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Abstract: The prospect of cancer treatment has drastically transformed over the last four decades. The
side effects caused by the traditional methods of cancer treatment like surgery, chemotherapy, and
radiotherapy through the years highlight the prospect for a novel, complementary, and alternative
cancer therapy. Oncolytic virotherapy is an evolving treatment modality that utilizes oncolytic viruses
(OVs) to selectively attack cancer cells by direct lysis and can also elicit a strong anti-cancer immune
response. Newcastle disease virus (NDV) provides a very high safety profile compared to other
oncolytic viruses. Extensive research worldwide concentrates on experimenting with and better
understanding the underlying mechanisms by which oncolytic NDV can be effectively applied to
intercept cancer. This review encapsulates the potential of NDV to be explored as an oncolytic agent
and discusses current preclinical and clinical research scenarios involving various NDV strains.

Keywords: cancer treatment; oncolytic viruses; Newcastle disease virus

1. Introduction

Time and again, viruses have changed the course of human history, affected the fabric
of life for millions across the globe, led to a downfall in economies, and induced life changes
that no one could have predicted. Even though they are feared as disease-causing agents,
viruses also work wonders, from shaping evolution since the very beginning to, now,
offering hope for curing cancer [1–3].

Oncolytic virotherapy is an innovative and promising approach to cancer treatment [4].
It utilizes wild-type or genetically modified OVs, which can kill cancer cells while dis-
criminating against healthy cells [5,6]. The viral agents can be small RNA viruses, which
encode only a few genes and have a short replication time, or large DNA viruses such as
adenovirus, vaccinia virus, or herpesvirus, which encode over 250 different viral genes
and thus allow a greater scope for genetic manipulation [7]. As cancer cells undergo many
genetic alterations, the need of the hour is to identify and thoroughly research viruses
with different oncolysis mechanisms as a single virus cannot be eligible to treat all cancers
similarly [8]. The selection of an oncolytic virus is based on the stability of the virus, its
therapeutic index, degree of pathogenicity, and whether it can invoke an immune response
that can be directed against tumor cells [9,10].

Most cells lose components that are critical for innate antiviral defense during the
transformation into cancer cells, making them more vulnerable to various virus strains
than non-transformed cells. Cancer cells are less receptive to the stimulation of the antiviral
response by interferons (IFNs) or tumor necrosis factor (TNF) [8]. The main mechanisms
for productive viral infection and replication in host cancer cells are (i) receptor-mediated
uptake due to the overexpression of virus entry-specific receptors on cancer cells and (ii) the
adaptation of the virus to the host cellular oncogenic signaling pathways for viral replica-
tion [10]. Also, with the advancements in recombinant DNA technology and microRNA
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functions, the idea of “designer viruses” seems favorable [11]. Currently, viruses that are
genetically engineered to express suicidal genes, a process known as gene-directed enzyme
prodrug therapy (GDEPT), and immunostimulatory agents that are tumor-specific, evoke
inflammatory responses, and have limited or no potential to replicate in non-cancerous
cells are alluring anti-cancer agents [12–14].

2. NDV-Mediated Oncolysis

NDV is a single-stranded, non-segmented, negative-sense RNA genome avian virus
called avian paramyxovirus type 1 (APMV-1). It largely impacts the poultry industry and
is of great economic importance. The genomic RNA of NDV consists of six genes encoding
at least eight proteins, namely, phosphoprotein (P), nucleoprotein (NP), large polymerase
protein (L), fusion protein (F), hemagglutinin-neuraminidase (HN), matrix protein (M),
and two nonstructural proteins, V and W [15]. In chicken cells, V protein is responsible for
inhibiting the interferon response and apoptosis, but this escape mechanism function is
observed only in birds and not in mammalian cells. Therefore, V protein is attributed as a
reason for the reduced NDV host range. This is considered one of the main reasons that
NDV is not virulent in normal mammalian cells [16]. NDV strains can be classified and
designated depending on the degree of virulence and type of pathogenicity it causes in
birds. In addition, the lentogenic pathotype of NDV mildly affects the respiratory system
and is found to be the least virulent compared to the other two pathotypes, mesogenic
and velogenic. There has been no reported death in poultry caused by a lentogenic NDV
infection. Poultry is vaccinated mostly with lentogenic NDV strains (due to low virulence)
like the Ulster, NDV Hitchner-B1 (HB1), and LaSota strains [17]. Lentogenic strains of
NDV have been vastly researched for their application in oncolysis. Moderate virulence
is observed in poultry due to infection with the mesogenic pathotype, MTH-68/H, and
PV701 mesogenic strains have an established oncolytic potential. Velogenic NDV strains are
highly pathogenic, causing death in all birds they infect [18,19]. These strains can be further
subcategorized into viscerotropic and neurotropic velogenic strains. NDV strains are also
classified, based on their oncolytic mechanism, as lytic and non-lytic for mammalian cells.
Virulence in NDV is due to the fusion protein consisting of a (multi) basic cleavage site.
The NDV HN and F proteins facilitate the infected cell’s fusion with the surrounding cells,
resulting in the formation of syncytia and oncolysis. Velogenic NDV strains are lytic strains
that cause lysis of host cancer cells, by producing infectious progeny virions and syncytial
formation. The mesogenic strains like MTH-68/H, PV701, and Anhinga, defined as lytic
strains, are also promising NDV oncolytic virus strains due to the induction of strong
syncytia formation in vitro. On the other hand, non-lytic NDV disrupts normal host cell
metabolism [20–23].

