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Abstract: Milk contaminated with aflatoxin can lead to liver cancer. Aflatoxin B1 (AFB1), a serious
animal feed contaminant, is transformed into Aflatoxin M1 (AFM1) and secreted in milk. In this study,
a biological method using probiotic bacteria, Lactobacillus rhamnosus (L. rhamnosus) in combination
with Saccharomyces cerevisiae (S. cerevisiae), was used to assess their antiaflatoxigenic effect in animal
milk. A Box–Behnken design was used to establish the optimal ratio of L. rhamnosus and S. cerevisiae,
incubation time, and temperature for efficient AFM1 detoxification from milk. To achieve this, the
primary, interaction, and quadratic effects of the chosen factors were investigated. To investigate
the quadratic response surfaces, a second-order polynomial model was built using a three-factor,
three-level Box–Behnken design. The quantity of AFM1 was detected by the ELISA technique. The
results of these experiments obtained an optimum condition in AFM1 detoxification of the three
tested factors in order to maximize their effect on AFM1 detoxification in milk. The model was tested
in three highly contaminated milk samples to assure the efficacy of the model. AFM1 detoxification
was up to 98.4% in contaminated milk samples. These promising results provide a safe, low-cost, and
low-time-consuming solution to get rid of the problem of milk contamination with AFM1.

Keywords: L. rhamnosus; S. cerevisiae; aflatoxin M1; animal milk; antiaflatoxigenic; Box–Behnken design

1. Introduction

Aflatoxins are a collection of toxic substances secreted primarily by two fungal species,
Aspergillus flavus and Aspergillus parasiticus, with over 20 types identified. The most common
types of Aflatoxins are AFB1, AFB2, AFG1, AFG2, AFM1, and AFM2. AFM1 and AFM2 are
produced from AFB1 and AFB2 metabolism, respectively [1]. Aflatoxins occur naturally in
various foods and feedstuffs, including straws, forages, cornmeal, cottonseeds, almonds,
and grains. The level of contamination may vary depending on the geographical region [2].
Fungal growth and subsequent aflatoxin production can be promoted by factors such as
high temperatures, elevated humidity (80–90%), and plant injuries during processing and
storage [3]. When cattle consume feed contaminated with AFB1, they excrete AFM1 through
urine, milk, and feces, with the highest concentration in milk [4]. The transformation of
AFB1 to AFM1 occurs in the liver through the action of cytochrome P450 [5]. The maximum
level of AFM1 excretion in milk occurs within 48 h of consuming AFB-contaminated
feed. The conversion of AFB1 to AFM1 can be influenced by dietary preferences, rates
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of ingestion and digestion, animal health, hepatic biotransformation capability, and milk
production [6,7].

Aflatoxins pose a serious threat to the public’s health, because of their potent car-
cinogenic and mutagenic properties in humans [6]. Exposure to these toxins can cause
encephalopathy, hepatic failure, Reye’s syndrome, and fetal and neonatal health and de-
velopment issues [8]. About 25,200–155,000 new instances of hepatocellular carcinoma
are thought to be caused by aflatoxin exposure each year worldwide [9]. AFB1, AFM1,
and AFG1 have been classified as Group 1 carcinogens [10], which are chronic and acute
poisons that can target several body organs, particularly the liver and kidneys. Exposure
to aflatoxins is correlated with an increased risk of liver cancer, and the risk is increased
in people infected with the hepatitis B virus (HBV). Additionally, prolonged aflatoxin
exposure can cause immunosuppression, malnutrition, and birth abnormalities [11]. Many
variables, such as nutritional condition, sex, age, exposure to viral hepatitis, and parasitic
infection, can affect the severity of aflatoxin-induced diseases in humans [8].

Many nations have put in place stringent laws to avoid the toxicity of aflatoxins in
food, including milk. For instance, the maximum residue level (MRL) of AFM1 in milk is
0.5 µg/L in the US, Brazil, and the majority of Asian nations, but only 0.05 µg/L in the
majority of European nations [12]. Keeping the feed dry, which inhibits fungus growth and
the creation of AFB1, is one of the greatest approaches to reducing AFM1 contamination in
milk. Nevertheless, this is difficult in countries with hot and humid weather throughout
the year. As an alternative control method, treating milk contaminated with AFM1 can
be effective.

