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Abstract: Most human proteins are modified by enzymes that act on the α-amino group of a newly
synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and
expose the second amino acid for further modification by enzymes responsible for myristoylation,
acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the
initiator methionine and sometimes the acetylated methionine can be removed, followed by further
modifications. These modifications at the protein N-termini play critical roles in cellular protein
localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently,
the dysregulation of these modifications could significantly change the development and progression
status of certain human diseases. The focus of this review is to highlight recent progress in our
understanding of the roles of these modifications in regulating protein functions and how these
enzymes have been used as potential novel therapeutic targets for various human diseases.

Keywords: protein modification; methionine aminopeptidases; acetylation; myristoylation; methylation;
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1. Introduction

In the cytosol of human cells, when a newly synthesized polypeptide emerges from the
ribosomes, its fate can be determined by the enzymes that modify its N-terminal α-amino
acid residue (Nα). These N-terminal modifications include excision of the initiator me-
thionine (iMet), Nα-myristoylation, Nα-acetylation, Nα-methylation, and other less com-
mon modification events such as Nα-propionylation, Nα-palmitoylation, Nα-arginylation,
and Nα-ubiquitylation (Figure 1). Among these enzymes, methionine aminopeptidases
(MetAPs) are responsible for N-terminal iMet excision (NME) [1,2]; N-terminal acetyltrans-
ferases (NATs) for Nα-acetylation [3]; N-terminal myristoyltransferase (NMTs) for Nα-
myristoylation [4]; N-terminal methylation for Nα-methylation (NTMTs) [5]; N-terminal
palmitoylacyltransferases (PATs) for Nα-palmitoylation [6]; and ubiquitin ligases for ubiq-
uitylation of the N-terminal α-amino acid residue [7]. The NATs can also sometimes
catalyze a much less understood modification: Nα-propionylation [8]. These modifications
of proteins at their N-termini play critical roles in many important cellular processes, and
dysregulation of these events could significantly impact the development and progression
of certain human diseases [9,10]. The focus of this review is to highlight recent progress
in our understanding of the substrate specificity of these enzymes, their roles in the bio-
logical function of specific proteins, how they might be regulated, the crosstalk between
different modifications, and how these enzymes are used as targets for potential novel
therapeutical strategies.
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Figure 1. Summary of Nα-modifications of Cytosolic Human Proteins. Methionine aminopeptidases
(MetAPs) are responsible for N-terminal iMet excision (NME) [1,2]; N-terminal acetyltransferases
(NATs) for Nα-acetylation [3]; N-terminal myristoyltransferase (NMTs) for Nα-myristoylation [4];
and N-terminal methylation for Nα-methylation (NTMTs) [5].

2. N-Terminal Methionine Excision (NME)

Protein synthesis in the cytosol of a eukaryotic cell, in most cases, is initiated with
methionine. When the second amino acid residue is a small and uncharged amino acid
such as Ala, Cys, Gly, Pro, Ser, Thr, or Val, iMet is usually removed co-translationally
by two types of methionine aminopeptidases (MetAPs) [11–20]. Although these two
types do not share a high sequence identity, their catalytic domains belong to the same
family of metalloproteases with a typical “pita-bread” protease fold [19]. The N-terminal
domain of eukaryotic MetAP1s contains two zinc finger motifs; a RING-finger-like Cys2-
Cys2 zinc finger and a Cys2-His2 zinc finger related to RNA-binding zinc fingers [21,22].
These two zinc fingers are essential for the regular functional association of MetAP1
with the ribosomes [21,22]. Eukaryotic type 2 MetAPs (MetAP2s), on the other hand,
contain an N-terminal domain with a positively charged Lys-rich region [16–20]. Deleting
MetAP1 in yeast leads to a slow growth phenotype which can be rescued by overexpressing
MetAP2, whereas knocking out both MetAPs is lethal, indicating that the NME process
is vital for normal cell growth (Table 1) [17]. This finding strongly suggests that both
enzymes act on similar groups of substrates in vivo. Structural studies of human MetAPs
revealed a potential difference in the substrate specificity of their catalytic sites due to
more steric restrictions in MetAP1 [20]. Proteomics analysis of the substrate specificity of
human MetAPs indicates that MetAP2 prefers iMet-Val and iMet-Thr. However, substrate
specificity is significantly overlapping for human MetAP1 and MetAP2 [15].
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Table 1. Impact of protein Nα-modifications on cellular functions.