Various cell death pathways induced by NDV are discussed below.

2.1. Apoptosis

Apoptosis in cancer cells is delayed due to their dysregulated IFN response and
defective STAT1 signaling pathway. These cancer cells are unaffected by antiviral enzymes,
which enable viral replication and stimulate more infection by further virion production [24].
Velogenic NDVs induce a very robust apoptotic response that occurs early during infection.
For example, NDV AF2240 induces apoptosis, possibly during virus binding or at the
stage of fusion with the cell membrane [25,26]. Moreover, NDV exerts both intrinsic and
extrinsic apoptosis pathways for oncolysis, irrespective of p53 activity [25]. A preliminary
investigation by Fabian et al. showed that p53 expression did not affect U373 human
glioblastoma sensitivity to NDV MTH-68/H [27]. A 2016 study showed that a velogenic
NDV infection reduced hypoxia-induced HIF-1a accumulation, which controls the pro-
survival protein found in hypoxic cancer cells. This NDV-induced downregulation of
HIF-1a was post-translational and independent of p53 [28].

The Bcl-2 protein family consists of proteins that demonstrate anti- and pro-apoptotic
functions, which control the intrinsic pathway and regulate different mitochondrial check-
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points [29]. The Bcl-2 family of pro-apoptotic proteins shows the presence of BH1- and
BH3-like domains, which are also found in HN, F, M, and L NDV proteins. These domains
promote the viral interaction with the Bcl-2 family proteins, leading to the functional modu-
lation of these proteins [30,31]. Another study demonstrated that NDV infection resulted in
Bax protein conformation change. This results in the transfer of Bax from the cytoplasm to
the mitochondria, and cytochrome c is released into the cytoplasm. However, Bcl-2 protein
expression levels remained unchanged by NDV infection. The Bcl-2 and Bax interplay
modulates apoptosis in most of the cells infected by NDV, but this has not been conclu-
sively determined for all the cell lines and viral strains from the in vitro studies performed.
In one study, the expression levels of endogenous Bcl-2 and Bax were assessed in HeLa
cells infected with NDV AF2240, but no significant change was observed in their level of
expression [30]. Another study determined that Bax absence in human colon carcinoma
HCT116 deferred but did not terminate the apoptosis activation process [32]. The infection
of the MCF-7 cell line with the velogenic NDV AF2240 strain inactivated by UV stimulated
apoptosis via the intrinsic pathway and activated caspase-8, indicating that NDV induces
apoptosis in MCF-7 cells by both apoptosis pathways [26,33].

In the extrinsic pathway, TNFα, FasL, and TRAIL are stimulated due to NDV infection
and bind to their respective cell surface receptor proteins (Figure 1). This results in the
oligomerization of receptors, and adaptor molecules are released to form the death-inducing
signaling complex (DISC). Eventually, caspase-8 is stimulated, which activates the execution
pathway [34,35]. Iraqi oncolytic virulent NDV was tested for its ability to induce apoptosis
in vitro in several cell lines, like murine mammary adenocarcinoma cell line (AMN3)
and human rhabdomyosarcoma (RD), via the intrinsic pathway, although a low level of
caspase-8 was detected. At the same time, the female mice implanted with mammary
adenocarcinoma cancer cells (AM3) and injected with NDV were checked for caspase-3,
caspase-8, and caspase-9 expression. The results showed a significant expression of caspase-
9 as well as caspase-8 and established that NDV induced an intrinsic apoptotic pathway
in vivo along with an extrinsic pathway. The extrinsic pathway was reported to occur late
in NDV-infected cells, which showed that the expression of surface bound and soluble
TRAIL could be as late as 48 h post-infection in some cell lines like SH-SY5Y neuroblastoma
cells, Hela, HepG2, and MCF7 [25].

