time point [52] can serve as a
suboptimal approach, in comparison to randomly assigning available samples into training
and testing sets. Using time-split datasets can address the issue of generalizability to
some extent, as it mimics the process of developing and clinically adopting AI models.
However, this approach does not guarantee that the developed model will generalize well
to different populations. Therefore, we encourage the creation of large, multi-institutional,
open-source datasets, ideally derived from diverse patient populations and on equipment
from different manufacturers. Importantly, domain experts should establish the ground
truth labels using the same criteria. For example, the ground truth segmentation maps
should be created using the same definitions to ensure the structures included in the labels
created by different experts are consistent. Similarly, labels created for classification should
ideally be acquired using the same approach for diagnosis or outcome assessments.

4.2. Cutting-Edge Methods and Modalities

Convolution layers have been instrumental in the success of CNN for image-related
tasks [28]. CNN is currently used as the de facto model for segmentation and classification
tasks based on DL [29]. Using local receptive fields, CNN-based models can effectively
extract the correlation between adjacent pixels and learn the important imaging features
at local scales. While CNNs are increasingly used to capture multiscale imaging features,
particularly at a global level [24], this approach can result in a loss of information when
local receptive fields are applied on a larger scale. Recently, vision transformer (ViT) [97]
has gained traction in the field of medical imaging. ViT was inspired by the advances in
natural language processing [40]. By splitting an image into multiple patches of sub-images
and applying flattening operators, ViT can effectively extract the correlation between
non-adjacent pixels and learn global imaging features without losing information due to
degrading spatial resolution. Hybrid CNN-ViT architectures [27,32] have been proposed,
which integrate attention blocks [40] into CNN-based structures. The potential of these
hybrid models to outperform purely CNN-based models, especially for segmentation
tasks [98,99], has been demonstrated. Furthermore, pre-training of ViT-based models on
large-scale datasets is necessary to learn the underlying structure of data [97], and self-
supervised learning can facilitate and enhance this process. Although the applications of
ViT in image-guided care of AF are currently limited, they show promising potential for
the future.

TTE, CT, and MRI are the cardiovascular imaging modalities that patients with AF
might undergo to monitor the condition [4]. While the use of nuclear imaging modalities is
less common, recent studies have indicated that positron emission tomography (PET)-CT
could have a valuable role in detecting local inflammation in the atria in AF patients [100],
as well as in assessing AF severity and predicting the success of ablation procedures [101].
In addition, electroanatomic mapping (EAM) is a novel modality that can provide simul-
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taneous information on the anatomy and EP of the heart, creating a surface map of the
endocardial surface of the LA. EAM is commonly used in clinical practice to visually guide
catheter ablation procedures [102]. Both PET-CT and EAM provide multimodal informa-
tion, making them complex forms of data that are well-suited for AI processing. Despite
the demonstrated benefits of using AI in processing PET-CT [103], the integration of AI
with EAM for the clinical care of AF [104] remains relatively unexplored. Therefore, there
are enormous opportunities for the application of AI in processing PET-CT and EAM to
improve the clinical care of patients with AF.

4.3. Clinical Applicability

While AI models have demonstrated potential in enhancing image-guided care for AF,
their adoption in clinical practice remains limited. This is partly due to clinicians’ lack of
full confidence in these models. To earn complete trust of clinicians, an AI model should be
capable of the following:

• Consistently achieving the stated level of performance for every new sample.
• Providing outputs that clinicians can comprehend and interpret.

Ensuring quality control (QC) is crucial to detect when the AI model fails. When
performing segmentation tasks, overlaying segmentation maps on the input images and
visually inspecting them is a common QC method. However, this approach becomes im-
practical for clinicians when handling volumetric images on a large scale, as it necessitates
individual inspection of each output slice. To streamline the process, a fully automated
pipeline that automates both segmentation and subsequent QC is required. As demon-
strated by Abdulkareem et al. [15], this can be achieved by implementing a framework for
automated QC, such as reverse classification accuracy [105].

In the case of segmentation models, explainability is typically less of a concern as
the output can be visualized and easily interpreted. However, for classification models,
explainability becomes a critical factor. ML models that involve feature engineering are
generally more explainable as the features contributing to the model’s decision-making
process can be identified. In contrast, DL models, despite their potential for higher accu-
racy, often operate in a “black-box” manner, making their decision-making process less
transparent and harder to explain.