Enzymes Cellular Functions References

MetAP1 Cell cycle progression, cell proliferation, enzyme function,
protein stability, cellular localization [13–23]

MetAP2 Angiogenesis, B-cell differentiation, cell specific
Cytotoxicity [23–34]

NMTs Signal transduction, cellular transformation,
innate immune responses, adaptative immune response [35–38]

NATs
Actin cytoskeleton structure, cell cycle progression, cell

proliferation
cell mobility

[39–48]

NTMTs

Protein stability, protein-protein interaction, protein-DNA
interaction, cellular localization, response to cellular stress,
DNA repair, regulation of mitosis, chromatin interaction,

tRNA transport, genome stability

[5,49–58]

Since discovering that human MetAP2, not human MetAP1, is the molecular target
of TNP-470, a potent anti-angiogenesis inhibitor, MetAP2 has become a drug target for
treating cancer, obesity, Prader-Willi Syndrome (PWS), and autoimmunity (Table 2) [23–26].
Inhibitors for human MetAP2 are well tolerated in patients at therapeutically relevant
doses and have been developed for a variety of pharmaceutical applications, including
the treatment of cancer [27–31], diabetes, and obesity [32], as well as the modulation of
autoimmunity [33,34]. Although none of these inhibitors have yet passed Phase III clinical
trials, the interest of the drug development community remains high due to continued
promising preclinical and clinical efficacy results for novel MetAP2 inhibitors. Unfortu-
nately, most studies did not assess the impact of MetAP2 inhibition on cellular functions,
making it harder to correlate the phenotypes to the inhibitors’ mode of action. Most of time,
more questions were raised than answered regarding the role of MetAP2 in these diseases
after a new clinical study. For example, it is still being determined whether the molecular
mechanisms driving each phenotype discovered during each clinical trial share the exact
molecular mechanisms. The molecular mechanisms of MetAP2 inhibitor-induced weight
loss or immune modulation remain to be established. Even the fundamental questions
regarding the substrate specificity of MetAPs in different tissues still need to be better
defined. Indeed, a better understanding of MetAP biology and the mode of action of
MetAP2 inhibitors would undoubtedly improve the quality of biomarkers for patient
screening, the identification of novel indications, and the development of evidence-based
drug combinations in targeted disease treatment.

Table 2. Potential targets for developing a novel treatment for human diseases.

Enzymes Targeted Human Diseases References

MetAP1 Antibiotics, cancer [20]
MetAP1D Colon cancer [59,60]

MetAP2
Cancer, obesity, diabetes,
Prader-Willi syndrome,

autoimmunity
[23–34]

NMTs Cancer; HIV, fungal, and
parasitic infection [61–70]

NATs Cancer (lung, liver, colon),
Parkinson’s disease [71–81]

NTMTs Cancer (breast, colon,
pancreatic, lung) [82–89]

In the mitochondria of human cells, protein synthesis is initiated with formyl-methionine.
A deformylase can remove the formyl group to expose an unmodified methionine, which
becomes a substrate for MetAP. A search of the GenBank database with cytosolic MetAP1
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and MetAP2 protein sequences led to the discovery of MetAP1D [59]. MetAP1D is a
new member of the human MetAP family and belongs to the Type I MetAP subfamily.
Phylogenetic analysis of human MetAP isoforms suggests that human MetAP1D pairs
with mitochondrial MetAP orthologs previously identified in plants [90]. All three MetAP
isoforms can remove Met from a Met-Ala-Ser peptide in vitro. However, the substrate
specificity of MetAP1D has not been fully investigated. MetAP1D is overexpressed in
colon cancer cells and colon tumors. Reduced expression of MetAP1D by shRNA has been
shown to decrease the ability of colon cancer cells to grow in soft agar, indicating that
overexpression of MetAP1D may be necessary for tumorigenesis. Thus, MAP1D has been
suggested to be a target for chemotherapy in colon carcinoma [59,60].