NDV infection also triggers endoplasmic reticulum (ER) stress and p38 MAP kinase
signaling pathways, ultimately activating and augmenting apoptosis [27,36].

According to a report that studied NDV-induced apoptosis mechanisms, NDV infec-
tion stimulated all three groups of the unfolded protein response (UPR) (PERK-eIF2α, ATF6,
and IRE1α) and initiated apoptosis in CEF and DF-1 as well as human cancer cell lines like
HeLa, HN13, Cal2, H1299, A549, HepG2, and Huh7 [37]. UPR is a conserved pathway in
eukaryotic cells that promotes cell survival during ER stress. PERK/PKR-eIF2α signaling
enhanced NDV proliferation and supported the translation of viral proteins, slashing the
host translation components. IRE1α-XBP1 pathway also promoted virus protein modifica-
tion, folding, assembly, etc. The activation of JNK by UPR led to apoptosis and triggered
the secretion of cytokines [38,39]. However, ER stress can lead to cell death not only by
apoptosis (intrinsic and/or extrinsic) but also by autophagy [37,39,40].

p38 MAPK is stimulated by stress and mitogens; p38 signaling is involved in cellular
responses like cell differentiation, development, death, inflammation, senescence, and
tumorigenesis [41]. Bian et al. demonstrated for the first time the involvement of the MAPK
pathway in the NDV-induced infection of the A549 cell line, and the silencing of the p38
MAPK pathway lowered NDV-induced cell death [42].
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Figure 1. A brief description of NDV-induced cell death pathway: The intrinsic apoptosis pathway 
recruits bax to the mitochondrial membrane surface, by which it undergoes conformational change 
and initiates pore formation, and the release of cytochrome c. NDV infection leads to the release of 
the cytokines TRAIL and TNF-α, which then trigger the extrinsic pathway. The death receptors 
stimulate FADD. This activates caspase-8, which cleaves Bid into active tBid. The tBid along with 
the Bax protein stimulates MOMP. Caspase-8, activated by FADD, stimulates caspase-3/7. Both 
pathways lead to apoptosome formation via the interaction with Apaf-1 and cytochrome c. This 
apoptosome then activates caspase-9, which finally results in the activation of caspase-3/7. p38 
MAPK pathway NDV infection phosphorylates MAPK and the inhibitor of nuclear factor κB alpha 
(IκBα). IκBα is degraded and releases active nuclear factor kappa B (NF-κB), which is transferred to 
the cell nucleus, and IFN-β is synthesized. The increased production of IFN-β phosphorylates STAT1 
and degrades suppressor of cytokine signaling (SOCS) proteins which are the inhibitors of 
JAK/STAT signaling pathway. UPR triggers protein kinase RNA-like endoplasmic reticulum (ER) 
kinase (PERK)-activating transcription factor (ATF) 6 and inositol-requiring enzyme (IRE) 1. PERK 
activation results in phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which 
activates the expression of multiple transcription factors, like activation transcription factor 4 
(ATF4). ATF4 induces the expression of the pro-apoptotic CCAAT/enhancer-binding protein-homol-
ogous protein (CHOP). Activated IRE1α cuts intron in the mRNA precursor of X-box binding pro-
tein 1 (XBP1), which is induced by ATF6. The transcription factor XBP1s initiates transcription of 
CHOP genes and stimulates the endoplasmic-reticulum-associated degradation. The UPR activates 
cell death via apoptosis by stimulating CHOP, JNKs, bax, and caspase [43–45]. (Figure created using 
BioRender.) 
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Necrosis also contributes to the NDV cytopathic effect. NDV infection leads to the 
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Figure 1. A brief description of NDV-induced cell death pathway: The intrinsic apoptosis pathway
recruits bax to the mitochondrial membrane surface, by which it undergoes conformational change
and initiates pore formation, and the release of cytochrome c. NDV infection leads to the release
of the cytokines TRAIL and TNF-α, which then trigger the extrinsic pathway. The death receptors
stimulate FADD. This activates caspase-8, which cleaves Bid into active tBid. The tBid along with
the Bax protein stimulates MOMP. Caspase-8, activated by FADD, stimulates caspase-3/7. Both
pathways lead to apoptosome formation via the interaction with Apaf-1 and cytochrome c. This
apoptosome then activates caspase-9, which finally results in the activation of caspase-3/7. p38
MAPK pathway NDV infection phosphorylates MAPK and the inhibitor of nuclear factor κB alpha
(IκBα). IκBα is degraded and releases active nuclear factor kappa B (NF-κB), which is transferred
to the cell nucleus, and IFN-β is synthesized. The increased production of IFN-β phosphorylates
STAT1 and degrades suppressor of cytokine signaling (SOCS) proteins which are the inhibitors of
JAK/STAT signaling pathway. UPR triggers protein kinase RNA-like endoplasmic reticulum (ER)
kinase (PERK)-activating transcription factor (ATF) 6 and inositol-requiring enzyme (IRE) 1. PERK
activation results in phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which
activates the expression of multiple transcription factors, like activation transcription factor 4 (ATF4).
ATF4 induces the expression of the pro-apoptotic CCAAT/enhancer-binding protein-homologous
protein (CHOP). Activated IRE1α cuts intron in the mRNA precursor of X-box binding protein 1
(XBP1), which is induced by ATF6. The transcription factor XBP1s initiates transcription of CHOP
genes and stimulates the endoplasmic-reticulum-associated degradation. The UPR activates cell death
via apoptosis by stimulating CHOP, JNKs, bax, and caspase [43–45]. (Figure created using BioRender).