Numerous approaches were developed to limit AFM1 in milk, including physical,
chemical, and biological control methods. Unfortunately, most of them are not widely
used due to their high costs or practical difficulties [12]. Biological methods used include
probiotic bacteria which are defined as live bacteria with benefits in the field of the food
industry and human health. Lactobacillus rhamnosus is one of several probiotics commonly
employed in the dairy product industry [13–15]. However, researchers are continuously
exploring various strategies to manage aflatoxins in food. Various studies investigated the
efficacy of different yeast strains, including S. cerevisiae, in binding AFM1 in milk [3]. To
prevent fermentation, heat-killed cells have been used to preserve yeast cell membrane
binding capacity and improve adsorption [16]. The binding process between AFM1 and
living microorganisms is rapid, reaching maximum binding within minutes [17].

The interaction between microorganism cell membranes and aflatoxins is variable and
may be attributed to the utilization of different strains [18]. Pierides and colleagues [19]
found that the binding ability of microorganisms in phosphate buffer solution increased
at acidic pH, but the precise interpretation remains unclear. To minimize bacterial fer-
mentation during treatment, heat-killed bacteria were used to enhance AFM1 detoxifica-
tion [16,20–22]. Regardless of the length of the treatment and the microbial strain, nonviable
microorganisms’ ability to bind substances is more reliable than that of living ones [17,18,21].
Kuharić and colleagues [23] found that nonviable cells of Lactobacillus plantarum KM have
more AFM1-detoxifying power than the viable cells. Although the precise process has
not been fully understood, hydrogen bonds and van der Waals interactions are thought
to be responsible for the weak link between aflatoxins and the microbe’s cell membrane.
The adsorption of AFM1 is caused by polysaccharides and peptidoglycans, which are
components of bacterial cell membranes [24]. Due to variations in cell membrane structure,
different bacterial strains exhibit different adsorption abilities for aflatoxins [19].

It has been discovered that lactic acid bacteria (LAB) are efficient at binding AFM1
in tainted milk. The binding strength of LAB and aflatoxins is influenced by the used
microbial strains, number of microorganisms, incubation time, and temperature.

The aim of this research was to optimize the detoxification of AFM1 from milk by
investigating various factors. The selected factors were the ratio of L. rhamnosus:S. cerevisiae
(X1), incubation temperature (X2), and incubation time (X3), while the observed variable
(response) was the percentage detoxification (reduction) of AFM1 (Y). Response surface
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plots were used to depict the influence of the factors (X1), (X2), and (X3) on the response
(Y) and to predict the optimal levels of factors X1, X2, and X3 for the highest reduction in
AFM1 in milk samples.

2. Material and Methods
2.1. Chemicals and Media

Acetonitrile was supplied by S D Fine-Chem Ltd. (Mumbai, India). Other chemicals
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Regarding the culture media,
de Man, Rogosa, and Sharpe (MRS) broth and agar were supplied from Oxoid Ltd. (UK).
Also, Yeast extract peptone dextrose broth and agar were purchased from Oxoid Ltd. (UK).

2.2. Microbial Strains and Culture Conditions

L. rhamnosus (ATCC 7469) and S. cerevisiae (ATCC 24860) strains were obtained from
the Biotechnology lab, Faculty of Pharmacy, King Saud University, KSU. To culture L.
rhamnosus, begin by preparing the de Man, Rogosa, and Sharpe broth (MRS, Oxoid, UK)
culture medium. A pure L. rhamnosus colony was inoculated and the culture was incubated
at an appropriate temperature for 18 h under anaerobic conditions. For S. cerevisiae, Yeast
extract peptone dextrose (Oxoid, UK) was used. A pure S. cerevisiae colony was inoculated
in the medium and the culture was incubated at an appropriate temperature, usually
between 28–30 ◦C for 24 h. To estimate the final bacterial count (107 CFU/mL), dilution
and plating procedures were used, and the suspension was stored at 4 ◦C till use.

2.3. Collection and Preparation of Milk Samples

Milk samples (10 raw milk samples) were gathered at random from several locations
in Egypt’s Delta district. Sterile containers were used to collect the samples. The samples
were stored at −20 ◦C until tested.

Centrifugation and filtering were used as pretreatment processes to eliminate lipids
and other contaminants that interfere with accurate AFM1 extraction and measurement.
Acetonitrile (S.D. Fine-Chem Ltd., Mumbai, India) was used as an organic solvent for
extraction. Preparation of milk samples was accomplished by placing 1 mL of milk samples
in a 50 Ml centrifuge tube with 4 Ml of acetonitrile, and the mixture was allowed to stand
for five minutes before being centrifuged at 4000 rpm for ten minutes at 25 ◦C. A total of
2.5 mL of supernatant was dried in a water bath. Tubes were kept dried until use, and
1 mL of the redissolving solution from the ELISA kit was added before further analysis and
quantification of AFM1.