Recently, genomic analyses demonstrated that patients with intellectual disability
(ID) harbor a novel homozygous nonsense mutation in the MetAP1 gene. ID is a common
genetic and clinically heterogeneous disease, and underlying molecular pathogenesis
can frequently be unidentified by whole-exome/genome testing. Improper neuronal
function from losing essential proteins could lead to neurologic impairment and ID [91].
In addition, a mutation in the MetAP1D gene was identified as one candidate involved in
the penetrance of Leber’s hereditary optic neuropathy (LHON) [92]. Though we are still
very early in understanding how mutations in MetAPs could affect human health, NME
excision processes provide a promising avenue in translational research.

3. Nα-Myristoylation

N-myristoyltransferase (NMTs) are responsible for protein Nα-myristoylation. NMTs
can transfer a C:14:0 acyl-CoA to the N-terminal glycine (Gly) of specific groups of proteins
following the excision of iMet by MetAPs [93,94]. N-terminal Gly is absolutely required for
NMT activity, with preferred substrates containing sequence: G2X3X4X5(C/S/T)6K7 [95–98]
in which X3 favors a charged residue; X4 can be any residue; X5 favors Gly, Ala, Ser, Cys
or Asn; X6 favors Cys, Ser, or Thr; whereas Trp, Phe, Tyr, and Pro are prohibited [97–100];
and K7 interacts with negatively charged residues in the binding pocket of MNTs [97–100].
The substrate specificity of MNTs might be regulated by their interacting partners in
different cells and species [100]. There are variations in sequence preferences across
species [96,98,100]. A tool predicting species-specific Nα-myristoylation before experi-
mental data is available will help develop NMT-targeted therapy.

Most human tissues express 2 NMT isoenzymes (HsNMT1 and HsNMT2) [101–105].
These 2 isozymes share ~77% protein sequence identity. Although they share similar
substrates, they are not considered functionally redundant [101–109]. At least 40 NMT
substrates have been discovered in human cells. These proteins are usually inserted into
the lipid rafts, plasma membrane, endoplasmic reticulum (ER), Golgi apparatus, nuclear
membrane, or mitochondria in cells [109–114]. Thus, depending on the subcellular local-
ization of the myristoylated protein, it can regulate diverse cellular functions [35–38,61],
including signal transduction [36–38], cellular transformation [36–38], oncogenesis, both
innate and adaptive immune responses, cancer, and human immunodeficiency virus (HIV)
infection [61], as well as parasitic and fungal diseases [62,63]. Small-molecule NMT in-
hibitors have therapeutic potential in viral and parasitic infections and cancer. For example,
IMP-366 (DDD85646), a bioactive pyrazole sulfonamide inhibitor of Trypanosoma brucei
NMT with an apparent Ki value of 1.44 nM, is a widely used NMT inhibitor that can
suppress picornavirus replication, as well as malaria and sleeping sickness parasites by
inhibiting their NMTs [64–66]. IMP366 can also suppress breast and colon cancer cell
growth [67]. PCLX-001 (DDD86481) is a potent, small molecule inhibitor of both human
NMTs. Preclinical studies have shown that PCLX-001 markedly inhibits hematologic and
lymphoma cell lines in tissue culture and achieves complete remissions in human cancers
grown in immunodeficient mice [68] and tumor responses in solid cancers [68–70,115].
It can nullify Nα-myristoylation of Src family kinases and promote their degradation,
leading to cancer cell death in vitro and xenograft models [68]. The molecule has been ex-
tensively investigated in non-clinical safety testing [70] and found suitable for formal drug
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development in humans. Recently, analysis of pharmacokinetic and pharmacodynamic
endpoints revealed that PCLX-001 has pharmacokinetic properties suitable for continued
development as an oral, once daily, cancer therapy. A more in-depth understanding of
structural differences between human and pathogenic NMTs and human NMT1 and NMT2
will further advance the development of small molecules with increased selectivity and
decreased toxicity.