2.2. Necroptosis

Necrosis also contributes to the NDV cytopathic effect. NDV infection leads to the
expression of HN and F proteins on the host cell surface, further enhancing the formation
of cell syncytia, cell fusion, and the destruction of syncytia, which ultimately triggers
necrosis [46,47].



Life 2023, 13, 1626 5 of 14

Cell necroptosis is stimulated via the cellular toll-like receptor (TLR) and the TNF family
in the absence of caspase-8 [48]. Necrosis causes unprogrammed damaging changes in tissue
and can also occur due to the stimulation of various other modes of cell death like necroptosis
(RIP kinase-dependent), parthanatos (PARP-dependent) pathways, etc. [23,49,50]. A study
by Koks et al. proved that NDV HB1 had an oncolytic effect on the GL261 glioma cell
line as well as on a mouse model and induced immunogenic cell death via necroptosis. It
was observed that caspase inhibition had no significant effect on immunogenic cytolysis,
but the treatment of cells with necrostatin-1 reduced the cell death checked at 24 and 96 h
post-infection [51]. On the contrary, a study reports NDV infection in HeLa cells inhibited
necroptosis by activating NF-κB, which triggers the synthesis of TNF α and TRAIL, leading
to the activation of caspase-8. Caspase-8 cleaves RIP1, although some amount of RIP1
remains intact and phosphorylates MLKL (necroptosis hallmark) to phosphor-MLKL and
transfers it to stress granules by binding with RIP1, thus inhibiting MLKL transfer to the
plasma membrane, which would culminate in necroptosis [49].

2.3. Autophagy

Autophagy, also known as type 2 programmed cell death, is a catabolic process that
eliminates accumulated proteins, impaired organelles, and pathogens to maintain cellu-
lar homeostasis [52]. A double-membraned autophagosome that engulfs cytoplasm and
cytoplasmic organelles is the hallmark of autophagy [53,54]. Viruses either suppress au-
tophagy for their survival or utilize this pathway such that it aids replication [23,55]. NDV
HN and F proteins induce autophagy, syncytia formation, and, consequently, oncolysis.
NDV exploits autophagy (autophagy prolongs the cancer cell life cycle as these cells use
autophagic components to meet their high metabolic requirements) for its replication in the
early stages of cancer cell infection. Thus, autophagy constrains apoptosis, supports NDV
replication in cancer cells, and stimulates the immune response to ultimately kill the cancer
cells [56–58]. Autophagy induction in the immunogenic cell death of cancer cells is trig-
gered due to the recognition of pathogen-associated molecular pattern molecules (PAMPS),
damage-associated molecular patterns (DAMPS), and other cellular stress signals released
in response to NDV infection. NDV, in combination with autophagy modulators, enhances
NDV anti-cancer activity [59–61]. Recombinant NDV-expressing rabies virus glycoprotein
(rL-RVG) and LaSota induced stomach adenocarcinoma cell death via autophagy along
with the activation of the ER stress response and apoptosis [62].

2.4. Immune Response

The immunostimulatory effect of NDV is also responsible for its oncolytic potential.
Cytokines such as interferons, TRAIL, and TNF are stimulated by NDV, and these effector
cytokines in turn activate macrophages, natural killer (NK cells), and dendritic cells and
sensitize T-cells [63]. The inflammatory milieu induced by NDV leads to the stimulation of
innate effector cells and adaptive immune cells that enable anti-cancer immunity (as shown
in Figure 2). Cancer cells infected by NDV result in enhanced cancer cell immunogenic-
ity [35,64]. NDV replication is also suppressed in some cancer cells after prior treatment
with type 1 IFN. Therefore, it is crucial to understand the exact stage of type I IFN induction
to achieve a steady virus replication rate and stimulate innate immune response to augment
adaptive immunity [21,65].