2.4. Use of Box–Behnken Design

A statistical modeling method known as the Box–Behnken design of experiments
(BBD) enables the identification of significant variables in a given field with a constrained
number of trials. In order to achieve the ideal state, it also enables the prediction of the best
levels of variables [25]. In the current study, milk samples with higher AFM1 contamination
(MS-T02, MS-H04 and MS-M09) were selected for evaluating the effect of L. rhamnosus:S.
cerevisiae ratio, incubation temperature, and incubation time (independent variables) on
the percent reduction in AFM1 (the dependent variable). To examine the effect of different
levels of independent variables on the dependent variable, 15 runs—obtained from the
Box–Behnken design—had been used, according to Tables 1 and 2.
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Table 1. Variables (dependent and independent) in the Box–Behnken design.

Independent
Variables

Levels

Low Medium High

(X1) LR:SC ratio 1:1 1.5:1 2:1
(X2) Incubation

temperature (◦C) 25 37.5 50

(X3) Incubation time
(min.) 30 60 90

LR, L. rhamnosus; SC, S. cerevisiae.

Table 2. Box–Behnken runs for both factors and the corresponding results of AFM1 % reduction.

Run LR:SC
Ratio

Temperature
(◦C)

Time
(min)

AFM1
% Reduction (Y)

1 2 37.5 90 92
2 1.5 37.5 60 95
3 1.5 25 30 92
4 1.5 25 90 93
5 1 37.5 90 84
6 2 37.5 30 91
7 1 25 60 77
8 1.5 50 30 94
9 1.5 37.5 60 96
10 2 25 60 89
11 1 37.5 30 83
12 1.5 37.5 60 96
13 2 50 60 92
14 1 50 60 87
15 1.5 50 90 95

LR, L. rhamnosus; SC, S. cerevisiae. AFM1 was quantified in the collected milk samples using ELISA technique.

2.5. Assay of AFM1

The quantity of AFM1 was detected using the Enzyme-Linked Immune Sorbent Assay
(ELISA) method with the AFM1 test kit (Cat. no. E4566, Biovision, CA, USA). The kit was
stored at 8 ◦C and left for one hour before use. Standard solutions and the prepared samples
were placed in separate wells of 96 microtiter plate and kept at room temperature in a dark
place for one hour. After incubation, the liquid was removed, and the wells were washed
twice. Enzyme conjugate was added and incubated, followed by washing and the addition
of substrate and chromogen solutions. The wells were incubated in a dark place for 30 min
and the stop reagent was added and mixed. With the ELISA reader, the absorbance of
AFM1 was measured photometrically at 450 nm against an air blank. The concentration of
AFM1 in the milk samples was calculated by comparing the absorbance percentages to a
calibration curve that was created using standards at various concentrations.

3. Results and Discussion

Food control must be given a lot of effort, as food safety and foodborne diseases are
considered major growing health problems. Milk is a significant source of the human
diet because it offers a natural, high-quality source of bioavailable calcium and proteins;
thus, human health at different ages is strongly influenced by the quality of milk products.
Unfortunately, milk content supports the growth of different pathogens, and also could
be contaminated with other toxins during transfer. Many researchers have confirmed
the presence of high concentrations of mycotoxins in milk [26,27]. The presence of mold
contamination not only degrades the quality of food and animal feed, but it can also have
adverse effects on human health. The potential health risks associated with AFM1 exposure
have been widely documented in previous studies [28,29]. High levels of AFM1 exposure
were associated with an increased risk of liver cancer [30]. AFM1 contamination of milk
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has projected ramifications that by 2030, the maximum mean of AFM1 in milk will have
increased by up to 50% [31].

AFM1 is a toxic metabolite secreted by certain strains of Aspergillus fungi, and can cause
health hazards to humans. Through the utilization of the competitive ELISA technique,
the study analyzed ten raw milk samples to decide the occurrence and levels of AFM1
contamination. Figure 1 displays the results of the analysis, which revealed that all of
the investigated raw milk samples were contaminated with AFM1. The lowest AFM1
contamination levels were 6.2 ± 0.55, 8.30 ± 0.33, and 9.80 ± 0.24 ng/L, while the highest
concentrations were 37.12 ± 0.51, 48.80 ± 0.90, and 51.0 ± 0.92 ng/L.
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Figure 1. The levels of AFM1 (ng/L) in ten tested raw milk samples.