4. Nα-Acetylation

N-terminal acetylome analysis revealed that ~80–90% of the N-terminalα-amino group
of soluble human proteins is acetylated. At least nine different N-terminal acetyltransferases
(NATs) are involved in this modification event in which acetyl-CoA is used as a cofactor for
the chemical reaction (Figure 1) [115,116]. This modification replaces the positive charge
associated with the free α-amino group with a polar group and can block it for further
changes. Each NAT has different substrate specificities [117,118], which can affect critical
protein functions, including complex formation [39–42], protein localization [43–45], and
protein degradation governed by the N-end rules (Table 1) [46–48]. NATs usually contain
a unique catalytic subunit and one or two auxiliary subunits. The auxiliary subunits
play various roles, including ribosomal anchoring [119,120]. In humans, 7 NATs have
been identified: NatA (NAA10 and NAA15), NatB (NAA20 and NAA25), NatC (NAA 30,
NAA 35, and NAA38), NatD (NAA40), NatE, NatF, and NatH (NAA80) [121–123]. NatA,
NatB, and NatC are responsible for most protein Nα-acetylation [3]. NatA and NatB are
heterodimeric complexes, each containing a specific catalytic subunit and a unique auxiliary
subunit (NAA10 in NatA and NAA20 in NatB, as the catalytic subunit; NAA15 in NatA
and NAA25 in NatB as the auxiliary subunit) [124]. NatC is a heterotrimeric complex.I It
contains 1 catalytic subunit (NAA30) and 2 auxiliary subunits (NAA35 and NAA38) [125].
NatA, NatB, and NatC each have different substrate specificity. NatA acetylates small N-
terminal residues after iMet excision [115], whereas NatB acetylates the iMet with sequences
of MD- ME-, MN-, and MQ- [126,127]. NatC/E/F have overlapping substrates, acting
on iMet when followed by residues that are not D, E, N, and Q [116,127–131]. When an
additional catalytic subunit (NAA50) binds to NatA, NatE is formed as a dual enzyme
complex with crosstalk between 2 catalytic subunits, NAA10 and NAA50 [71,121]. NatF
binds to the Golgi membrane and acetylated transmembrane proteins [71,132,133]. NatD
contains only a single catalytic unit, NAA40, with no auxiliary subunit. It acetylates the
α-amino group of Ser of histones H4 and H2A after the exciton of iMet [134,135]. NatH
targets all six mammalian actin isoforms in unique processing steps that differentiate
muscle and non-muscle actins. Non-muscle actins contain a string of negatively charged
residues following iMet, MDDD in β-actin, and MEEE in γ-actin. The iMet is acetylated by
NatB and then removed by an unidentified actin N-acetyl-aminopeptidase (ANAP) [136].
Muscle actins, typically containing a Cys in the second position, are first processed by
MetAPs to remove the iMet, followed by acetylation of the second Cys, likely by NatA,
and the acetylated Cys will be further removed by ANAP to expose the acidic residue
in the third position [136]. In all cases, this newly exposed acidic residue will be further
acetylated post-translationally by NatH (Figure 2) [133]. Knockout of the NatH gene results
in an increased filamentous to globular actin ratio, increased filopodia and lamellipodia
formation, and accelerated cell motility [133].