It has been observed that the cellular cytotoxicity of PBMC towards cancer cells signif-
icantly increased post-incubation with NDV [66]. NDV activates the immune response in
host cells, leading to the production of IFN-α, IFN-β, IFN-γ, IL-1, etc. It also induces the pro-
duction of chemokines like RANTES and IFN-γ inducible protein 10 (IP-10). Additionally,
the upregulation of ICAM-I0, LFA-3, and HLA-DR in cancer cell lines was detected. The
interaction between viral HN glycoprotein and host cell sialic acid residue has been found
to activate NK cells. In vitro bystander antitumor activity on human tumor cell monolayers
is reported due to activated human NK cells (amplified antitumor activity) [18,21,67,68]. In
one study, mice immunized with NDV LaSota resulted in decreased NDV replication due
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to the neutralizing antibodies produced. However, the anti-cancer activity was intact and
can be attributed to an adaptive immune response directed towards NDV infected cancer
cells and epitope spread [69].
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Figure 2. A summary of NDV-mediated immune response. The immune stimulation response
includes the enhanced expression of adhesion and costimulatory molecules; viral glycoproteins
on the infected cancer cell surface; and the secretion of proinflammatory cytokines, which activate
lymphocytes and macrophages, ultimately producing effectors like ROS, TRAIL, and TNF α. Direct
cancer cell lysis due to NDV infection via ICD leads to release of PAMPS, DAMPS, and TAA, which
activate APCs and tumor-specific lymphocytes, resulting in T cell activation and antibody production
due to B cell activation [17,70].

3. Progress in Utilization of NDV Strains as Oncolytic Virus
3.1. Wild-Type and Vaccine Strains

Naturally, oncolytic NDV strains are being investigated in pre-clinical and clinical
models for their oncolytic potential. LaSota is a lentogenic strain investigated for its po-
tential to induce significant anti-cancer effects in MCF7 and Arabian and Middle Eastern
breast cancer cell lines (AMJ13), mainly via the intrinsic apoptotic pathway, as the per-
centage of caspase-9 was found to be higher than that of caspase-8 [71]. The safety and
efficacy of the wild-type NDV/HK84 strain when checked in vitro as well as in vivo in
hepatocellular carcinoma showed type I IFN-dependent cytopathic effects. This strain
showed a very low replication rate in normal mouse hepatocytes, making it a promising
viral candidate for further investigations [72]. Another strain, HB1, induced apoptosis
(via the intrinsic pathway) as well as autophagy in the cervical cancer model. Cancer cells
exhibited increased cytochrome C, caspase-3, and ROS levels indicative of apoptosis. Also,
microtubule-associated protein 1 light chain 3 (LC3) was upregulated, which confirmed
autophagy [73]. Gamma-irradiated GBM cell line NCH 149, when infected with NDV
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Ulster, induced cytokine production, leading to cancer cell death [63]. Also, Ulster induced
robust cytotoxic activity in the CT26 colon carcinoma model [74].

Christine Csatary was the first to report the mesogenic NDV strain Hertfordshire for
its oncolytic potential and derived an attenuated strain named MTH-68/H, which means
“More Than Hope 1968”. MTH-68/H induces significant cytotoxicity in cell lines such as
MCF-7, PC12, DU-145, HCT116, A431, HT-29, PC3, and HeLa cells. MTH-68/H is the most
effective IFN-α inducer and also stimulates NO [27,75].

NDV strain AF2240 is a velogenic Malaysian field outbreak isolate; extensive research
is being carried out as it has been proven to have exceptional oncolytic potential. The
immunogenicity of AF2240 studied by PBMC stimulation and macrophage infection was
found to be significant, and the oncolytic ability of the strain was maintained even in the
hypoxic tumor microenvironment. It exerts a dose-dependent cytotoxic effect on MCF-7,
MDA-MB231, and HeLa cells. However, viral oncolysis was not very significant against
cisplatin-resistant MCF-7 cells [26,33,66,76–78].

3.2. Genetic Manipulations

Reverse genetic engineering techniques for negative-strand RNA viruses introduced
the possibility of genetically engineering NDV, thus amplifying and strengthening the
oncolytic potential with no side effects involved in therapy [79].