To enhance the explainability of models, visualization techniques such as Grad-
CAM [92] can be employed. Grad-CAM generates a heatmap that highlights the regions
that the model focuses on during its decision-making process using the gradients of the
target concept, such as the subtle anatomical remodeling associated with AF. Liu et al. [51]
used Grad-CAM visualization and identified hotspots in the PVs and the atria. These
findings are consistent with clinical observations and imply that the DL model learned
features related to the shape and size of the PVs and atria. Similarly, Matsumoto et al. [55]
applied Grad-CAM visualization to the true positive predictions, resulting in the regions
of interest primarily located in the upper left region of the cardiac shadow, as shown in
Figure 8. While Grad-CAM visualization provides a rough visualization of significant
regions, it may not be adequate for patients with AF who do not exhibit clear anatomical
abnormalities. Hence, more robust methods for explainability, such as the use of DL to
efficiently extract interpretable features for classification [106], are required to increase
confidence in the diagnosis and prognosis of AF.
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5. Conclusions

We have thoroughly investigated the current implementations of AI in tasks involving
segmentation and classification for the care of AF. Among patients with AF, the LA stands as
the central focus. At present, CNN-based methodologies stand at the forefront of achieving
automated and consistent LA segmentation. Nevertheless, challenges persist in effectively
segmenting intricate LA substructures, including the PVs, the LAA, and the MV.

Numerous AI-driven classification models have been developed to address diverse
classification tasks, encompassing AF detection, subtype stratification, and the prediction
of both incident and recurrent AF. These diagnostic and prognostic models hold significant
potential to augment the precision of image-guided AF care.

Prospective research avenues encompass a broad spectrum, spanning datasets, com-
putational methodologies and imaging modalities, and clinical applicability. Enhancements
concerning datasets can be approached from two distinct angles. Firstly, leveraging the
substantial reservoir of unlabeled cardiac images can be accomplished through innovative
approaches like self-supervised learning and weakly supervised learning. An equally
pertinent challenge involves data harmonization. An ideal AI model should seamlessly
translate to scans obtained via distinct protocols or machinery from diverse manufacturers.
Data harmonization is pivotal to curating a highly variegated dataset for the development
of universally applicable models. The acquisition of expansive datasets spanning multiple
institutions is pivotal for bolstering both AF segmentation and classification efforts.

Emerging imaging modalities, such as PET-CT and EAM, have been instrumental
in characterizing AF. Nonetheless, AI-based analyses of PET-CT or EAM data remain
relatively scarce. A comparable trend toward embracing cutting-edge ViT architectures
over traditional CNNs for segmentation and classification tasks has emerged within the
computer vision domain. However, the potential advantages of ViT in image-guided AF
care are yet to be fully harnessed. We firmly believe that explorations into computational
methodologies and imaging modalities will usher in transformative advancements for
AF care.

Undoubtedly, a medical AI model holds limited utility unless it can be seamlessly
integrated into clinical practice. The clinical applicability of such models hinges on their
accuracy and interpretability. The development of models geared toward image-guided
AF care should not only strive for consistently superior performance but also aspire to
heightened transparency in model decision-making processes. Additionally, we anticipate
that the strides taken in developing models for AF care can offer a broader roadmap to
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the EP community, guiding the development of AI applications for rarer yet more severe
arrhythmias, such as ventricular tachycardia.
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Abbreviations

2D Two-dimensional
3D Three-dimensional
AF Atrial fibrillation
AI Artificial intelligence
ASD Average surface distance
ASPP Atrous spatial pyramidal pooling
AUC Area under the curve
CECT Contrast-enhanced computed tomography
CI Confidence interval
CNN Convolutional neural network
ConvLSTM Convolutional long short-term memory
CRF Conditional random field
CT Computed tomography
DL Deep learning
DPM Dual-path module
DSC Dice similarity coefficient
EAM Electroanatomic mapping
EAT Epicardial adipose tissue
ECG Electrocardiography
EP Electrophysiology
GBMPM Gated bidirectional message passing module
Grad-CAM Gradient-weighted class activation mapping
HD Hausdorff distance
HF Heart failure
JSC Jaccard similarity coefficient
LA Left atrium
LAA Left atrial appendage
LASC Left atrium segmentation challenge
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LGE-MRI Late gadolinium-enhanced magnetic resonance imaging
LV Left ventricle
LVEF Left ventricular ejection fraction
ML Machine learning
MRI Magnetic resonance imaging
MSCM Multiscale context-aware module
MV Mitral valve
PAF Paroxysmal atrial fibrillation
PCA Principal component analysis
PeAF Persistent atrial fibrillation
PET Positron emission tomography
PV Pulmonary vein
QC Quality control
RA Right atrium
SML Symmetric multilevel supervision
SVM Support vector machine
TTE Transthoracic echocardiography
ViT Vision transformer
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