Moreover, many studies have demonstrated that NatB and NatD have connections
to various human diseases [71–81,137–140]. For example, NatB is upregulated in human
hepatocellular carcinoma, and silencing NatB mRNA can block cell proliferation and tumor
formation [139]. Thus, NatB could be a potential therapeutic target for certain cancers [139].
Nα-acetylation of α-Syn by NatB in human cells can increase its stability and lipid binding
and reduce aggregation capacity [74–78]. Since α-Syn is a critical protein in Parkinson’s
disease, NatB might play a role in PD pathogenesis (Table 2) [72,73]. A recent report on
the Cro-EM structure of human NatB complexed with a CoA-α-Syn conjugate provided
new insights into the mode of substrate selection of NAT enzymes, which will further
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facilitate the development of small molecule NatB probes [71]. NatD, on the other hand,
plays essential roles in a diverse range of tumors, and its expression level correlates with
poor survival of cancer patients [71,79]. However, unlike NatB, NatD is downregulated in
hepatocellular carcinoma tissues, and ectopic NatD expression sensitizes hepatoma cancer
cell lines to drug-induced apoptosis [54,71]. Moreover, a recent study has indicated that
NatD is a critical regulator of cell invasion during lung cancer metastasis [139]. Interestingly,
in colorectal cancer (CRC) cells, NatD plays a pro-survival role suggesting that it may
stimulate cancer cell growth [71.81]. Despite the exciting discoveries of NatD’s essential
roles in cancer development and metastasis, it remains elusive regarding its role in cancer
chemotherapy response.
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Figure 2. Nα-modifications of actins. (A) Muscle γ-actin and α-actins, typically containing a Cys in
the second position followed by charged amino acid residues. After the iMet is removed by MetAPs,
the second Cys, likely by NatA, is acetylated and the acetylated Cys will be further removed by
ANAP to expose the acidic residue in the third position [136]. This newly exposed acidic residue will
be further acetylated post-translationally by NatH. (B) Nonmuscle β-actin and γ-actin contain a string
of negatively charged residues following iMet, MDDD in β-actin, and MEEE in γ-actin. The iMet is
acetylated by NatB and then possibly removed by an unidentified actin N-acetyl-aminopeptidase
(ANAP) [136]. Like its cytoplasmic partner γ-actin as discussed in Section 4, the iMet of β-actin
acetylated by NatB, and then possibly removed by an unidentified ANAP is co-translationally.
Next, the exposed second residue (Asp2 in β-actin, Glu2 in γ-actin) will be further acetylated by a
dedicated N-acetyltransferase, NatH/NAA80 [141–143]. However, some β-actin Nα-termini will not
be acetylated, instead they undergo further proteolytic processing, and the new Nα-termini (DD-)
are then Nα-arginylated by ATE1. Nα-acetylation or Nα-arginylation of actins will change their
N-terminal charge density and affect actin structure and function.
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5. Nα-Methylation

N-terminal methyltransferases catalyze protein N-terminal methylation (Nα-methylation).
These enzymes are conserved between yeast (Tae1) and humans (NTMT1 and NTMT2).
They catalyze the transfer of the methyl group from S-adenylmethionine (SAM) to the
free α-amino group of the newly exposed X2 residue of a nascent polypeptide after iMet
excision that contains a sequence motif, iMet-X2-P3-[K/R]4, in which X2 is A, S, G, or P
(Figure 1). This motif is recognized as the canonical N-terminal motif for NTMTs [49,50].
The properties of Nα-methylated proteins differ according to the degree of methylation.
Adding one methyl group to the α-amino group only slightly increases its basicity and
introduces a minor steric hindrance that may slightly reduce its reactivity. However,
adding two or three methyl groups can generate a permanent positive charge in the
α-amino group. Until now, no eraser of this event has been identified, and protein Nα-
methylation is considered irreversible. The two human NTMTs target various substrates
associated with diverse biological pathways (Table 1) [50–58]. Nα-methylation regulates
protein–protein and protein–DNA interactions [49–51]. For example, Nα-methylation
(trimethylation) of CENP-A is critical for its formation of the centromere complex with
two other partners, CENP-I and CENP-T, which is essential for cell cycle progress and cell
survival [56,57]. On the other hand, the loss of Nα-trimethylation of CENP-B prevents it
from binding to the centromeric DNA motif [56–58]. In HEK293T cells, Nα-methylation of
DDB2 promotes its nuclear localization to UV light-induced cyclobutane pyrimidine dimer
(CPD) foci and stimulates CPD repair, suggesting Nα-methylation’s protective role against
UV damage [82,83]. Nα-methylation of MYL9, a transcriptional activator of intercellular
adhesion molecule 1 (ICAM1), weakens its interaction with an actin-modulating protein,
Cofilin-1, and promotes ICAM1 transcription [83]. Nα-methylation of RCC1 can regulate
the RCC1-chromatin interaction by inhibiting the association of its core portion with
histones H2A or H2B [84]. The binding of Ran to Nα-methylated RCC1 triggers the
exposure of its histone-binding surface and promotes the interaction between the Nα-
methylated RCC1 tail and negatively charged DNA [84–86]. This electrostatic interaction is
Nα-methylation dependent. The loss of Nα-methylation reduces RCC1 binding to DNA
and causes mitotic defects [85]. Interestingly, Nα-methylation of MRG15 was recently
found to be modulated by m6A writers, leading to new regulation of Nα-methylation by
the m6A-based epitranscriptome [86]. In summary, increasing evidence indicates that Nα-
methylation is essential in regulating mitosis, chromatin interactions, DNA repair, tRNA
transport, and maintaining genome stability (Table 1) [82–89]. Dysregulation of NTMTs
has been implicated in the pathogenesis of various diseases, including breast, colorectal,
pancreatic, and lung cancers (Table 2) [144,145].