Genetically engineered NDV F gene:
In NDV, the fusion protein cleavage site is a key protein for membrane fusion as well

as virulence. A non-fusogenic NDV Hitchner B1 (NDV B1) was engineered using reverse
genetics wherein the F protein cleavage site was modified with three extra arginine residues,
resulting in a multibasic cleavage and activation site. This rNDV/F3aa provided a more
effective, sustained NDV infection in host cells and has also proved to be an effective viral
backbone for further genetic modifications [80]. A genetically modified NDV-B1/F3aa,
along with a green fluorescent protein (GFP), was constructed using a DNA fragment GFP
inserted between the P and M genes of pT7NDV/F3aa. The anti-cancer potential was tested
in a mouse model bearing MKN-74 human gastric adenocarcinoma cells. The mouse models
exhibited an oncolytic effect without any signs of toxicity, which could be easily detected
by evaluating the infectivity by the GFP marker [81]. Another in vivo study revealed that
following recombinant rNDV/F3aa L289A (which had an L289A mutation in the F gene)
administration, the tumor tissue of hepatocellular carcinoma showed increased necrotic
changes. However, healthy tissue adjacent to the cancer cells projected no hepatotoxicity, no
inflammation, and no syncytium formation, which is characteristic of NDV infection [82].

Targeting tumor antigens:
Genetically engineered NDV-expressing tumor-associated antigens (TAAs) present

an approach for using NDV as a vaccine vector. β-gal-specific CD8 T-cell epitope TPH-
PARIGL (minigal) cDNA was cloned between the NDV P/V and M genes of an NDV clone
(NDV/F3aa). This model stimulated a targeted TAA-specific adaptive immune reaction
leading to tumor regression in 60% of mice bearing murine colorectal carcinoma CT26
tumors. Furthermore, this antitumor efficacy was boosted by combination treatment with
NDV-expressing IL-2, which showed complete tumor regression in 90% of the mice [79].
CD147 is a molecule that is upregulated on the cancer cell surface and enhances cancer pro-
gression, metastasis, and angiogenesis and regulates the tumor microenvironment [83]. Wei
et al. in 2015 constructed NDV-expressing 18 HL (an antibody against CD147). Orthotopic
HCC xenograft mice injected with rNDV-18HL exhibited significantly less intrahepatic
metastasis and increased the survival rate in mice compared to those injected with control
strain NDV Italien [84].

Modification using cytokines:
cDNA consisting of human IL-2 and TRAIL genes were inserted between the NDV HN

and L genes to obtain rNDV. rNDV-human IL-2 along with TRAIL triggered T cell activity
and upregulated the expression of apoptotic genes (caspase-8, caspase-9, caspase-3, FasL,
and BAX) in melanoma and HCC tumor cell mice models via TRAIL [85]. Similarly, rNDV
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expressing macrophage inflammatory protein-3α (MIP-3α) was constructed by inserting
MIP-3α cDNA between the P and M genes. MIP-3α is a specific chemokine for DCs that
amplified anti-cancer immunogenic reactions in B16 murine melanoma and CT26 colon
carcinoma mouse models. Both models showed enhanced DC activation and maturation
compared to the wild-type NDV [86]. Researchers have also enhanced the antitumor
effects of non-lytic NDV LX by engineering it to co-express IL15 and IL7. Both interleukins
are involved in the activation and development of T cells. B16-F10 (murine melanoma)
cells infected with this rNDV show increased IL15 and IL7 expression. These tumor cells
were then administered as a vaccine, which elicited the activation and proliferation of
T cells and NK cells. The infiltration of CD4+ and CD8+ T cells was observed in TME.
CD8+ T induced significant tumor suppression and better survival in melanoma mouse
models [87]. MEDI5395, a recombinant NDV constructed with a GM-CSF transgene,
exhibited cancer-cell-specific replication and induced tumor regression in murine and
patient-derived xenograft models. Immune activation in the TME was observed as there
was an enhanced expression of IFNγ-inducible genes and T cell activation. The PD-L1
blockade further improved the oncolytic activity [88].