The ELISA technique is widely utilized for the detection of aflatoxin M1 (AFM1), a
potent mycotoxin commonly found in milk and dairy products. However, it is crucial
to acknowledge the inherent limitations of ELISA in AFM1 detection, highlighting the
need for confirmatory analysis using liquid chromatography–mass spectrometry/mass
spectrometry (LC-MS/MS) in future research or studies conducted by other laboratories.
This approach provides a more precise and dependable assessment of AFM1 levels in
food samples, ensuring the safety and quality of dairy products without duplicating
previous work.

Previous research has also documented the occurrence of AFM1 contamination in
dairy products, including raw milk [28]. Our study was comparable to research performed
by Busman et al. [32] who stated that 24 out of 26 raw milk samples were contaminated with
AFM1. Similarly, a study in Pakistan by Hussain and Anwar [33] reported the occurrence of
AFM1 in all of the analyzed raw milk samples, with the highest concentration at 0.57 µg/L.
Additionally, a prior study in Egypt found that raw milk samples taken in a two-year
period (2016–2017) were contaminated with AFM1 at rates of 21.6% and 18.3%, respectively,
exceeding the legal European limit (0.05 µg/L) by 100% and 90.9% [34]. This difference
may be due to some factors explained by Ismaiel and his colleagues, who attributed
fluctuation in aflatoxin contamination levels to variations in practices of feed storage and
farm management [34]. In addition to that another study by Iqbal and his colleagues stated
that geographical conditions, climate, seasonal variations, various toxin detection methods,
and farm management practices are all factors that could lead to these fluctuations in
AFM1 concentration in milk. Changes in temperature and the occurrence of severe weather
events, such as droughts and floods, can have an indirect impact on milk production and its
quality [12]. This is mainly due to the alteration in the accessibility and quality of feed and
water resources. [35]. In addition to that, the vast variance in aflatoxin M1 contamination
in milk was linked to many parameters; season, animal type, milking time, AFB1 intake,
and amount of produced milk [3,34].
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Effective measures to prevent and minimize AFM1 contamination in dairy products
have been extensively studied. Several strategies, including chemical, physical, and bio-
logical methods, were studied to eliminate AFM1 [36]. The research performed by Khoori
and coworkers investigated the effectiveness of various dairy processing techniques, in-
cluding ultraviolet radiation, ozonation, and pulsed electric field processes, in controlling
Aspergillus species in animal food [37].

Recently, biological methods have shown promise in reducing the level of AFM1 in
raw milk. It is well recognized that biological detoxification is extremely efficient and
has benefits such as ecological sustainability, applicability over a variety of mycotoxins,
ease of use, and cost-effectiveness [38]. The most successful and promising methods for
removing AFM1 from milk and dairy products involve adsorption through nonviable
bacteria and clay materials. [36]. Biological detoxification can be carried out by different
microorganisms such as bacteria, fungi, or algae. Algae and the molecules they create have
a variety of qualities, including those that are antifungal, antioxidant, antibiofilm, and many
more. These features can be used for a variety of purposes, including the detoxification
or breakdown of harmful substances, such as mycotoxins. Sulfated polysaccharides, β-D-
glucans, polyphenolic compounds, etc., are some examples of these substances. One of
these algae, Spirulina platensis, has been proposed as a potential aflatoxin detoxicant [38].
Bacteria such as Lactobacillus and Bifidobacterium have been found to have the power to
reduce AFM1 in raw milk [39]. These bacteria are capable of producing enzymes that can
degrade the toxin, thereby reducing its concentration in the milk [40]. In addition, these
bacteria can also modify the pH of the milk, which can further aid in reducing the toxicity
of AFM1 [41].