6. Other Nα-Modifications
6.1. Nα-Palmitoylation

Unlike Nα-myristoylation, much less is known about Nα-palmitoylation. Protein
palmitoylation usually occurs at an internal Cys residue [146], but researchers have recently
identified several Nα-palmitoylated proteins. For example, a palmitoyl group is found to
be attached to the α-amino group of the N-terminal Gly residue of the α-subunit of the
heterotrimeric G protein that is responsible for the activation of adenylyl cyclase [146,147].
In addition, the secreted vertebrate signaling proteins Hedgehog (Hh) and Sonic Hedge-
hog (Shh) are Nα-palmitoylated at the Cys residue after the cleavage of the N-terminal
signal sequence [148,149]. Hedgehog protein acyltransferase (Hhat) is suggested to be
responsible for palmitoylating Shh [150–153]. This modification regulates Shh signaling
strength [150–155]. That belongs to the family of transmembrane proteins termed MBOAT
(membrane-bound O-acyltransferase) [154] which acylates Shh during its passage through
the secretory pathway [150].
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6.2. Nα-Ubiquitylation

Protein ubiquitylation usually refers to the addition of ubiquitin to the ε-amino group
of an internal Lys residue via a combined activity of ubiquitin-activating (E1), conju-
gating (E2), and ligating (E3) enzymes. However, protein Nα-ubiquitylation refers to
adding ubiquitin to the newly exposed α-amino group of a protein. In both cases, the
ubiquityl group may serve as a target for polyubiquitylation, a well-known degradation
signal recognized by the proteasome [156,157]. Nα-ubiquitylation was first discovered by
Ciechanover’s lab [158]. However, the first direct evidence revealed by MS analysis was
the Nα-ubiquitylation of HPV-58 oncoprotein E7 [7,159]. As HPV-58 E7 contains no lysine
residues, its degradation is likely solely dependent upon Nα-ubiquitylation. Recently,
α-synuclein and a tau tetra repeat domain were found to be Nα-ubiquitylated in vitro. Nα-
ubiquitylation affected its aggregation properties and was proposed to enable targeting of
the modified α-synuclein, and a tau tetra repeat domain to the proteasome for degradation,
suggesting a role of Nα-ubiquitylation in removing amyloidogenic proteins [160]. A total
of 2 enzymes, E3 HUWE1 and E2 Ube2w, catalyze Nα-ubiquitylation [161–163]. HUWE1
was shown to ubiquitylate the N-terminus of a MyoD mutant that contains no Lysine
residues [163]. Ube2w, on the other hand, can successfully ubiquitylate the N-terminus of a
lysine-free version of Ataxin-3 and Tau [161]. There are some distinctive differences when
comparing the active site of Ube2w to that of classical E2s. The unique structure features of
Ube2w make its novel active site more suitable to accommodate an α-amino group rather
than a Lys side chain [161,162]. Interestingly, a recent report found that Pro in positions 2 to
4 of an unstructured peptide backbone has an inhibitory effect on Ube2w activity [164]. We
are still very early in studying the biochemistry and biology of protein Nα-ubiquitylation.