Enhancing Co-Stimulatory Signal for T-cell Activation:
CD278, or inducible T cell co-stimulator (ICOS), is an important co-stimulator in T cell

proliferation and cytokine production that binds to a CD278 ligand expressed by B-cells,
macrophages, and DCs [89]. Recombinant NDV LaSota was engineered to express the
CD278 ligand by using the transgene inserted between the NDV P and M genes. This NDV-
CD278L was administered intratumorally into bilateral flank B16-F10 mouse models, which
enhanced CD278 expression in the tumor microenvironment (TME). The high infiltration
of activated T cells and delayed tumor growth were also observed. NDV-CD278L, when
combined with anti-CTLA-4 blockade, induced a significant increase in CD8+ T cells and
the upregulation of CD278 and granzyme B. Additionally, this efficacy improved local
as well as distant tumor regression in mouse models [90]. Similarly, OX40 plays a co-
stimulatory role in T cell activation and survival. OX40-OX40L interaction facilitates the
stimulation and proliferation of both CD4+ and CD8+ T cells. rNDV expressing murine
OX40L (rNDV-mOX40L) induced an increase in tumor inhibition rate by 15.8% in the CT26
model compared to NDV-treated controls. The tumor site showed an increase in CD4+ and
CD8+ T cells as well as IFN γ levels [91].

Vector for tumor suppressor genes:
The recombinant plasmids consisting of the human p53 gene and helper plasmids

encoding NDV NP, P, and L proteins were constructed and transfected into BHK21 cells.
rNDV-53 produced from the cell culture was then amplified for use. The rNDV-p53 admin-
istration in the hepatocellular carcinoma model showed more than a 5-fold reduction in
tumor weight, and 75% of treated mice showed a 120-day survival rate. The treatment was
nontoxic, as suggested by the normal serum profile of the treated mice [92]. Phosphatase
and tensin homolog (PTEN) is a tumor suppressor gene that encodes for a phosphatase
enzyme. A mutation in this gene is commonly seen in a wide range of cancers. The PTEN
gene was inserted in NDV between the NP and P genes and between the P and M genes.
These rNDV were tested on glioblastoma cell lines in vitro and on glioblastoma xenograft
mice models. rNDV with the PTEN gene inserted between NP and P genes proved to be
effective in enhancing cytopathic activity and syncytium formation in the glioblastoma cell
line, and a significant reduction in tumor size was observed on day two of virotherapy [93].
This rNDV-PTEN was further administered in the orthotropic U87 MG glioblastoma mouse
model. rNDV-PTEN successfully crossed the blood–brain barrier and overexpressed PTEN,
resulting in the apoptosis of cancer cells [94].

Facilitating NDV spread:
Matrix metalloproteinase 8 (MMP-8) is involved in the breakdown of the extracellular

matrix during reproduction, embryo development, and disease progressions like metastasis
and also regulates neutrophil chemotaxis in vivo. The ECM acts like a barrier and hinders
the spread of viruses in tumors. Recombinant NDV-expressing MMP8 (NDV-MMP8) was
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constructed, and intratumoral injection efficiently degraded ECM, enhanced virus spread,
and induced tumor regression in liver cancer xenograft mouse models [95].

3.3. Combination Therapy with Oncolytic NDV

Existing treatment approaches or drugs are also being explored for synergistic action
with NDV. For example, a phase 1, first-in-human, multicenter, open-label trial involving
patients with breast, colorectal, hepatocellular carcinoma, head and neck squamous cell
carcinoma, renal cell carcinoma, and non-small-cell lung cancer is evaluating the MEDI5395
strain in combination with durvalumab (durvalumab is an immune checkpoint inhibitor,
which inhibits programmed death ligand 1 (PD-L1), binding to programmed death 1 (PD-1)
and CD80). The trial’s primary objective is to determine the safety and tolerable dosage of
MEDI5395 and durvalumab. A secondary goal is to identify the efficacy, immunogenicity,
pharmacokinetics, and pharmacodynamics of MEDI5395 [96,97]. A prostate cancer patient
with bone metastases underwent complete remission due to treatment with local hyperther-
mia (LHT) and vaccination with viral oncolysate-DC (VOL-DC) and systemic NDV [98]. A
recent study highlighted the synergistic action of doxorubicin with the NDV Iraqi strain
on plasmacytoma cells independent of the p53 pathway. NDV combined with rituximab
also showed high cytotoxicity on plasmacytoma cells, independent of the p53. Another
study aimed to explore the synergistic effect of genetically engineered NDV LaSota L289A
expressing anti-CTLA4 along with radiotherapy (10 Gy) as well as the systemic administra-
tion of anti-CTLA4 +NDV L289A+ radiotherapy (10 Gy) in a B16-F10 melanoma mouse
model. Both methods of utilizing anti-CTLA4 antibodies effectively induced CD8+ T cell
infiltration in TME, sensitized the tumors to radiotherapy, and enhanced the effectiveness
of radiotherapy [99].