In the current study, probiotic bacteria, L. rhamnosus blended with S. cerevisiae, were
used to evaluate their deaflatoxigenic effect in raw milk. We investigated the effect of
three factors that we believe have a high impact on the detoxification of AFM1 from a
raw milk sample. These factors are L. rhamnosus:S. cerevisiae (LR:SC) ratio, incubation
temperature (◦C), and incubation time (min.) as shown in Table 1. According to the
Box–Behnken design, three levels from each factor were used to create 15 experimental
runs, as seen in Table 2. These factors were tested in the three highly contaminated milk
samples (MS-T02, MS-H04, MS-M09) with concentrations of 37.12 ± 0.51, 51.0 ± 0.92, and
48.80 ± 0.90 (ng/L), respectively. At LR:SC ratio = 1.6:1, incubation temperature 47 ◦C, and
incubation time = 79 min, the observed percent reduction in AMF1 for samples (MS-T02,
MS-H04, MS-M09) were 98.4, 98.1, and 97.9%, respectively (Figure 2). Accordingly, the
optimization design created the following quadratic equation in terms of the studied factors

AFM1 5 reduction = 95.7 + 4.12X1 + 2.12X2 + 0.5X3 − 1.75 X1X2 − 7.71 X1
2 − 1.71 X2

2 − 0.46 X3
2

where X1 is the LR:SC ratio, X2 is the temperature, X3 = time.
This equation is a useful tool for predicting the reaction for different values of each

element. By comparing the factor coefficients, it can also help identify the relative impact
of the variables.

At LR:SC ratio = 1.6:1, incubation temperature 47 ◦C, and incubation time = 79 min
(Table 3), the observed percent reduction in AMF1 for samples (MS-T02, MS-H04, MS-M09)
were 98.4, 98.1, and 97.9%, respectively (Figure 2).

Table 4 presents the analysis of variance (ANOVA) of the quadratic model with regard
to the percent reduction in AMF1. The significant model F-value of 20.90 suggests that the
model is significant, and there is a low chance (0.19%) that such a large F-value could occur
due to noise. Significant model values have p-values less than 0.05. In this case, X1, X2, and
X12 are significant model terms. Model terms with values higher than 0.1 are considered
insignificant.
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Table 3. Optimized levels of values factors in Box–Behnken design.

Factor Optimized Levels of Factors

LR:SC ratio 1.6:1
Incubation temperature (◦C) 47

Incubation time (min) 79

Table 4. ANOVA for quadratic model: response (AFM1).

Source Sum of
Squares df * Mean

Square F-Value p-Value

X1 (LR:SC ratio) 136.12 1 136.12 62.35 0.0005
X2 (Temperature) 36.12 1 36.12 16.55 0.0097

X3 (Time) 2.00 1 2.00 0.9160 0.3825
X1X2 12.25 1 12.25 5.61 0.0641
X1X3 0.00 1 0.00 0.00 1.0000
X2X3 0.00 1 0.00 0.00 1.0000

X1 219.39 1 219.39 100.48 0.0002
X2 10.78 1 10.78 4.94 0.0770
X3 0.7756 1 0.7756 0.3553 0.5771

Model 410.7 9 45.63 20.90 0.0019
ANOVA: Analysis of variance; * df: degree of freedom.

According to the obtained quadratic equation and the results of the response surface
plots (Figures 3–5), it is obvious that X1 (L. rhamnosus:S. cerevisiae ratio) and X2 (incubation
temperature) have the highest impact on the percent reduction in AMF1 in milk samples.
This could be concluded from the coefficient of each term in the given equation. The higher
the coefficient, the higher the impact of this factor in the measured response, and vis versa
(Table 5). The positive and negative sign of the coefficient indicate a direct or inverse effect
of this factor on the response, respectively [42].
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The optimized factor levels shown in Table 3 were tested in three highly contaminated
milk samples (MS-T02, MS-H04, MS-M09) with concentrations of 37.12 ± 0.51, 51.0 ± 0.92,
and 48.80 ± 0.90 (ng/L), respectively, and the resulting percent AFM1 reduction was in
close agreement with the predicted value.
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Table 5. Coefficients in terms of factors.

Factor Coefficient
Estimate df * Standard

Error
95% CI *

Low 95% CI High

Intercept 95.7 1 0.8531 93.47 97.86
X1 (LR:SC ratio) 4.12 1 0.5224 2.78 5.47

X2 (Temperature) 2.12 1 0.5224 0.7821 3.47
X3 (Time) 0.50 1 0.5224 −0.8429 1.84

X1X2 −1.75 1 0.7388 −3.65 0.1492
X1X3 0.00 1 0.7388 −1.90 1.90
X2X3 0.00 1 0.7388 −1.90 1.90
X1

2 −7.71 1 0.7690 −9.69 −5.73
X2

2 −1.71 1 0.7690 −3.69 0.2684
X3

2 −0.46 1 0.7690 −2.44 1.52
* df is the degree of freedom, * CI is the confidence interval.