6.3. Nα-Arginylation

Protein arginylation was discovered in 1963 [165,166]. The enzyme arginyltrans-
ferase (ATE1) responsible for this modification was first cloned and characterized in
yeast [167]. ATE1 catalyzes the transfer of Arg from aminoacyl-tRNA to target proteins
post-translationally [167]. The ATE1 gene exists in nearly all eukaryotes. The ATE1 gene
encodes four isoforms in humans and mice, generated by alternative splicing [168,169].
ATE1 preferentially targets the unacetylated acidic N-terminal residues, including Asp and
Glu [170]. It has also been found to target oxidized Cys [171,172] at a far lesser frequency
and targeting oxidized Cys was found to differ between different ATE1 isoforms [173,174].
Recent high throughput analysis of arginylation suggested the existence of a consensus
motif that may potentially be used to predict arginylation sites in vivo [173,174]. ATE1-
mediated Nα-arginylation has been initially characterized as part of the N-degron (N-end
rule) pathway that regulates the protein’s half-life [175,176]. N-terminally arginylated pro-
teins can be recognized by specific E3 ligases of the ubiquitin–proteasome system (UPS) to
ubiquitinate a nearby Lys for the follow-up degradation. However, if there is no accessible
Lys for the E3 ligases, the N-terminally arginylated proteins will remain metabolically
stable. Calreticulin [177] is one of ATE1 target. Nα-arginylation of calreticulin is less suscep-
tible to proteasomal degradation than the non-arginylated form [178], and the modification
triggers its translocation from the ER into the cytosol, increasing apoptotic response [179].
Actin is another known target of ATE1. Nα-arginylation or Nα-acetylation of cytoplasmic
β-actin is emerging as a first-line mechanism to regulate cell migration [180–182]. Like
its cytoplasmic partner γ-actin as discussed in Section 4, the iMet of β-actin acetylated by
NatB, and then removed by an unidentified ANAP is co-translationally. Next, the exposed
second residue (Asp2 in β-actin, Glu2 in γ-actin) will be further acetylated by a dedicated
N-acetyltransferase, NatH/NAA80 [141–143]. The acetylated Asp2 or Glu2 can be removed,
and then the Asp3 or Glu 3 can be arginylated by the nonspecific arginyltransferase Ate1
(Figure 2) [173,183]. Arginylation of γ-actin with slower translation leads to its immediate
proteasomal degradation [184]. However, arginylated β-actin (R-actin) has been shown to
specifically relocate to the leading edge upon induction of cell migration (Figure 2) [181].
NatH knockout (KO) cells show an increase in R-actin level by seven-fold [173,184,185],
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which supports the hypothesis that acetylation and arginylation of β-actin are mutually
exclusive and that the increased level of R-actin could be an essential factor for the en-
hanced motility of NatH KO cells. However, it remains unclear whether the impact of
Nα-modification on actin directly changes its interactions with the associated proteins or
indirectly affects its interaction with the associated proteins via altered intrinsic interac-
tions between actin monomers within the actin filament [185]. Recently, Nguyen KT et al.
found that ubiquitin is a target of Ate1 by identifying the arginylated ubiquitin (RE-Ub) in
yeast [186]. Ubiquitin (Ub) starts with Met-Gln-Ile (MQ) N-terminus. The authors proposed
that N-terminal modifications of mammalian ubiquitin based on their new findings involve
NME by unknown MetAP, N-terminal deamination by NTAQ1 N-terminal Gln amidase,
and N-terminal arginylation by ATE1 arginyltransferase [187–189] ubiquitin might be pro-
cessed by the NME-provoked cascade reactions of N-terminal deamination and N-terminal
arginylation to yield RE-Ub (Figure 3) [186]. However, according to the specificity of NatB,
iMet is likely to be acetylated. If so, the acetylated iMet will be removed by an unknown
deacetylase. Then, the newly exposed Gln is converted to Glu by NTAQ1 N-terminal Gln
amidase, followed by Nα-arginylation by ATE1 (Figure 3). Further studies of this exciting
N-terminal modification of selected targets will eventually unravel the full complexity of
the N-terminal arginylome and the biological significance of this event.
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Figure 3. Nα-modifications of ubiquitin. (A) Ubiquitin (Ub) starts with Met-Gln-Ile (MQ) N-
terminus. Nα-modifications of ubiquitin involve NME possibly by an unknown MetAP, N-
terminal deamination by NTAQ1 N-terminal Gln amidase, and N-terminal arginylation by ATE1
arginyltransferase [187–189] ubiquitin might be processed by the NME-provoked cascade reactions
of N-terminal deamination and N-terminal arginylation to yield RE-Ub (Figure 3) [186]. (B) However,
according to the specificity of NatB, iMet is likely to be acetylated by NatB. If so, the acetylated iMet
will be removed by an unknown deacetylase. Then, the newly exposed Gln is converted to Glu by
NTAQ1 N-terminal Gln amidase, followed by Nα-arginylation by ATE1.
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7. Regulation and Crosstalk