Non-virulent LaSota NDV combined with 5-FU was evaluated by Shammari et al. for
its cytotoxic effect on human Hep-2 (larynx carcinoma) and rhabdomyosarcoma (RD) cell
lines. NDV showed synergistic action with 5-FU at low doses, and there were minor effects
on normal cells [100]. A combination of nisin A at a low concentration of 20.00 µg/mL
and a vero cell line adapted an NDV-enhanced apoptotic effect compared to the individual
effect [101]. Vanadyl sulfate (mostly used in diabetes treatment) can stimulate a robust im-
mune response and hence was explored for its anti-cancer applicability. NDV (5 × 107 PFU)
and vanadyl sulfate (40 mg/kg), when injected in syngeneic B16-F10 melanoma mice,
stimulated an innate immune response characterized by macrophages and NK cells and
led to tumor regression 48–96 h post-administration [102].

3.4. Improving Systemic Delivery

Inefficient systemic delivery to the target or off-target effects results regarding the
rapid clearance of the virus and exhibits a reduced oncolytic effect. Several attempts are
being made to overcome these drawbacks concerning the virus delivery system.

A recent study demonstrated that the NDV LaSota virus when encapsulated in thio-
lated chitosan nanoparticles functionalized with hyaluronic acid bound to CD44 enabled
the immune protection of the virus by masking and escalated the bioavailability of the virus
in cervical cancer cells [103]. Temozolomide (TMZ) is an anti-cancer drug most commonly
used to treat GBM patients. A study explored the TMZ-loaded Poly(lactic-co-glycolic acid)
(PLGA) nanoparticles (NPs) along with the AMHA1-attenuated strain (Iraqi strain) of NDV
as an alternative therapeutic. This synergistically enhanced the anti-cancer activity on the
cerebral glioblastoma multiforme (AMGM5 cell lines). It was therapeutically effective,
biocompatible, and safe. The combination of NDV and TMZ-PLGA-NPs definitely has
future clinical use in cancer therapy [104].

Studies utilizing mesenchymal stem cells (MSCs) for oncolytic NDV delivery provide
an effective Trojan Horse approach for better tumor tropism and cancer cell death. MSCs
infected with NDV (MTH-68/H) delivered the virus to glioma cell lines (A172 and U87) as
well as primary glioma stem cells (GSCs) that were derived from GBM tumors, and the
cytotoxicity, survival, and renewal of GSCs due to NDV-infected MSCs were investigated.
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Glioma cells were sensitized to NDV infection by MSCs and induced dose-dependent,
TRAIL-mediated killing in glioma cells and GSCs. The infected MSCs increased γ-radiation
sensitivity in GSCs [105].

Another study obtained MSCs from the bone marrow of C57BL mice and studied the
effect of MSCs encumbered with oncolytic NDV on splenic T cells and cytokine immune
responses. The results demonstrate that oncolytic NDV delivered by MSCs effectively
reduced cancer cell proliferation, induced CD8+ T cell cytolysis response, and upregulated
caspase-9 expression [106].

4. Future Considerations and Conclusions

The oncolytic action of wild-type or attenuated NDV is poorly understood, leading to
a lack of progress in preclinical and clinical trials. Wild-type NDV strains show specificity
only for a few cancer types, while many cancer cells show resistance to NDV replication.
Therefore, a large number of wild-type strains that aggressively replicate in tumor cells will
have to be screened and genetically modified for the highest specificity and safety [107].
Defined clinical guidelines for systemic delivery of oncolytic viruses are needed as the de-
livery route differs based on the tumor location, and any uncontrolled biosafety negligence
can have an adverse effect on the patient [108]. Incessant endeavors are also required for
developing an effective delivery system for NDV transport to cancer cells. Nanoparticles,
liposomes, or other synthetic carriers can offer a promising role in shielding NDV until
the virus is in circulation, enhancing virus accumulation in the cancer cells and improving
overall therapeutic efficacy [109]. The immunosuppression of NDV poses as one of the
major hurdles, such as a low therapeutic index leading to the need for high dosage adminis-
tration [110]. Furthermore, pre-clinical studies involving 3D cancer cell models are required
to delineate NDV behavior (penetration, replication, and spread) in vivo [111]. Optimum
virus dosage, sustainable delivery agent, route, and appropriate genetic modifications can
contribute to overcoming both specific and nonspecific host immune reactions.

Although various types of cancer treatment modalities, such as surgery, radiation
therapy, and/or systemic therapy, which include chemotherapy, hormonal therapy, im-
munotherapy, and targeted therapy, exist, none of these approaches are a failsafe for
combating metastatic relapse [112]. The cancer treatment arena is continuously transform-
ing with time, and integrating NDV oncolytic virotherapy can revolutionize the era of
modern oncotherapeutics.
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