The antiaflatoxigenic effect of L. rhamnosus and S. cerevisiae is documented in several
studies demonstrating the physical binding of these microorganisms to aflatoxins [43,44].
Lactobacillus rhamnosus and Saccharomyces cerevisiae cell walls immobilized on nanosilica
trapped in alginate were used by Vahidimehr and his coworkers as aflatoxin M1 (AFM1)
binders. Following that, they were in contact with AFM1 for 15 and 24 h. For the free cell
wall combination at 15 min, the results demonstrated an AFM1 reduction ranging from
53 to 87% [43]. In another investigation, the adsorption capacities of yeast (Saccharomyces
cerevisiae), activated charcoal, and the probiotic Lactobacillus rhamnosus as AF adsorbents
were evaluated. They reported the highest adsorption efficiency (96.8%) with this combina-
tion treatment [44]. Ismail et al. [16] evaluated the potential of S. cerevisiae to bind AFM1
at different levels and reported that 100% of AFM1 (0.05 µg/L) in spiked artificial milk
was reduced to trace concentrations by S. cerevisiae alone or in combination with LAB. At
0.1 µg/L, S. cerevisiae at a concentration of 1010 CFU/mL reduced AFM1 in milk by 92%.
Abdelmotilib and colleagues demonstrated that a combination of LAB and S. cerevisiae
could degrade up to 90% of AFM1 in milk with an initial concentration of 50 ng/mL [45].
Additionally, Gu et al. demonstrated that Bacillus supernatant was able to reduce AF by
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76.9% in a solvent [46]. However, a single strain of LAB was found to be less effective,
resulting in less than a 90% reduction in AFM1 in milk. Probiotic bacteria and yeasts
were also observed to decrease AFM1 contamination in milk by 19–61%, particularly at a
high contamination level of 50 ng/mL [47]. In a similar study, two types of lactobacilli (L.
rhamnosus, L. plantarum) were successfully used with S. boulardii to detoxify AFM1 in animal
milk by 97.1–100%. At doses of 107 and 109 (CFU/mL), L. rhamnosus showed the highest
binding capacity, removing 82% and 90% of the AFM1 from milk samples containing 0.5
and 0.75 ng/mL, respectively. A mixture of the three mentioned probiotic bacteria was used
at a concentration of 1 × 107 CFU/mL at 37 ◦C with 0.5 ng/mL AFM1, and this mixture
produced the highest AFM1 binding (100.0 ± 0.58) [48].

These results reveal the potential risks of AFM1 contamination in raw milk. As a toxic
metabolite, AFM1 not only degrades the quality of milk but also poses a serious threat to
human health. Correspondingly, these findings are concerning, as consuming raw milk
contaminated with AFM1 can lead to various health complications, including liver damage
and an increased risk of liver cancer. Therefore, it is crucial to monitor and regulate the
presence of this toxin in raw milk to ensure public health and safety.

Our research outcomes hold great potential in contributing to the development of
enhanced strategies for AFM1 detoxification in milk, utilizing the selected probiotic bacte-
ria, Lactobacillus rhamnosus and Saccharomyces cerevisiae. By thoroughly investigating the
detoxification mechanisms of these strains and optimizing their effectiveness, our research
can provide valuable insights for the food industry. The implementation of these probi-
otics as a detoxification approach has the capacity to significantly improve food safety by
reducing AFM1 levels in milk, thereby reducing the health risks associated with AFM1
contamination. This natural and sustainable alternative to chemical methods offers the
advantage of ensuring consumer confidence in the quality and safety of dairy products.
Ultimately, our research has the potential to shape improved practices within the food
industry, leading to the production of safer milk products and protecting public health.

4. Conclusions

This study emphasizes the importance of continuously monitoring and managing
AFM1 levels in raw milk and dairy products. Ensuring effective measures to minimize
contamination and exposure to AFM1 is critical in maintaining public health and safety.
Box–Behnken design is a very useful tool for saving time and effort to optimize the condition
and process of experiments. In our study, factors affecting AFM1 detoxification from milk
were optimized in order to maximize the efficiency of the detoxification process. In this
investigation, AFM1 detoxification was up to 98.4% in contaminated milk samples. Other
conditions such as the type of Lactobacillus bacteria and yeast, as well as other ratios, need
to be optimized as well to maximize the detoxification process.
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