The substrate specificity and catalytic efficiency of MetAP2, but not MetAP1, are
regulated by an allosteric disulfide bond, Cys228-Cys448, located at the rim of the ac-
tive site. Oxidized and reduced isoforms of MetAP2 have different catalytic activities on
their peptide substrates [190]. When solid tumor cells adapt to a limiting blood supply,
they experience different degrees of stress, such as hypoxia, glucose deprivation, and
growth factor. This cellular stress can lead to increased production of reactive oxygen
species that may lead to an increased level of oxidized MetAP2 with altered substrate speci-
ficity [190]. Since excision of iMet is a prerequisite for specific Nα-modifications such as
Nα-myristoylation, Nα-methylation, and Nα-acetylation events via NatA, altered MetAP
activity could indirectly affect the downstream Nα-modifications. Nα-modifications, ex-
cept the abovementioned possible indirect regulation by MetAP activity, are generally
considered static because no specific modification eraser(s) have been discovered yet. Many
recent reports indicate that dynamic crosstalk occurs between Nα-methylation and other
modifications, including Nα-acetylation, internal methylation on lysine or arginine, phos-
phorylation, and m6A modifications in RNA [79]. Knockdown of NatD reduced metastasis
and invasion of lung cancer cells. The proposed mechanism was that Nα-acetylation of
histone H4 antagonizes the CK2α-mediated phosphorylation on the same serine residue
(H4S1ph) to regulate Slug expression and metastasis [79]. The differential impact of Nα-
methylation and Nα-acetylation on the subcellular localization of MYL9 is the first report
on the interplay between methylation and acetylation at the same site [89,191,192]. Both
Nα-methylation and Ser phosphorylation on the N-terminal tail of RCC1 were concurrent
during mitosis [134,193]. In asynchronous HeLa cells, S1 phosphorylation decreased by
about 25% in the RCC1 Nα methylation-defective mutant compared with wild-type RCC1,
suggesting that Nα-methylation has a positive effect on the phosphorylation of S1 [134]. In
mitotic cells, no significant change was observed in the total phosphorylation levels of two
Ser residues (S1 and S10) regardless of Nα-methylation. However, the phosphorylation
level of S2 increased by 10% in the absence of Nα-methylation [134]. Furthermore, a recent
study demonstrated that NTMT1 protein expression might be regulated by readers, writers,
and erasers involved in the N6-methyladenosine (m6A) modification of mRNA, providing
a critical first piece of evidence for the regulation of Nα-methylation [134,193], which
introduces additional dimensions that govern the interplay among different modifications
at the Nα-position.

8. Conclusions

Our understanding of protein Nα-modifications has been significantly advanced in
the past decades. Protein Nα-modifications are critical in controlling protein/protein
interaction, protein-DNA interaction, cellular protein localization, and protein stability.
The dysfunction or dysregulation of the enzymes involved in Nα-modification has been
connected to various human diseases, including cancer, neurodegenerative diseases, and
infectious diseases. Therefore, many of these enzymes have been used as targets for
developing novel therapeutic approaches for disease treatment, including cancer, diabetes,
and obesity. We can anticipate that scientists using cutting-edge technologies such as
cryo-EM and multi-omics approaches will make significant advances in this exciting field
in the future.
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